blob: b983c75811f25e19376860edf349d3e2e4b57a91 [file] [log] [blame]
/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "sun4m.h"
#include "nvram.h"
#include "sparc32_dma.h"
#include "fdc.h"
#include "sysemu.h"
#include "net.h"
#include "boards.h"
#include "firmware_abi.h"
#include "scsi.h"
//#define DEBUG_IRQ
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* Sun4d architecture was used in the following machines:
*
* SPARCcenter 2000
* SPARCserver 1000
*
* Sun4c architecture was used in the following machines:
* SPARCstation 1/1+, SPARCserver 1/1+
* SPARCstation SLC
* SPARCstation IPC
* SPARCstation ELC
* SPARCstation IPX
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...) \
do { printf("CPUIRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (512 * 1024)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define MAX_CPUS 16
#define MAX_PILS 16
struct hwdef {
target_phys_addr_t iommu_base, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base;
target_phys_addr_t ecc_base;
uint32_t ecc_version;
target_phys_addr_t sun4c_intctl_base, sun4c_counter_base;
long vram_size, nvram_size;
// IRQ numbers are not PIL ones, but master interrupt controller
// register bit numbers
int intctl_g_intr, esp_irq, le_irq, clock_irq, clock1_irq;
int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq, ecc_irq;
int machine_id; // For NVRAM
uint32_t iommu_version;
uint32_t intbit_to_level[32];
uint64_t max_mem;
const char * const default_cpu_model;
};
#define MAX_IOUNITS 5
struct sun4d_hwdef {
target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base;
target_phys_addr_t counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base;
target_phys_addr_t espdma_base, esp_base;
target_phys_addr_t ledma_base, le_base;
target_phys_addr_t tcx_base;
target_phys_addr_t sbi_base;
unsigned long vram_size, nvram_size;
// IRQ numbers are not PIL ones, but SBI register bit numbers
int esp_irq, le_irq, clock_irq, clock1_irq;
int ser_irq, ms_kb_irq, me_irq;
int machine_id; // For NVRAM
uint32_t iounit_version;
uint64_t max_mem;
const char * const default_cpu_model;
};
/* TSC handling */
uint64_t cpu_get_tsc()
{
return qemu_get_clock(vm_clock);
}
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_run (void) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
extern int nographic;
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
const char *boot_devices, uint32_t RAM_size,
uint32_t kernel_size,
int width, int height, int depth,
int machine_id, const char *arch)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
ohwcfg_v3_t *header = (ohwcfg_v3_t *)ℑ
struct sparc_arch_cfg *sparc_header;
struct OpenBIOS_nvpart_v1 *part_header;
memset(image, '\0', sizeof(image));
// Try to match PPC NVRAM
strcpy(header->struct_ident, "QEMU_BIOS");
header->struct_version = cpu_to_be32(3); /* structure v3 */
header->nvram_size = cpu_to_be16(0x2000);
header->nvram_arch_ptr = cpu_to_be16(sizeof(ohwcfg_v3_t));
header->nvram_arch_size = cpu_to_be16(sizeof(struct sparc_arch_cfg));
strcpy(header->arch, arch);
header->nb_cpus = smp_cpus & 0xff;
header->RAM0_base = 0;
header->RAM0_size = cpu_to_be64((uint64_t)RAM_size);
strcpy(header->boot_devices, boot_devices);
header->nboot_devices = strlen(boot_devices) & 0xff;
header->kernel_image = cpu_to_be64((uint64_t)KERNEL_LOAD_ADDR);
header->kernel_size = cpu_to_be64((uint64_t)kernel_size);
if (cmdline) {
strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
header->cmdline = cpu_to_be64((uint64_t)CMDLINE_ADDR);
header->cmdline_size = cpu_to_be64((uint64_t)strlen(cmdline));
}
// XXX add initrd_image, initrd_size
header->width = cpu_to_be16(width);
header->height = cpu_to_be16(height);
header->depth = cpu_to_be16(depth);
if (nographic)
header->graphic_flags = cpu_to_be16(OHW_GF_NOGRAPHICS);
header->crc = cpu_to_be16(OHW_compute_crc(header, 0x00, 0xF8));
// Architecture specific header
start = sizeof(ohwcfg_v3_t);
sparc_header = (struct sparc_arch_cfg *)&image[start];
sparc_header->valid = 0;
start += sizeof(struct sparc_arch_cfg);
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
strcpy(part_header->name, "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
strcpy(part_header->name, "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, machine_id);
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
}
static void *slavio_intctl;
void pic_info()
{
if (slavio_intctl)
slavio_pic_info(slavio_intctl);
}
void irq_info()
{
if (slavio_intctl)
slavio_irq_info(slavio_intctl);
}
void cpu_check_irqs(CPUState *env)
{
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
DPRINTF("Set CPU IRQ %d\n", i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
DPRINTF("Raise CPU IRQ %d\n", irq);
env->halted = 0;
env->pil_in |= 1 << irq;
cpu_check_irqs(env);
} else {
DPRINTF("Lower CPU IRQ %d\n", irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void *slavio_misc;
void qemu_system_powerdown(void)
{
slavio_set_power_fail(slavio_misc, 1);
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 1;
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename)
{
int linux_boot;
unsigned int i;
long initrd_size, kernel_size;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL,
NULL);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0)
kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
== 0x48647253) { // HdrS
stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void sun4m_hw_init(const struct hwdef *hwdef, int RAM_size,
const char *boot_device,
DisplayState *ds, const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env, *envs[MAX_CPUS];
unsigned int i;
void *iommu, *espdma, *ledma, *main_esp, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq,
*espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
qemu_irq *fdc_tc;
unsigned long prom_offset, kernel_size;
int ret;
char buf[1024];
BlockDriverState *fd[MAX_FD];
int index;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for(i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, i);
envs[i] = env;
if (i == 0) {
qemu_register_reset(main_cpu_reset, env);
} else {
qemu_register_reset(secondary_cpu_reset, env);
env->halted = 1;
}
register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
env->prom_addr = hwdef->slavio_base;
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)RAM_size / (1024 * 1024),
(unsigned int)(hwdef->max_mem / (1024 * 1024)));
exit(1);
}
cpu_register_physical_memory(0, RAM_size, 0);
/* load boot prom */
prom_offset = RAM_size + hwdef->vram_size;
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image(buf, phys_ram_base + prom_offset);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
prom_offset += (ret + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
/* set up devices */
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
&hwdef->intbit_to_level[0],
&slavio_irq, &slavio_cpu_irq,
cpu_irqs,
hwdef->clock_irq);
if (hwdef->idreg_base != (target_phys_addr_t)-1) {
stl_raw(phys_ram_base + prom_offset, 0xfe810103);
cpu_register_physical_memory(hwdef->idreg_base, sizeof(uint32_t),
prom_offset | IO_MEM_ROM);
}
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
iommu, &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
&le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "lance") == 0) {
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
} else if (strcmp(nd_table[0].model, "?") == 0) {
fprintf(stderr, "qemu: Supported NICs: lance\n");
exit (1);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
}
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 8);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq],
slavio_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
nographic);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
serial_hds[1], serial_hds[0]);
slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->apc_base,
hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[hwdef->me_irq], envs[0],
&fdc_tc);
if (hwdef->fd_base != (target_phys_addr_t)-1) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
index = drive_get_index(IF_FLOPPY, 0, 0);
if (index != -1)
fd[0] = drives_table[index].bdrv;
sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
index = drive_get_index(IF_SCSI, 0, i);
if (index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[index].bdrv, i);
}
if (hwdef->cs_base != (target_phys_addr_t)-1)
cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl);
kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline,
initrd_filename);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->machine_id, "Sun4m");
if (hwdef->ecc_base != (target_phys_addr_t)-1)
ecc_init(hwdef->ecc_base, slavio_irq[hwdef->ecc_irq],
hwdef->ecc_version);
}
static void sun4c_hw_init(const struct hwdef *hwdef, int RAM_size,
const char *boot_device,
DisplayState *ds, const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
unsigned int i;
void *iommu, *espdma, *ledma, *main_esp, *nvram;
qemu_irq *cpu_irqs, *slavio_irq, *espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
qemu_irq *fdc_tc;
unsigned long prom_offset, kernel_size;
int ret;
char buf[1024];
BlockDriverState *fd[MAX_FD];
int index;
/* init CPU */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, 0);
qemu_register_reset(main_cpu_reset, env);
register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
env->prom_addr = hwdef->slavio_base;
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)RAM_size / (1024 * 1024),
(unsigned int)hwdef->max_mem / (1024 * 1024));
exit(1);
}
cpu_register_physical_memory(0, RAM_size, 0);
/* load boot prom */
prom_offset = RAM_size + hwdef->vram_size;
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image(buf, phys_ram_base + prom_offset);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
prom_offset += (ret + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
/* set up devices */
slavio_intctl = sun4c_intctl_init(hwdef->sun4c_intctl_base,
&slavio_irq, cpu_irqs);
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
iommu, &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
&le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "lance") == 0) {
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
} else if (strcmp(nd_table[0].model, "?") == 0) {
fprintf(stderr, "qemu: Supported NICs: lance\n");
exit (1);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
}
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 2);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
nographic);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
serial_hds[1], serial_hds[0]);
slavio_misc = slavio_misc_init(-1, hwdef->apc_base,
hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[hwdef->me_irq], env, &fdc_tc);
if (hwdef->fd_base != (target_phys_addr_t)-1) {
/* there is zero or one floppy drive */
fd[1] = fd[0] = NULL;
index = drive_get_index(IF_FLOPPY, 0, 0);
if (index != -1)
fd[0] = drives_table[index].bdrv;
sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
index = drive_get_index(IF_SCSI, 0, i);
if (index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[index].bdrv, i);
}
kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline,
initrd_filename);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->machine_id, "Sun4c");
}
static const struct hwdef hwdefs[] = {
/* SS-5 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = 5,
.machine_id = 0x80,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SS-10 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.cs_base = -1,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, // version 0, implementation 1
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.ecc_irq = 28,
.machine_id = 0x72,
.iommu_version = 0x03000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xffffffff, // XXX actually first 62GB ok
.default_cpu_model = "TI SuperSparc II",
},
/* SS-600MP */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.cs_base = -1,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = -1,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = -1,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, // XXX should not exist
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, // version 0, implementation 0
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.ecc_irq = 28,
.machine_id = 0x71,
.iommu_version = 0x01000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xffffffff, // XXX actually first 62GB ok
.default_cpu_model = "TI SuperSparc II",
},
/* SS-20 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.cs_base = -1,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.ecc_irq = 28,
.machine_id = 0x72,
.iommu_version = 0x13000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0xffffffff, // XXX actually first 62GB ok
.default_cpu_model = "TI SuperSparc II",
},
/* SS-2 */
{
.iommu_base = 0xf8000000,
.tcx_base = 0xfe000000,
.cs_base = -1,
.slavio_base = 0xf6000000,
.ms_kb_base = 0xf0000000,
.serial_base = 0xf1000000,
.nvram_base = 0xf2000000,
.fd_base = 0xf7200000,
.counter_base = -1,
.intctl_base = -1,
.dma_base = 0xf8400000,
.esp_base = 0xf8800000,
.le_base = 0xf8c00000,
.apc_base = -1,
.aux1_base = 0xf7400003,
.aux2_base = -1,
.sun4c_intctl_base = 0xf5000000,
.sun4c_counter_base = 0xf3000000,
.vram_size = 0x00100000,
.nvram_size = 0x800,
.esp_irq = 2,
.le_irq = 3,
.clock_irq = 5,
.clock1_irq = 7,
.ms_kb_irq = 1,
.ser_irq = 1,
.fd_irq = 1,
.me_irq = 1,
.cs_irq = -1,
.machine_id = 0x55,
.max_mem = 0x10000000,
.default_cpu_model = "Cypress CY7C601",
},
/* Voyager */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = -1,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, // pmc
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.machine_id = 0x80,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* LX */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = -1,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = -1,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.machine_id = 0x80,
.iommu_version = 0x04000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SS-4 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = 5,
.machine_id = 0x80,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SPARCClassic */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = -1,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.machine_id = 0x80,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SPARCbook */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, // XXX
.cs_base = -1,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.ecc_base = -1,
.sun4c_intctl_base = -1,
.sun4c_counter_base = -1,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 18,
.le_irq = 16,
.clock_irq = 7,
.clock1_irq = 19,
.ms_kb_irq = 14,
.ser_irq = 15,
.fd_irq = 22,
.me_irq = 30,
.cs_irq = -1,
.machine_id = 0x80,
.iommu_version = 0x05000000,
.intbit_to_level = {
2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
},
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
};
/* SPARCstation 5 hardware initialisation */
static void ss5_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[0], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 10 hardware initialisation */
static void ss10_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[1], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCserver 600MP hardware initialisation */
static void ss600mp_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[2], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 20 hardware initialisation */
static void ss20_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[3], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 2 hardware initialisation */
static void ss2_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4c_hw_init(&hwdefs[4], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation Voyager hardware initialisation */
static void vger_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[5], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation LX hardware initialisation */
static void ss_lx_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[6], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 4 hardware initialisation */
static void ss4_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[7], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCClassic hardware initialisation */
static void scls_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[8], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCbook hardware initialisation */
static void sbook_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&hwdefs[9], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
QEMUMachine ss5_machine = {
"SS-5",
"Sun4m platform, SPARCstation 5",
ss5_init,
};
QEMUMachine ss10_machine = {
"SS-10",
"Sun4m platform, SPARCstation 10",
ss10_init,
};
QEMUMachine ss600mp_machine = {
"SS-600MP",
"Sun4m platform, SPARCserver 600MP",
ss600mp_init,
};
QEMUMachine ss20_machine = {
"SS-20",
"Sun4m platform, SPARCstation 20",
ss20_init,
};
QEMUMachine ss2_machine = {
"SS-2",
"Sun4c platform, SPARCstation 2",
ss2_init,
};
QEMUMachine voyager_machine = {
"Voyager",
"Sun4m platform, SPARCstation Voyager",
vger_init,
};
QEMUMachine ss_lx_machine = {
"LX",
"Sun4m platform, SPARCstation LX",
ss_lx_init,
};
QEMUMachine ss4_machine = {
"SS-4",
"Sun4m platform, SPARCstation 4",
ss4_init,
};
QEMUMachine scls_machine = {
"SPARCClassic",
"Sun4m platform, SPARCClassic",
scls_init,
};
QEMUMachine sbook_machine = {
"SPARCbook",
"Sun4m platform, SPARCbook",
sbook_init,
};
static const struct sun4d_hwdef sun4d_hwdefs[] = {
/* SS-1000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
-1,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 3,
.le_irq = 4,
.clock_irq = 14,
.clock1_irq = 10,
.ms_kb_irq = 12,
.ser_irq = 12,
.machine_id = 0x80,
.iounit_version = 0x03000000,
.max_mem = 0xffffffff, // XXX actually first 62GB ok
.default_cpu_model = "TI SuperSparc II",
},
/* SS-2000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
0xfe4200000ULL,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.vram_size = 0x00100000,
.nvram_size = 0x2000,
.esp_irq = 3,
.le_irq = 4,
.clock_irq = 14,
.clock1_irq = 10,
.ms_kb_irq = 12,
.ser_irq = 12,
.machine_id = 0x80,
.iounit_version = 0x03000000,
.max_mem = 0xffffffff, // XXX actually first 62GB ok
.default_cpu_model = "TI SuperSparc II",
},
};
static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, int RAM_size,
const char *boot_device,
DisplayState *ds, const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env, *envs[MAX_CPUS];
unsigned int i;
void *iounits[MAX_IOUNITS], *espdma, *ledma, *main_esp, *nvram, *sbi;
qemu_irq *cpu_irqs[MAX_CPUS], *sbi_irq, *sbi_cpu_irq,
*espdma_irq, *ledma_irq;
qemu_irq *esp_reset, *le_reset;
unsigned long prom_offset, kernel_size;
int ret;
char buf[1024];
int index;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for (i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, i);
envs[i] = env;
if (i == 0) {
qemu_register_reset(main_cpu_reset, env);
} else {
qemu_register_reset(secondary_cpu_reset, env);
env->halted = 1;
}
register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
env->prom_addr = hwdef->slavio_base;
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* allocate RAM */
if ((uint64_t)RAM_size > hwdef->max_mem) {
fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)RAM_size / (1024 * 1024),
(unsigned int)(hwdef->max_mem / (1024 * 1024)));
exit(1);
}
cpu_register_physical_memory(0, RAM_size, 0);
/* load boot prom */
prom_offset = RAM_size + hwdef->vram_size;
cpu_register_physical_memory(hwdef->slavio_base,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0 || ret > PROM_SIZE_MAX)
ret = load_image(buf, phys_ram_base + prom_offset);
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
/* set up devices */
sbi = sbi_init(hwdef->sbi_base, &sbi_irq, &sbi_cpu_irq, cpu_irqs);
for (i = 0; i < MAX_IOUNITS; i++)
if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1)
iounits[i] = iommu_init(hwdef->iounit_bases[i],
hwdef->iounit_version,
sbi_irq[hwdef->me_irq]);
espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[hwdef->esp_irq],
iounits[0], &espdma_irq, &esp_reset);
ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[hwdef->le_irq],
iounits[0], &ledma_irq, &le_reset);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "lance") == 0) {
lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
} else if (strcmp(nd_table[0].model, "?") == 0) {
fprintf(stderr, "qemu: Supported NICs: lance\n");
exit (1);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
}
nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 8);
slavio_timer_init_all(hwdef->counter_base, sbi_irq[hwdef->clock1_irq],
sbi_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[hwdef->ms_kb_irq],
nographic);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
slavio_serial_init(hwdef->serial_base, sbi_irq[hwdef->ser_irq],
serial_hds[1], serial_hds[0]);
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
main_esp = esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, *espdma_irq, esp_reset);
for (i = 0; i < ESP_MAX_DEVS; i++) {
index = drive_get_index(IF_SCSI, 0, i);
if (index == -1)
continue;
esp_scsi_attach(main_esp, drives_table[index].bdrv, i);
}
kernel_size = sun4m_load_kernel(kernel_filename, kernel_cmdline,
initrd_filename);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->machine_id, "Sun4d");
}
/* SPARCserver 1000 hardware initialisation */
static void ss1000_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCcenter 2000 hardware initialisation */
static void ss2000_init(int RAM_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
QEMUMachine ss1000_machine = {
"SS-1000",
"Sun4d platform, SPARCserver 1000",
ss1000_init,
};
QEMUMachine ss2000_machine = {
"SS-2000",
"Sun4d platform, SPARCcenter 2000",
ss2000_init,
};