| /* |
| * defines common to all virtual CPUs |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #ifndef CPU_ALL_H |
| #define CPU_ALL_H |
| |
| #include "qemu-common.h" |
| #include "exec/cpu-common.h" |
| #include "exec/memory.h" |
| #include "qemu/thread.h" |
| #include "qom/cpu.h" |
| #include "qemu/rcu.h" |
| |
| #define EXCP_INTERRUPT 0x10000 /* async interruption */ |
| #define EXCP_HLT 0x10001 /* hlt instruction reached */ |
| #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ |
| #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ |
| #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ |
| #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ |
| |
| /* some important defines: |
| * |
| * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and |
| * otherwise little endian. |
| * |
| * TARGET_WORDS_BIGENDIAN : same for target cpu |
| */ |
| |
| #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) |
| #define BSWAP_NEEDED |
| #endif |
| |
| #ifdef BSWAP_NEEDED |
| |
| static inline uint16_t tswap16(uint16_t s) |
| { |
| return bswap16(s); |
| } |
| |
| static inline uint32_t tswap32(uint32_t s) |
| { |
| return bswap32(s); |
| } |
| |
| static inline uint64_t tswap64(uint64_t s) |
| { |
| return bswap64(s); |
| } |
| |
| static inline void tswap16s(uint16_t *s) |
| { |
| *s = bswap16(*s); |
| } |
| |
| static inline void tswap32s(uint32_t *s) |
| { |
| *s = bswap32(*s); |
| } |
| |
| static inline void tswap64s(uint64_t *s) |
| { |
| *s = bswap64(*s); |
| } |
| |
| #else |
| |
| static inline uint16_t tswap16(uint16_t s) |
| { |
| return s; |
| } |
| |
| static inline uint32_t tswap32(uint32_t s) |
| { |
| return s; |
| } |
| |
| static inline uint64_t tswap64(uint64_t s) |
| { |
| return s; |
| } |
| |
| static inline void tswap16s(uint16_t *s) |
| { |
| } |
| |
| static inline void tswap32s(uint32_t *s) |
| { |
| } |
| |
| static inline void tswap64s(uint64_t *s) |
| { |
| } |
| |
| #endif |
| |
| #if TARGET_LONG_SIZE == 4 |
| #define tswapl(s) tswap32(s) |
| #define tswapls(s) tswap32s((uint32_t *)(s)) |
| #define bswaptls(s) bswap32s(s) |
| #else |
| #define tswapl(s) tswap64(s) |
| #define tswapls(s) tswap64s((uint64_t *)(s)) |
| #define bswaptls(s) bswap64s(s) |
| #endif |
| |
| /* Target-endianness CPU memory access functions. These fit into the |
| * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. |
| */ |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| #define lduw_p(p) lduw_be_p(p) |
| #define ldsw_p(p) ldsw_be_p(p) |
| #define ldl_p(p) ldl_be_p(p) |
| #define ldq_p(p) ldq_be_p(p) |
| #define ldfl_p(p) ldfl_be_p(p) |
| #define ldfq_p(p) ldfq_be_p(p) |
| #define stw_p(p, v) stw_be_p(p, v) |
| #define stl_p(p, v) stl_be_p(p, v) |
| #define stq_p(p, v) stq_be_p(p, v) |
| #define stfl_p(p, v) stfl_be_p(p, v) |
| #define stfq_p(p, v) stfq_be_p(p, v) |
| #define ldn_p(p, sz) ldn_be_p(p, sz) |
| #define stn_p(p, sz, v) stn_be_p(p, sz, v) |
| #else |
| #define lduw_p(p) lduw_le_p(p) |
| #define ldsw_p(p) ldsw_le_p(p) |
| #define ldl_p(p) ldl_le_p(p) |
| #define ldq_p(p) ldq_le_p(p) |
| #define ldfl_p(p) ldfl_le_p(p) |
| #define ldfq_p(p) ldfq_le_p(p) |
| #define stw_p(p, v) stw_le_p(p, v) |
| #define stl_p(p, v) stl_le_p(p, v) |
| #define stq_p(p, v) stq_le_p(p, v) |
| #define stfl_p(p, v) stfl_le_p(p, v) |
| #define stfq_p(p, v) stfq_le_p(p, v) |
| #define ldn_p(p, sz) ldn_le_p(p, sz) |
| #define stn_p(p, sz, v) stn_le_p(p, sz, v) |
| #endif |
| |
| /* MMU memory access macros */ |
| |
| #if defined(CONFIG_USER_ONLY) |
| #include "exec/user/abitypes.h" |
| |
| /* On some host systems the guest address space is reserved on the host. |
| * This allows the guest address space to be offset to a convenient location. |
| */ |
| extern unsigned long guest_base; |
| extern int have_guest_base; |
| extern unsigned long reserved_va; |
| |
| #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS |
| #define GUEST_ADDR_MAX (~0ul) |
| #else |
| #define GUEST_ADDR_MAX (reserved_va ? reserved_va - 1 : \ |
| (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1) |
| #endif |
| #else |
| |
| #include "exec/hwaddr.h" |
| |
| #define SUFFIX |
| #define ARG1 as |
| #define ARG1_DECL AddressSpace *as |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst.inc.h" |
| |
| #define SUFFIX _cached_slow |
| #define ARG1 cache |
| #define ARG1_DECL MemoryRegionCache *cache |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst.inc.h" |
| |
| static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
| { |
| address_space_stl_notdirty(as, addr, val, |
| MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| |
| #define SUFFIX |
| #define ARG1 as |
| #define ARG1_DECL AddressSpace *as |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst_phys.inc.h" |
| |
| /* Inline fast path for direct RAM access. */ |
| #define ENDIANNESS |
| #include "exec/memory_ldst_cached.inc.h" |
| |
| #define SUFFIX _cached |
| #define ARG1 cache |
| #define ARG1_DECL MemoryRegionCache *cache |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst_phys.inc.h" |
| #endif |
| |
| /* page related stuff */ |
| |
| #ifdef TARGET_PAGE_BITS_VARY |
| extern bool target_page_bits_decided; |
| extern int target_page_bits; |
| #define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \ |
| target_page_bits; }) |
| #else |
| #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS |
| #endif |
| |
| #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) |
| #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) |
| #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) |
| |
| /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even |
| * when intptr_t is 32-bit and we are aligning a long long. |
| */ |
| extern uintptr_t qemu_host_page_size; |
| extern intptr_t qemu_host_page_mask; |
| |
| #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) |
| #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \ |
| qemu_real_host_page_mask) |
| |
| /* same as PROT_xxx */ |
| #define PAGE_READ 0x0001 |
| #define PAGE_WRITE 0x0002 |
| #define PAGE_EXEC 0x0004 |
| #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) |
| #define PAGE_VALID 0x0008 |
| /* original state of the write flag (used when tracking self-modifying |
| code */ |
| #define PAGE_WRITE_ORG 0x0010 |
| /* Invalidate the TLB entry immediately, helpful for s390x |
| * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */ |
| #define PAGE_WRITE_INV 0x0040 |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
| /* FIXME: Code that sets/uses this is broken and needs to go away. */ |
| #define PAGE_RESERVED 0x0020 |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| void page_dump(FILE *f); |
| |
| typedef int (*walk_memory_regions_fn)(void *, target_ulong, |
| target_ulong, unsigned long); |
| int walk_memory_regions(void *, walk_memory_regions_fn); |
| |
| int page_get_flags(target_ulong address); |
| void page_set_flags(target_ulong start, target_ulong end, int flags); |
| int page_check_range(target_ulong start, target_ulong len, int flags); |
| #endif |
| |
| CPUArchState *cpu_copy(CPUArchState *env); |
| |
| /* Flags for use in ENV->INTERRUPT_PENDING. |
| |
| The numbers assigned here are non-sequential in order to preserve |
| binary compatibility with the vmstate dump. Bit 0 (0x0001) was |
| previously used for CPU_INTERRUPT_EXIT, and is cleared when loading |
| the vmstate dump. */ |
| |
| /* External hardware interrupt pending. This is typically used for |
| interrupts from devices. */ |
| #define CPU_INTERRUPT_HARD 0x0002 |
| |
| /* Exit the current TB. This is typically used when some system-level device |
| makes some change to the memory mapping. E.g. the a20 line change. */ |
| #define CPU_INTERRUPT_EXITTB 0x0004 |
| |
| /* Halt the CPU. */ |
| #define CPU_INTERRUPT_HALT 0x0020 |
| |
| /* Debug event pending. */ |
| #define CPU_INTERRUPT_DEBUG 0x0080 |
| |
| /* Reset signal. */ |
| #define CPU_INTERRUPT_RESET 0x0400 |
| |
| /* Several target-specific external hardware interrupts. Each target/cpu.h |
| should define proper names based on these defines. */ |
| #define CPU_INTERRUPT_TGT_EXT_0 0x0008 |
| #define CPU_INTERRUPT_TGT_EXT_1 0x0010 |
| #define CPU_INTERRUPT_TGT_EXT_2 0x0040 |
| #define CPU_INTERRUPT_TGT_EXT_3 0x0200 |
| #define CPU_INTERRUPT_TGT_EXT_4 0x1000 |
| |
| /* Several target-specific internal interrupts. These differ from the |
| preceding target-specific interrupts in that they are intended to |
| originate from within the cpu itself, typically in response to some |
| instruction being executed. These, therefore, are not masked while |
| single-stepping within the debugger. */ |
| #define CPU_INTERRUPT_TGT_INT_0 0x0100 |
| #define CPU_INTERRUPT_TGT_INT_1 0x0800 |
| #define CPU_INTERRUPT_TGT_INT_2 0x2000 |
| |
| /* First unused bit: 0x4000. */ |
| |
| /* The set of all bits that should be masked when single-stepping. */ |
| #define CPU_INTERRUPT_SSTEP_MASK \ |
| (CPU_INTERRUPT_HARD \ |
| | CPU_INTERRUPT_TGT_EXT_0 \ |
| | CPU_INTERRUPT_TGT_EXT_1 \ |
| | CPU_INTERRUPT_TGT_EXT_2 \ |
| | CPU_INTERRUPT_TGT_EXT_3 \ |
| | CPU_INTERRUPT_TGT_EXT_4) |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* Flags stored in the low bits of the TLB virtual address. These are |
| * defined so that fast path ram access is all zeros. |
| * The flags all must be between TARGET_PAGE_BITS and |
| * maximum address alignment bit. |
| */ |
| /* Zero if TLB entry is valid. */ |
| #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS - 1)) |
| /* Set if TLB entry references a clean RAM page. The iotlb entry will |
| contain the page physical address. */ |
| #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS - 2)) |
| /* Set if TLB entry is an IO callback. */ |
| #define TLB_MMIO (1 << (TARGET_PAGE_BITS - 3)) |
| /* Set if TLB entry must have MMU lookup repeated for every access */ |
| #define TLB_RECHECK (1 << (TARGET_PAGE_BITS - 4)) |
| |
| /* Use this mask to check interception with an alignment mask |
| * in a TCG backend. |
| */ |
| #define TLB_FLAGS_MASK (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ |
| | TLB_RECHECK) |
| |
| /** |
| * tlb_hit_page: return true if page aligned @addr is a hit against the |
| * TLB entry @tlb_addr |
| * |
| * @addr: virtual address to test (must be page aligned) |
| * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) |
| */ |
| static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr) |
| { |
| return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); |
| } |
| |
| /** |
| * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr |
| * |
| * @addr: virtual address to test (need not be page aligned) |
| * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) |
| */ |
| static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr) |
| { |
| return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); |
| } |
| |
| void dump_exec_info(void); |
| void dump_opcount_info(void); |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
| uint8_t *buf, target_ulong len, int is_write); |
| |
| int cpu_exec(CPUState *cpu); |
| |
| /** |
| * cpu_set_cpustate_pointers(cpu) |
| * @cpu: The cpu object |
| * |
| * Set the generic pointers in CPUState into the outer object. |
| */ |
| static inline void cpu_set_cpustate_pointers(ArchCPU *cpu) |
| { |
| cpu->parent_obj.env_ptr = &cpu->env; |
| cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr; |
| } |
| |
| /** |
| * env_archcpu(env) |
| * @env: The architecture environment |
| * |
| * Return the ArchCPU associated with the environment. |
| */ |
| static inline ArchCPU *env_archcpu(CPUArchState *env) |
| { |
| return container_of(env, ArchCPU, env); |
| } |
| |
| /** |
| * env_cpu(env) |
| * @env: The architecture environment |
| * |
| * Return the CPUState associated with the environment. |
| */ |
| static inline CPUState *env_cpu(CPUArchState *env) |
| { |
| return &env_archcpu(env)->parent_obj; |
| } |
| |
| /** |
| * env_neg(env) |
| * @env: The architecture environment |
| * |
| * Return the CPUNegativeOffsetState associated with the environment. |
| */ |
| static inline CPUNegativeOffsetState *env_neg(CPUArchState *env) |
| { |
| ArchCPU *arch_cpu = container_of(env, ArchCPU, env); |
| return &arch_cpu->neg; |
| } |
| |
| /** |
| * cpu_neg(cpu) |
| * @cpu: The generic CPUState |
| * |
| * Return the CPUNegativeOffsetState associated with the cpu. |
| */ |
| static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu) |
| { |
| ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj); |
| return &arch_cpu->neg; |
| } |
| |
| #endif /* CPU_ALL_H */ |