| /* |
| * NVMe block driver based on vfio |
| * |
| * Copyright 2016 - 2018 Red Hat, Inc. |
| * |
| * Authors: |
| * Fam Zheng <famz@redhat.com> |
| * Paolo Bonzini <pbonzini@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <linux/vfio.h> |
| #include "qapi/error.h" |
| #include "qapi/qmp/qdict.h" |
| #include "qapi/qmp/qstring.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/cutils.h" |
| #include "qemu/option.h" |
| #include "qemu/memalign.h" |
| #include "qemu/vfio-helpers.h" |
| #include "block/block_int.h" |
| #include "sysemu/replay.h" |
| #include "trace.h" |
| |
| #include "block/nvme.h" |
| |
| #define NVME_SQ_ENTRY_BYTES 64 |
| #define NVME_CQ_ENTRY_BYTES 16 |
| #define NVME_QUEUE_SIZE 128 |
| #define NVME_DOORBELL_SIZE 4096 |
| |
| /* |
| * We have to leave one slot empty as that is the full queue case where |
| * head == tail + 1. |
| */ |
| #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1) |
| |
| typedef struct BDRVNVMeState BDRVNVMeState; |
| |
| /* Same index is used for queues and IRQs */ |
| #define INDEX_ADMIN 0 |
| #define INDEX_IO(n) (1 + n) |
| |
| /* This driver shares a single MSIX IRQ for the admin and I/O queues */ |
| enum { |
| MSIX_SHARED_IRQ_IDX = 0, |
| MSIX_IRQ_COUNT = 1 |
| }; |
| |
| typedef struct { |
| int32_t head, tail; |
| uint8_t *queue; |
| uint64_t iova; |
| /* Hardware MMIO register */ |
| volatile uint32_t *doorbell; |
| } NVMeQueue; |
| |
| typedef struct { |
| BlockCompletionFunc *cb; |
| void *opaque; |
| int cid; |
| void *prp_list_page; |
| uint64_t prp_list_iova; |
| int free_req_next; /* q->reqs[] index of next free req */ |
| } NVMeRequest; |
| |
| typedef struct { |
| QemuMutex lock; |
| |
| /* Read from I/O code path, initialized under BQL */ |
| BDRVNVMeState *s; |
| int index; |
| |
| /* Fields protected by BQL */ |
| uint8_t *prp_list_pages; |
| |
| /* Fields protected by @lock */ |
| CoQueue free_req_queue; |
| NVMeQueue sq, cq; |
| int cq_phase; |
| int free_req_head; |
| NVMeRequest reqs[NVME_NUM_REQS]; |
| int need_kick; |
| int inflight; |
| |
| /* Thread-safe, no lock necessary */ |
| QEMUBH *completion_bh; |
| } NVMeQueuePair; |
| |
| struct BDRVNVMeState { |
| AioContext *aio_context; |
| QEMUVFIOState *vfio; |
| void *bar0_wo_map; |
| /* Memory mapped registers */ |
| volatile struct { |
| uint32_t sq_tail; |
| uint32_t cq_head; |
| } *doorbells; |
| /* The submission/completion queue pairs. |
| * [0]: admin queue. |
| * [1..]: io queues. |
| */ |
| NVMeQueuePair **queues; |
| unsigned queue_count; |
| size_t page_size; |
| /* How many uint32_t elements does each doorbell entry take. */ |
| size_t doorbell_scale; |
| bool write_cache_supported; |
| EventNotifier irq_notifier[MSIX_IRQ_COUNT]; |
| |
| uint64_t nsze; /* Namespace size reported by identify command */ |
| int nsid; /* The namespace id to read/write data. */ |
| int blkshift; |
| |
| uint64_t max_transfer; |
| bool plugged; |
| |
| bool supports_write_zeroes; |
| bool supports_discard; |
| |
| CoMutex dma_map_lock; |
| CoQueue dma_flush_queue; |
| |
| /* Total size of mapped qiov, accessed under dma_map_lock */ |
| int dma_map_count; |
| |
| /* PCI address (required for nvme_refresh_filename()) */ |
| char *device; |
| |
| struct { |
| uint64_t completion_errors; |
| uint64_t aligned_accesses; |
| uint64_t unaligned_accesses; |
| } stats; |
| }; |
| |
| #define NVME_BLOCK_OPT_DEVICE "device" |
| #define NVME_BLOCK_OPT_NAMESPACE "namespace" |
| |
| static void nvme_process_completion_bh(void *opaque); |
| |
| static QemuOptsList runtime_opts = { |
| .name = "nvme", |
| .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), |
| .desc = { |
| { |
| .name = NVME_BLOCK_OPT_DEVICE, |
| .type = QEMU_OPT_STRING, |
| .help = "NVMe PCI device address", |
| }, |
| { |
| .name = NVME_BLOCK_OPT_NAMESPACE, |
| .type = QEMU_OPT_NUMBER, |
| .help = "NVMe namespace", |
| }, |
| { /* end of list */ } |
| }, |
| }; |
| |
| /* Returns true on success, false on failure. */ |
| static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q, |
| unsigned nentries, size_t entry_bytes, Error **errp) |
| { |
| size_t bytes; |
| int r; |
| |
| bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size); |
| q->head = q->tail = 0; |
| q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes); |
| if (!q->queue) { |
| error_setg(errp, "Cannot allocate queue"); |
| return false; |
| } |
| memset(q->queue, 0, bytes); |
| r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp); |
| if (r) { |
| error_prepend(errp, "Cannot map queue: "); |
| } |
| return r == 0; |
| } |
| |
| static void nvme_free_queue(NVMeQueue *q) |
| { |
| qemu_vfree(q->queue); |
| } |
| |
| static void nvme_free_queue_pair(NVMeQueuePair *q) |
| { |
| trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq); |
| if (q->completion_bh) { |
| qemu_bh_delete(q->completion_bh); |
| } |
| nvme_free_queue(&q->sq); |
| nvme_free_queue(&q->cq); |
| qemu_vfree(q->prp_list_pages); |
| qemu_mutex_destroy(&q->lock); |
| g_free(q); |
| } |
| |
| static void nvme_free_req_queue_cb(void *opaque) |
| { |
| NVMeQueuePair *q = opaque; |
| |
| qemu_mutex_lock(&q->lock); |
| while (q->free_req_head != -1 && |
| qemu_co_enter_next(&q->free_req_queue, &q->lock)) { |
| /* Retry waiting requests */ |
| } |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s, |
| AioContext *aio_context, |
| unsigned idx, size_t size, |
| Error **errp) |
| { |
| int i, r; |
| NVMeQueuePair *q; |
| uint64_t prp_list_iova; |
| size_t bytes; |
| |
| q = g_try_new0(NVMeQueuePair, 1); |
| if (!q) { |
| error_setg(errp, "Cannot allocate queue pair"); |
| return NULL; |
| } |
| trace_nvme_create_queue_pair(idx, q, size, aio_context, |
| event_notifier_get_fd(s->irq_notifier)); |
| bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS, |
| qemu_real_host_page_size); |
| q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes); |
| if (!q->prp_list_pages) { |
| error_setg(errp, "Cannot allocate PRP page list"); |
| goto fail; |
| } |
| memset(q->prp_list_pages, 0, bytes); |
| qemu_mutex_init(&q->lock); |
| q->s = s; |
| q->index = idx; |
| qemu_co_queue_init(&q->free_req_queue); |
| q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q); |
| r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes, |
| false, &prp_list_iova, errp); |
| if (r) { |
| error_prepend(errp, "Cannot map buffer for DMA: "); |
| goto fail; |
| } |
| q->free_req_head = -1; |
| for (i = 0; i < NVME_NUM_REQS; i++) { |
| NVMeRequest *req = &q->reqs[i]; |
| req->cid = i + 1; |
| req->free_req_next = q->free_req_head; |
| q->free_req_head = i; |
| req->prp_list_page = q->prp_list_pages + i * s->page_size; |
| req->prp_list_iova = prp_list_iova + i * s->page_size; |
| } |
| |
| if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) { |
| goto fail; |
| } |
| q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail; |
| |
| if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) { |
| goto fail; |
| } |
| q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head; |
| |
| return q; |
| fail: |
| nvme_free_queue_pair(q); |
| return NULL; |
| } |
| |
| /* With q->lock */ |
| static void nvme_kick(NVMeQueuePair *q) |
| { |
| BDRVNVMeState *s = q->s; |
| |
| if (s->plugged || !q->need_kick) { |
| return; |
| } |
| trace_nvme_kick(s, q->index); |
| assert(!(q->sq.tail & 0xFF00)); |
| /* Fence the write to submission queue entry before notifying the device. */ |
| smp_wmb(); |
| *q->sq.doorbell = cpu_to_le32(q->sq.tail); |
| q->inflight += q->need_kick; |
| q->need_kick = 0; |
| } |
| |
| /* Find a free request element if any, otherwise: |
| * a) if in coroutine context, try to wait for one to become available; |
| * b) if not in coroutine, return NULL; |
| */ |
| static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) |
| { |
| NVMeRequest *req; |
| |
| qemu_mutex_lock(&q->lock); |
| |
| while (q->free_req_head == -1) { |
| if (qemu_in_coroutine()) { |
| trace_nvme_free_req_queue_wait(q->s, q->index); |
| qemu_co_queue_wait(&q->free_req_queue, &q->lock); |
| } else { |
| qemu_mutex_unlock(&q->lock); |
| return NULL; |
| } |
| } |
| |
| req = &q->reqs[q->free_req_head]; |
| q->free_req_head = req->free_req_next; |
| req->free_req_next = -1; |
| |
| qemu_mutex_unlock(&q->lock); |
| return req; |
| } |
| |
| /* With q->lock */ |
| static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req) |
| { |
| req->free_req_next = q->free_req_head; |
| q->free_req_head = req - q->reqs; |
| } |
| |
| /* With q->lock */ |
| static void nvme_wake_free_req_locked(NVMeQueuePair *q) |
| { |
| if (!qemu_co_queue_empty(&q->free_req_queue)) { |
| replay_bh_schedule_oneshot_event(q->s->aio_context, |
| nvme_free_req_queue_cb, q); |
| } |
| } |
| |
| /* Insert a request in the freelist and wake waiters */ |
| static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req) |
| { |
| qemu_mutex_lock(&q->lock); |
| nvme_put_free_req_locked(q, req); |
| nvme_wake_free_req_locked(q); |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static inline int nvme_translate_error(const NvmeCqe *c) |
| { |
| uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; |
| if (status) { |
| trace_nvme_error(le32_to_cpu(c->result), |
| le16_to_cpu(c->sq_head), |
| le16_to_cpu(c->sq_id), |
| le16_to_cpu(c->cid), |
| le16_to_cpu(status)); |
| } |
| switch (status) { |
| case 0: |
| return 0; |
| case 1: |
| return -ENOSYS; |
| case 2: |
| return -EINVAL; |
| default: |
| return -EIO; |
| } |
| } |
| |
| /* With q->lock */ |
| static bool nvme_process_completion(NVMeQueuePair *q) |
| { |
| BDRVNVMeState *s = q->s; |
| bool progress = false; |
| NVMeRequest *preq; |
| NVMeRequest req; |
| NvmeCqe *c; |
| |
| trace_nvme_process_completion(s, q->index, q->inflight); |
| if (s->plugged) { |
| trace_nvme_process_completion_queue_plugged(s, q->index); |
| return false; |
| } |
| |
| /* |
| * Support re-entrancy when a request cb() function invokes aio_poll(). |
| * Pending completions must be visible to aio_poll() so that a cb() |
| * function can wait for the completion of another request. |
| * |
| * The aio_poll() loop will execute our BH and we'll resume completion |
| * processing there. |
| */ |
| qemu_bh_schedule(q->completion_bh); |
| |
| assert(q->inflight >= 0); |
| while (q->inflight) { |
| int ret; |
| int16_t cid; |
| |
| c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; |
| if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { |
| break; |
| } |
| ret = nvme_translate_error(c); |
| if (ret) { |
| s->stats.completion_errors++; |
| } |
| q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; |
| if (!q->cq.head) { |
| q->cq_phase = !q->cq_phase; |
| } |
| cid = le16_to_cpu(c->cid); |
| if (cid == 0 || cid > NVME_QUEUE_SIZE) { |
| warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", " |
| "queue size: %u", cid, NVME_QUEUE_SIZE); |
| continue; |
| } |
| trace_nvme_complete_command(s, q->index, cid); |
| preq = &q->reqs[cid - 1]; |
| req = *preq; |
| assert(req.cid == cid); |
| assert(req.cb); |
| nvme_put_free_req_locked(q, preq); |
| preq->cb = preq->opaque = NULL; |
| q->inflight--; |
| qemu_mutex_unlock(&q->lock); |
| req.cb(req.opaque, ret); |
| qemu_mutex_lock(&q->lock); |
| progress = true; |
| } |
| if (progress) { |
| /* Notify the device so it can post more completions. */ |
| smp_mb_release(); |
| *q->cq.doorbell = cpu_to_le32(q->cq.head); |
| nvme_wake_free_req_locked(q); |
| } |
| |
| qemu_bh_cancel(q->completion_bh); |
| |
| return progress; |
| } |
| |
| static void nvme_process_completion_bh(void *opaque) |
| { |
| NVMeQueuePair *q = opaque; |
| |
| /* |
| * We're being invoked because a nvme_process_completion() cb() function |
| * called aio_poll(). The callback may be waiting for further completions |
| * so notify the device that it has space to fill in more completions now. |
| */ |
| smp_mb_release(); |
| *q->cq.doorbell = cpu_to_le32(q->cq.head); |
| nvme_wake_free_req_locked(q); |
| |
| nvme_process_completion(q); |
| } |
| |
| static void nvme_trace_command(const NvmeCmd *cmd) |
| { |
| int i; |
| |
| if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) { |
| return; |
| } |
| for (i = 0; i < 8; ++i) { |
| uint8_t *cmdp = (uint8_t *)cmd + i * 8; |
| trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], |
| cmdp[4], cmdp[5], cmdp[6], cmdp[7]); |
| } |
| } |
| |
| static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req, |
| NvmeCmd *cmd, BlockCompletionFunc cb, |
| void *opaque) |
| { |
| assert(!req->cb); |
| req->cb = cb; |
| req->opaque = opaque; |
| cmd->cid = cpu_to_le16(req->cid); |
| |
| trace_nvme_submit_command(q->s, q->index, req->cid); |
| nvme_trace_command(cmd); |
| qemu_mutex_lock(&q->lock); |
| memcpy((uint8_t *)q->sq.queue + |
| q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); |
| q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; |
| q->need_kick++; |
| nvme_kick(q); |
| nvme_process_completion(q); |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static void nvme_admin_cmd_sync_cb(void *opaque, int ret) |
| { |
| int *pret = opaque; |
| *pret = ret; |
| aio_wait_kick(); |
| } |
| |
| static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *q = s->queues[INDEX_ADMIN]; |
| AioContext *aio_context = bdrv_get_aio_context(bs); |
| NVMeRequest *req; |
| int ret = -EINPROGRESS; |
| req = nvme_get_free_req(q); |
| if (!req) { |
| return -EBUSY; |
| } |
| nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret); |
| |
| AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS); |
| return ret; |
| } |
| |
| /* Returns true on success, false on failure. */ |
| static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| bool ret = false; |
| QEMU_AUTO_VFREE union { |
| NvmeIdCtrl ctrl; |
| NvmeIdNs ns; |
| } *id = NULL; |
| NvmeLBAF *lbaf; |
| uint16_t oncs; |
| int r; |
| uint64_t iova; |
| NvmeCmd cmd = { |
| .opcode = NVME_ADM_CMD_IDENTIFY, |
| .cdw10 = cpu_to_le32(0x1), |
| }; |
| size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size); |
| |
| id = qemu_try_memalign(qemu_real_host_page_size, id_size); |
| if (!id) { |
| error_setg(errp, "Cannot allocate buffer for identify response"); |
| goto out; |
| } |
| r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp); |
| if (r) { |
| error_prepend(errp, "Cannot map buffer for DMA: "); |
| goto out; |
| } |
| |
| memset(id, 0, id_size); |
| cmd.dptr.prp1 = cpu_to_le64(iova); |
| if (nvme_admin_cmd_sync(bs, &cmd)) { |
| error_setg(errp, "Failed to identify controller"); |
| goto out; |
| } |
| |
| if (le32_to_cpu(id->ctrl.nn) < namespace) { |
| error_setg(errp, "Invalid namespace"); |
| goto out; |
| } |
| s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1; |
| s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size; |
| /* For now the page list buffer per command is one page, to hold at most |
| * s->page_size / sizeof(uint64_t) entries. */ |
| s->max_transfer = MIN_NON_ZERO(s->max_transfer, |
| s->page_size / sizeof(uint64_t) * s->page_size); |
| |
| oncs = le16_to_cpu(id->ctrl.oncs); |
| s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES); |
| s->supports_discard = !!(oncs & NVME_ONCS_DSM); |
| |
| memset(id, 0, id_size); |
| cmd.cdw10 = 0; |
| cmd.nsid = cpu_to_le32(namespace); |
| if (nvme_admin_cmd_sync(bs, &cmd)) { |
| error_setg(errp, "Failed to identify namespace"); |
| goto out; |
| } |
| |
| s->nsze = le64_to_cpu(id->ns.nsze); |
| lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)]; |
| |
| if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) && |
| NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) == |
| NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) { |
| bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP; |
| } |
| |
| if (lbaf->ms) { |
| error_setg(errp, "Namespaces with metadata are not yet supported"); |
| goto out; |
| } |
| |
| if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || |
| (1 << lbaf->ds) > s->page_size) |
| { |
| error_setg(errp, "Namespace has unsupported block size (2^%d)", |
| lbaf->ds); |
| goto out; |
| } |
| |
| ret = true; |
| s->blkshift = lbaf->ds; |
| out: |
| qemu_vfio_dma_unmap(s->vfio, id); |
| |
| return ret; |
| } |
| |
| static void nvme_poll_queue(NVMeQueuePair *q) |
| { |
| const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; |
| NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; |
| |
| trace_nvme_poll_queue(q->s, q->index); |
| /* |
| * Do an early check for completions. q->lock isn't needed because |
| * nvme_process_completion() only runs in the event loop thread and |
| * cannot race with itself. |
| */ |
| if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) { |
| return; |
| } |
| |
| qemu_mutex_lock(&q->lock); |
| while (nvme_process_completion(q)) { |
| /* Keep polling */ |
| } |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static void nvme_poll_queues(BDRVNVMeState *s) |
| { |
| int i; |
| |
| for (i = 0; i < s->queue_count; i++) { |
| nvme_poll_queue(s->queues[i]); |
| } |
| } |
| |
| static void nvme_handle_event(EventNotifier *n) |
| { |
| BDRVNVMeState *s = container_of(n, BDRVNVMeState, |
| irq_notifier[MSIX_SHARED_IRQ_IDX]); |
| |
| trace_nvme_handle_event(s); |
| event_notifier_test_and_clear(n); |
| nvme_poll_queues(s); |
| } |
| |
| static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| unsigned n = s->queue_count; |
| NVMeQueuePair *q; |
| NvmeCmd cmd; |
| unsigned queue_size = NVME_QUEUE_SIZE; |
| |
| assert(n <= UINT16_MAX); |
| q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs), |
| n, queue_size, errp); |
| if (!q) { |
| return false; |
| } |
| cmd = (NvmeCmd) { |
| .opcode = NVME_ADM_CMD_CREATE_CQ, |
| .dptr.prp1 = cpu_to_le64(q->cq.iova), |
| .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), |
| .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC), |
| }; |
| if (nvme_admin_cmd_sync(bs, &cmd)) { |
| error_setg(errp, "Failed to create CQ io queue [%u]", n); |
| goto out_error; |
| } |
| cmd = (NvmeCmd) { |
| .opcode = NVME_ADM_CMD_CREATE_SQ, |
| .dptr.prp1 = cpu_to_le64(q->sq.iova), |
| .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), |
| .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)), |
| }; |
| if (nvme_admin_cmd_sync(bs, &cmd)) { |
| error_setg(errp, "Failed to create SQ io queue [%u]", n); |
| goto out_error; |
| } |
| s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); |
| s->queues[n] = q; |
| s->queue_count++; |
| return true; |
| out_error: |
| nvme_free_queue_pair(q); |
| return false; |
| } |
| |
| static bool nvme_poll_cb(void *opaque) |
| { |
| EventNotifier *e = opaque; |
| BDRVNVMeState *s = container_of(e, BDRVNVMeState, |
| irq_notifier[MSIX_SHARED_IRQ_IDX]); |
| int i; |
| |
| for (i = 0; i < s->queue_count; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; |
| NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; |
| |
| /* |
| * q->lock isn't needed because nvme_process_completion() only runs in |
| * the event loop thread and cannot race with itself. |
| */ |
| if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void nvme_poll_ready(EventNotifier *e) |
| { |
| BDRVNVMeState *s = container_of(e, BDRVNVMeState, |
| irq_notifier[MSIX_SHARED_IRQ_IDX]); |
| |
| nvme_poll_queues(s); |
| } |
| |
| static int nvme_init(BlockDriverState *bs, const char *device, int namespace, |
| Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *q; |
| AioContext *aio_context = bdrv_get_aio_context(bs); |
| int ret; |
| uint64_t cap; |
| uint32_t ver; |
| uint64_t timeout_ms; |
| uint64_t deadline, now; |
| volatile NvmeBar *regs = NULL; |
| |
| qemu_co_mutex_init(&s->dma_map_lock); |
| qemu_co_queue_init(&s->dma_flush_queue); |
| s->device = g_strdup(device); |
| s->nsid = namespace; |
| s->aio_context = bdrv_get_aio_context(bs); |
| ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0); |
| if (ret) { |
| error_setg(errp, "Failed to init event notifier"); |
| return ret; |
| } |
| |
| s->vfio = qemu_vfio_open_pci(device, errp); |
| if (!s->vfio) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar), |
| PROT_READ | PROT_WRITE, errp); |
| if (!regs) { |
| ret = -EINVAL; |
| goto out; |
| } |
| /* Perform initialize sequence as described in NVMe spec "7.6.1 |
| * Initialization". */ |
| |
| cap = le64_to_cpu(regs->cap); |
| trace_nvme_controller_capability_raw(cap); |
| trace_nvme_controller_capability("Maximum Queue Entries Supported", |
| 1 + NVME_CAP_MQES(cap)); |
| trace_nvme_controller_capability("Contiguous Queues Required", |
| NVME_CAP_CQR(cap)); |
| trace_nvme_controller_capability("Doorbell Stride", |
| 1 << (2 + NVME_CAP_DSTRD(cap))); |
| trace_nvme_controller_capability("Subsystem Reset Supported", |
| NVME_CAP_NSSRS(cap)); |
| trace_nvme_controller_capability("Memory Page Size Minimum", |
| 1 << (12 + NVME_CAP_MPSMIN(cap))); |
| trace_nvme_controller_capability("Memory Page Size Maximum", |
| 1 << (12 + NVME_CAP_MPSMAX(cap))); |
| if (!NVME_CAP_CSS(cap)) { |
| error_setg(errp, "Device doesn't support NVMe command set"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap)); |
| s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t); |
| bs->bl.opt_mem_alignment = s->page_size; |
| bs->bl.request_alignment = s->page_size; |
| timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000); |
| |
| ver = le32_to_cpu(regs->vs); |
| trace_nvme_controller_spec_version(extract32(ver, 16, 16), |
| extract32(ver, 8, 8), |
| extract32(ver, 0, 8)); |
| |
| /* Reset device to get a clean state. */ |
| regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE); |
| /* Wait for CSTS.RDY = 0. */ |
| deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS; |
| while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { |
| if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { |
| error_setg(errp, "Timeout while waiting for device to reset (%" |
| PRId64 " ms)", |
| timeout_ms); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| } |
| |
| s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0, |
| sizeof(NvmeBar) + NVME_DOORBELL_SIZE, |
| PROT_WRITE, errp); |
| s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar)); |
| if (!s->doorbells) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Set up admin queue. */ |
| s->queues = g_new(NVMeQueuePair *, 1); |
| q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp); |
| if (!q) { |
| ret = -EINVAL; |
| goto out; |
| } |
| s->queues[INDEX_ADMIN] = q; |
| s->queue_count = 1; |
| QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000); |
| regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) | |
| ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT)); |
| regs->asq = cpu_to_le64(q->sq.iova); |
| regs->acq = cpu_to_le64(q->cq.iova); |
| |
| /* After setting up all control registers we can enable device now. */ |
| regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) | |
| (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) | |
| CC_EN_MASK); |
| /* Wait for CSTS.RDY = 1. */ |
| now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| deadline = now + timeout_ms * SCALE_MS; |
| while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { |
| if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { |
| error_setg(errp, "Timeout while waiting for device to start (%" |
| PRId64 " ms)", |
| timeout_ms); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| } |
| |
| ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier, |
| VFIO_PCI_MSIX_IRQ_INDEX, errp); |
| if (ret) { |
| goto out; |
| } |
| aio_set_event_notifier(bdrv_get_aio_context(bs), |
| &s->irq_notifier[MSIX_SHARED_IRQ_IDX], |
| false, nvme_handle_event, nvme_poll_cb, |
| nvme_poll_ready); |
| |
| if (!nvme_identify(bs, namespace, errp)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Set up command queues. */ |
| if (!nvme_add_io_queue(bs, errp)) { |
| ret = -EIO; |
| } |
| out: |
| if (regs) { |
| qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar)); |
| } |
| |
| /* Cleaning up is done in nvme_file_open() upon error. */ |
| return ret; |
| } |
| |
| /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: |
| * |
| * nvme://0000:44:00.0/1 |
| * |
| * where the "nvme://" is a fixed form of the protocol prefix, the middle part |
| * is the PCI address, and the last part is the namespace number starting from |
| * 1 according to the NVMe spec. */ |
| static void nvme_parse_filename(const char *filename, QDict *options, |
| Error **errp) |
| { |
| int pref = strlen("nvme://"); |
| |
| if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { |
| const char *tmp = filename + pref; |
| char *device; |
| const char *namespace; |
| unsigned long ns; |
| const char *slash = strchr(tmp, '/'); |
| if (!slash) { |
| qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); |
| return; |
| } |
| device = g_strndup(tmp, slash - tmp); |
| qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); |
| g_free(device); |
| namespace = slash + 1; |
| if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { |
| error_setg(errp, "Invalid namespace '%s', positive number expected", |
| namespace); |
| return; |
| } |
| qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, |
| *namespace ? namespace : "1"); |
| } |
| } |
| |
| static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, |
| Error **errp) |
| { |
| int ret; |
| BDRVNVMeState *s = bs->opaque; |
| NvmeCmd cmd = { |
| .opcode = NVME_ADM_CMD_SET_FEATURES, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32(0x06), |
| .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), |
| }; |
| |
| ret = nvme_admin_cmd_sync(bs, &cmd); |
| if (ret) { |
| error_setg(errp, "Failed to configure NVMe write cache"); |
| } |
| return ret; |
| } |
| |
| static void nvme_close(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| for (unsigned i = 0; i < s->queue_count; ++i) { |
| nvme_free_queue_pair(s->queues[i]); |
| } |
| g_free(s->queues); |
| aio_set_event_notifier(bdrv_get_aio_context(bs), |
| &s->irq_notifier[MSIX_SHARED_IRQ_IDX], |
| false, NULL, NULL, NULL); |
| event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]); |
| qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map, |
| 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE); |
| qemu_vfio_close(s->vfio); |
| |
| g_free(s->device); |
| } |
| |
| static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, |
| Error **errp) |
| { |
| const char *device; |
| QemuOpts *opts; |
| int namespace; |
| int ret; |
| BDRVNVMeState *s = bs->opaque; |
| |
| bs->supported_write_flags = BDRV_REQ_FUA; |
| |
| opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); |
| qemu_opts_absorb_qdict(opts, options, &error_abort); |
| device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); |
| if (!device) { |
| error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); |
| qemu_opts_del(opts); |
| return -EINVAL; |
| } |
| |
| namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); |
| ret = nvme_init(bs, device, namespace, errp); |
| qemu_opts_del(opts); |
| if (ret) { |
| goto fail; |
| } |
| if (flags & BDRV_O_NOCACHE) { |
| if (!s->write_cache_supported) { |
| error_setg(errp, |
| "NVMe controller doesn't support write cache configuration"); |
| ret = -EINVAL; |
| } else { |
| ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), |
| errp); |
| } |
| if (ret) { |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| nvme_close(bs); |
| return ret; |
| } |
| |
| static int64_t nvme_getlength(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| return s->nsze << s->blkshift; |
| } |
| |
| static uint32_t nvme_get_blocksize(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); |
| return UINT32_C(1) << s->blkshift; |
| } |
| |
| static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) |
| { |
| uint32_t blocksize = nvme_get_blocksize(bs); |
| bsz->phys = blocksize; |
| bsz->log = blocksize; |
| return 0; |
| } |
| |
| /* Called with s->dma_map_lock */ |
| static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, |
| QEMUIOVector *qiov) |
| { |
| int r = 0; |
| BDRVNVMeState *s = bs->opaque; |
| |
| s->dma_map_count -= qiov->size; |
| if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { |
| r = qemu_vfio_dma_reset_temporary(s->vfio); |
| if (!r) { |
| qemu_co_queue_restart_all(&s->dma_flush_queue); |
| } |
| } |
| return r; |
| } |
| |
| /* Called with s->dma_map_lock */ |
| static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, |
| NVMeRequest *req, QEMUIOVector *qiov) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| uint64_t *pagelist = req->prp_list_page; |
| int i, j, r; |
| int entries = 0; |
| Error *local_err = NULL, **errp = NULL; |
| |
| assert(qiov->size); |
| assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); |
| assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); |
| for (i = 0; i < qiov->niov; ++i) { |
| bool retry = true; |
| uint64_t iova; |
| size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len, |
| qemu_real_host_page_size); |
| try_map: |
| r = qemu_vfio_dma_map(s->vfio, |
| qiov->iov[i].iov_base, |
| len, true, &iova, errp); |
| if (r == -ENOSPC) { |
| /* |
| * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA |
| * ioctl returns -ENOSPC to signal the user exhausted the DMA |
| * mappings available for a container since Linux kernel commit |
| * 492855939bdb ("vfio/type1: Limit DMA mappings per container", |
| * April 2019, see CVE-2019-3882). |
| * |
| * This block driver already handles this error path by checking |
| * for the -ENOMEM error, so we directly replace -ENOSPC by |
| * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev |
| * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and |
| * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator |
| * to add more storage to the blockdev. Not something we can do |
| * easily with an IOMMU :) |
| */ |
| r = -ENOMEM; |
| } |
| if (r == -ENOMEM && retry) { |
| /* |
| * We exhausted the DMA mappings available for our container: |
| * recycle the volatile IOVA mappings. |
| */ |
| retry = false; |
| trace_nvme_dma_flush_queue_wait(s); |
| if (s->dma_map_count) { |
| trace_nvme_dma_map_flush(s); |
| qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); |
| } else { |
| r = qemu_vfio_dma_reset_temporary(s->vfio); |
| if (r) { |
| goto fail; |
| } |
| } |
| errp = &local_err; |
| |
| goto try_map; |
| } |
| if (r) { |
| goto fail; |
| } |
| |
| for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { |
| pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); |
| } |
| trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, |
| qiov->iov[i].iov_len / s->page_size); |
| } |
| |
| s->dma_map_count += qiov->size; |
| |
| assert(entries <= s->page_size / sizeof(uint64_t)); |
| switch (entries) { |
| case 0: |
| abort(); |
| case 1: |
| cmd->dptr.prp1 = pagelist[0]; |
| cmd->dptr.prp2 = 0; |
| break; |
| case 2: |
| cmd->dptr.prp1 = pagelist[0]; |
| cmd->dptr.prp2 = pagelist[1]; |
| break; |
| default: |
| cmd->dptr.prp1 = pagelist[0]; |
| cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); |
| break; |
| } |
| trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); |
| for (i = 0; i < entries; ++i) { |
| trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); |
| } |
| return 0; |
| fail: |
| /* No need to unmap [0 - i) iovs even if we've failed, since we don't |
| * increment s->dma_map_count. This is okay for fixed mapping memory areas |
| * because they are already mapped before calling this function; for |
| * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by |
| * calling qemu_vfio_dma_reset_temporary when necessary. */ |
| if (local_err) { |
| error_reportf_err(local_err, "Cannot map buffer for DMA: "); |
| } |
| return r; |
| } |
| |
| typedef struct { |
| Coroutine *co; |
| int ret; |
| AioContext *ctx; |
| } NVMeCoData; |
| |
| static void nvme_rw_cb_bh(void *opaque) |
| { |
| NVMeCoData *data = opaque; |
| qemu_coroutine_enter(data->co); |
| } |
| |
| static void nvme_rw_cb(void *opaque, int ret) |
| { |
| NVMeCoData *data = opaque; |
| data->ret = ret; |
| if (!data->co) { |
| /* The rw coroutine hasn't yielded, don't try to enter. */ |
| return; |
| } |
| replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data); |
| } |
| |
| static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, |
| uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, |
| bool is_write, |
| int flags) |
| { |
| int r; |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; |
| NVMeRequest *req; |
| |
| uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | |
| (flags & BDRV_REQ_FUA ? 1 << 30 : 0); |
| NvmeCmd cmd = { |
| .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), |
| .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), |
| .cdw12 = cpu_to_le32(cdw12), |
| }; |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); |
| assert(s->queue_count > 1); |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| if (r) { |
| nvme_put_free_req_and_wake(ioq, req); |
| return r; |
| } |
| nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| while (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| r = nvme_cmd_unmap_qiov(bs, qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| if (r) { |
| return r; |
| } |
| |
| trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); |
| return data.ret; |
| } |
| |
| static inline bool nvme_qiov_aligned(BlockDriverState *bs, |
| const QEMUIOVector *qiov) |
| { |
| int i; |
| BDRVNVMeState *s = bs->opaque; |
| |
| for (i = 0; i < qiov->niov; ++i) { |
| if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, |
| qemu_real_host_page_size) || |
| !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) { |
| trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, |
| qiov->iov[i].iov_len, s->page_size); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, bool is_write, int flags) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| int r; |
| QEMU_AUTO_VFREE uint8_t *buf = NULL; |
| QEMUIOVector local_qiov; |
| size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size); |
| assert(QEMU_IS_ALIGNED(offset, s->page_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->page_size)); |
| assert(bytes <= s->max_transfer); |
| if (nvme_qiov_aligned(bs, qiov)) { |
| s->stats.aligned_accesses++; |
| return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); |
| } |
| s->stats.unaligned_accesses++; |
| trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); |
| buf = qemu_try_memalign(qemu_real_host_page_size, len); |
| |
| if (!buf) { |
| return -ENOMEM; |
| } |
| qemu_iovec_init(&local_qiov, 1); |
| if (is_write) { |
| qemu_iovec_to_buf(qiov, 0, buf, bytes); |
| } |
| qemu_iovec_add(&local_qiov, buf, bytes); |
| r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); |
| qemu_iovec_destroy(&local_qiov); |
| if (!r && !is_write) { |
| qemu_iovec_from_buf(qiov, 0, buf, bytes); |
| } |
| return r; |
| } |
| |
| static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, |
| int64_t offset, int64_t bytes, |
| QEMUIOVector *qiov, |
| BdrvRequestFlags flags) |
| { |
| return nvme_co_prw(bs, offset, bytes, qiov, false, flags); |
| } |
| |
| static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, |
| int64_t offset, int64_t bytes, |
| QEMUIOVector *qiov, |
| BdrvRequestFlags flags) |
| { |
| return nvme_co_prw(bs, offset, bytes, qiov, true, flags); |
| } |
| |
| static coroutine_fn int nvme_co_flush(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; |
| NVMeRequest *req; |
| NvmeCmd cmd = { |
| .opcode = NVME_CMD_FLUSH, |
| .nsid = cpu_to_le32(s->nsid), |
| }; |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| assert(s->queue_count > 1); |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| if (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| return data.ret; |
| } |
| |
| |
| static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs, |
| int64_t offset, |
| int64_t bytes, |
| BdrvRequestFlags flags) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; |
| NVMeRequest *req; |
| uint32_t cdw12; |
| |
| if (!s->supports_write_zeroes) { |
| return -ENOTSUP; |
| } |
| |
| if (bytes == 0) { |
| return 0; |
| } |
| |
| cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF; |
| /* |
| * We should not lose information. pwrite_zeroes_alignment and |
| * max_pwrite_zeroes guarantees it. |
| */ |
| assert(((cdw12 + 1) << s->blkshift) == bytes); |
| |
| NvmeCmd cmd = { |
| .opcode = NVME_CMD_WRITE_ZEROES, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), |
| .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), |
| }; |
| |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| if (flags & BDRV_REQ_MAY_UNMAP) { |
| cdw12 |= (1 << 25); |
| } |
| |
| if (flags & BDRV_REQ_FUA) { |
| cdw12 |= (1 << 30); |
| } |
| |
| cmd.cdw12 = cpu_to_le32(cdw12); |
| |
| trace_nvme_write_zeroes(s, offset, bytes, flags); |
| assert(s->queue_count > 1); |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| |
| nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| while (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| trace_nvme_rw_done(s, true, offset, bytes, data.ret); |
| return data.ret; |
| } |
| |
| |
| static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs, |
| int64_t offset, |
| int64_t bytes) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; |
| NVMeRequest *req; |
| QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL; |
| QEMUIOVector local_qiov; |
| int ret; |
| |
| NvmeCmd cmd = { |
| .opcode = NVME_CMD_DSM, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/ |
| .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/ |
| }; |
| |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| if (!s->supports_discard) { |
| return -ENOTSUP; |
| } |
| |
| assert(s->queue_count > 1); |
| |
| /* |
| * Filling the @buf requires @offset and @bytes to satisfy restrictions |
| * defined in nvme_refresh_limits(). |
| */ |
| assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift)); |
| assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift)); |
| assert((bytes >> s->blkshift) <= UINT32_MAX); |
| |
| buf = qemu_try_memalign(s->page_size, s->page_size); |
| if (!buf) { |
| return -ENOMEM; |
| } |
| memset(buf, 0, s->page_size); |
| buf->nlb = cpu_to_le32(bytes >> s->blkshift); |
| buf->slba = cpu_to_le64(offset >> s->blkshift); |
| buf->cattr = 0; |
| |
| qemu_iovec_init(&local_qiov, 1); |
| qemu_iovec_add(&local_qiov, buf, 4096); |
| |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| |
| if (ret) { |
| nvme_put_free_req_and_wake(ioq, req); |
| goto out; |
| } |
| |
| trace_nvme_dsm(s, offset, bytes); |
| |
| nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| while (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| ret = nvme_cmd_unmap_qiov(bs, &local_qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| |
| if (ret) { |
| goto out; |
| } |
| |
| ret = data.ret; |
| trace_nvme_dsm_done(s, offset, bytes, ret); |
| out: |
| qemu_iovec_destroy(&local_qiov); |
| return ret; |
| |
| } |
| |
| static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset, |
| bool exact, PreallocMode prealloc, |
| BdrvRequestFlags flags, Error **errp) |
| { |
| int64_t cur_length; |
| |
| if (prealloc != PREALLOC_MODE_OFF) { |
| error_setg(errp, "Unsupported preallocation mode '%s'", |
| PreallocMode_str(prealloc)); |
| return -ENOTSUP; |
| } |
| |
| cur_length = nvme_getlength(bs); |
| if (offset != cur_length && exact) { |
| error_setg(errp, "Cannot resize NVMe devices"); |
| return -ENOTSUP; |
| } else if (offset > cur_length) { |
| error_setg(errp, "Cannot grow NVMe devices"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_reopen_prepare(BDRVReopenState *reopen_state, |
| BlockReopenQueue *queue, Error **errp) |
| { |
| return 0; |
| } |
| |
| static void nvme_refresh_filename(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", |
| s->device, s->nsid); |
| } |
| |
| static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| bs->bl.opt_mem_alignment = s->page_size; |
| bs->bl.request_alignment = s->page_size; |
| bs->bl.max_transfer = s->max_transfer; |
| |
| /* |
| * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get |
| * at most 0xFFFF |
| */ |
| bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16); |
| bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment, |
| 1UL << s->blkshift); |
| |
| bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift; |
| bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment, |
| 1UL << s->blkshift); |
| } |
| |
| static void nvme_detach_aio_context(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| for (unsigned i = 0; i < s->queue_count; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| |
| qemu_bh_delete(q->completion_bh); |
| q->completion_bh = NULL; |
| } |
| |
| aio_set_event_notifier(bdrv_get_aio_context(bs), |
| &s->irq_notifier[MSIX_SHARED_IRQ_IDX], |
| false, NULL, NULL, NULL); |
| } |
| |
| static void nvme_attach_aio_context(BlockDriverState *bs, |
| AioContext *new_context) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| s->aio_context = new_context; |
| aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX], |
| false, nvme_handle_event, nvme_poll_cb, |
| nvme_poll_ready); |
| |
| for (unsigned i = 0; i < s->queue_count; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| |
| q->completion_bh = |
| aio_bh_new(new_context, nvme_process_completion_bh, q); |
| } |
| } |
| |
| static void nvme_aio_plug(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| assert(!s->plugged); |
| s->plugged = true; |
| } |
| |
| static void nvme_aio_unplug(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| assert(s->plugged); |
| s->plugged = false; |
| for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| qemu_mutex_lock(&q->lock); |
| nvme_kick(q); |
| nvme_process_completion(q); |
| qemu_mutex_unlock(&q->lock); |
| } |
| } |
| |
| static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) |
| { |
| int ret; |
| Error *local_err = NULL; |
| BDRVNVMeState *s = bs->opaque; |
| |
| ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err); |
| if (ret) { |
| /* FIXME: we may run out of IOVA addresses after repeated |
| * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap |
| * doesn't reclaim addresses for fixed mappings. */ |
| error_reportf_err(local_err, "nvme_register_buf failed: "); |
| } |
| } |
| |
| static void nvme_unregister_buf(BlockDriverState *bs, void *host) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| qemu_vfio_dma_unmap(s->vfio, host); |
| } |
| |
| static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs) |
| { |
| BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); |
| BDRVNVMeState *s = bs->opaque; |
| |
| stats->driver = BLOCKDEV_DRIVER_NVME; |
| stats->u.nvme = (BlockStatsSpecificNvme) { |
| .completion_errors = s->stats.completion_errors, |
| .aligned_accesses = s->stats.aligned_accesses, |
| .unaligned_accesses = s->stats.unaligned_accesses, |
| }; |
| |
| return stats; |
| } |
| |
| static const char *const nvme_strong_runtime_opts[] = { |
| NVME_BLOCK_OPT_DEVICE, |
| NVME_BLOCK_OPT_NAMESPACE, |
| |
| NULL |
| }; |
| |
| static BlockDriver bdrv_nvme = { |
| .format_name = "nvme", |
| .protocol_name = "nvme", |
| .instance_size = sizeof(BDRVNVMeState), |
| |
| .bdrv_co_create_opts = bdrv_co_create_opts_simple, |
| .create_opts = &bdrv_create_opts_simple, |
| |
| .bdrv_parse_filename = nvme_parse_filename, |
| .bdrv_file_open = nvme_file_open, |
| .bdrv_close = nvme_close, |
| .bdrv_getlength = nvme_getlength, |
| .bdrv_probe_blocksizes = nvme_probe_blocksizes, |
| .bdrv_co_truncate = nvme_co_truncate, |
| |
| .bdrv_co_preadv = nvme_co_preadv, |
| .bdrv_co_pwritev = nvme_co_pwritev, |
| |
| .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes, |
| .bdrv_co_pdiscard = nvme_co_pdiscard, |
| |
| .bdrv_co_flush_to_disk = nvme_co_flush, |
| .bdrv_reopen_prepare = nvme_reopen_prepare, |
| |
| .bdrv_refresh_filename = nvme_refresh_filename, |
| .bdrv_refresh_limits = nvme_refresh_limits, |
| .strong_runtime_opts = nvme_strong_runtime_opts, |
| .bdrv_get_specific_stats = nvme_get_specific_stats, |
| |
| .bdrv_detach_aio_context = nvme_detach_aio_context, |
| .bdrv_attach_aio_context = nvme_attach_aio_context, |
| |
| .bdrv_io_plug = nvme_aio_plug, |
| .bdrv_io_unplug = nvme_aio_unplug, |
| |
| .bdrv_register_buf = nvme_register_buf, |
| .bdrv_unregister_buf = nvme_unregister_buf, |
| }; |
| |
| static void bdrv_nvme_init(void) |
| { |
| bdrv_register(&bdrv_nvme); |
| } |
| |
| block_init(bdrv_nvme_init); |