|  | /* | 
|  | *  emulator main execution loop | 
|  | * | 
|  | *  Copyright (c) 2003-2005 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/qemu-print.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/type-helpers.h" | 
|  | #include "hw/core/tcg-cpu-ops.h" | 
|  | #include "trace.h" | 
|  | #include "disas/disas.h" | 
|  | #include "exec/exec-all.h" | 
|  | #include "tcg/tcg.h" | 
|  | #include "qemu/atomic.h" | 
|  | #include "qemu/rcu.h" | 
|  | #include "exec/log.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "exec/cpu-all.h" | 
|  | #include "sysemu/cpu-timers.h" | 
|  | #include "exec/replay-core.h" | 
|  | #include "sysemu/tcg.h" | 
|  | #include "exec/helper-proto-common.h" | 
|  | #include "tb-jmp-cache.h" | 
|  | #include "tb-hash.h" | 
|  | #include "tb-context.h" | 
|  | #include "internal-common.h" | 
|  | #include "internal-target.h" | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | #include "user-retaddr.h" | 
|  | #endif | 
|  |  | 
|  | /* -icount align implementation. */ | 
|  |  | 
|  | typedef struct SyncClocks { | 
|  | int64_t diff_clk; | 
|  | int64_t last_cpu_icount; | 
|  | int64_t realtime_clock; | 
|  | } SyncClocks; | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* Allow the guest to have a max 3ms advance. | 
|  | * The difference between the 2 clocks could therefore | 
|  | * oscillate around 0. | 
|  | */ | 
|  | #define VM_CLOCK_ADVANCE 3000000 | 
|  | #define THRESHOLD_REDUCE 1.5 | 
|  | #define MAX_DELAY_PRINT_RATE 2000000000LL | 
|  | #define MAX_NB_PRINTS 100 | 
|  |  | 
|  | int64_t max_delay; | 
|  | int64_t max_advance; | 
|  |  | 
|  | static void align_clocks(SyncClocks *sc, CPUState *cpu) | 
|  | { | 
|  | int64_t cpu_icount; | 
|  |  | 
|  | if (!icount_align_option) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; | 
|  | sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); | 
|  | sc->last_cpu_icount = cpu_icount; | 
|  |  | 
|  | if (sc->diff_clk > VM_CLOCK_ADVANCE) { | 
|  | #ifndef _WIN32 | 
|  | struct timespec sleep_delay, rem_delay; | 
|  | sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; | 
|  | sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; | 
|  | if (nanosleep(&sleep_delay, &rem_delay) < 0) { | 
|  | sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; | 
|  | } else { | 
|  | sc->diff_clk = 0; | 
|  | } | 
|  | #else | 
|  | Sleep(sc->diff_clk / SCALE_MS); | 
|  | sc->diff_clk = 0; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_delay(const SyncClocks *sc) | 
|  | { | 
|  | static float threshold_delay; | 
|  | static int64_t last_realtime_clock; | 
|  | static int nb_prints; | 
|  |  | 
|  | if (icount_align_option && | 
|  | sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && | 
|  | nb_prints < MAX_NB_PRINTS) { | 
|  | if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || | 
|  | (-sc->diff_clk / (float)1000000000LL < | 
|  | (threshold_delay - THRESHOLD_REDUCE))) { | 
|  | threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; | 
|  | qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", | 
|  | threshold_delay - 1, | 
|  | threshold_delay); | 
|  | nb_prints++; | 
|  | last_realtime_clock = sc->realtime_clock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_delay_params(SyncClocks *sc, CPUState *cpu) | 
|  | { | 
|  | if (!icount_align_option) { | 
|  | return; | 
|  | } | 
|  | sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | 
|  | sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; | 
|  | sc->last_cpu_icount | 
|  | = cpu->icount_extra + cpu->neg.icount_decr.u16.low; | 
|  | if (sc->diff_clk < max_delay) { | 
|  | max_delay = sc->diff_clk; | 
|  | } | 
|  | if (sc->diff_clk > max_advance) { | 
|  | max_advance = sc->diff_clk; | 
|  | } | 
|  |  | 
|  | /* Print every 2s max if the guest is late. We limit the number | 
|  | of printed messages to NB_PRINT_MAX(currently 100) */ | 
|  | print_delay(sc); | 
|  | } | 
|  | #else | 
|  | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void init_delay_params(SyncClocks *sc, const CPUState *cpu) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG USER ONLY */ | 
|  |  | 
|  | bool tcg_cflags_has(CPUState *cpu, uint32_t flags) | 
|  | { | 
|  | return cpu->tcg_cflags & flags; | 
|  | } | 
|  |  | 
|  | void tcg_cflags_set(CPUState *cpu, uint32_t flags) | 
|  | { | 
|  | cpu->tcg_cflags |= flags; | 
|  | } | 
|  |  | 
|  | uint32_t curr_cflags(CPUState *cpu) | 
|  | { | 
|  | uint32_t cflags = cpu->tcg_cflags; | 
|  |  | 
|  | /* | 
|  | * Record gdb single-step.  We should be exiting the TB by raising | 
|  | * EXCP_DEBUG, but to simplify other tests, disable chaining too. | 
|  | * | 
|  | * For singlestep and -d nochain, suppress goto_tb so that | 
|  | * we can log -d cpu,exec after every TB. | 
|  | */ | 
|  | if (unlikely(cpu->singlestep_enabled)) { | 
|  | cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; | 
|  | } else if (qatomic_read(&one_insn_per_tb)) { | 
|  | cflags |= CF_NO_GOTO_TB | 1; | 
|  | } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { | 
|  | cflags |= CF_NO_GOTO_TB; | 
|  | } | 
|  |  | 
|  | return cflags; | 
|  | } | 
|  |  | 
|  | struct tb_desc { | 
|  | vaddr pc; | 
|  | uint64_t cs_base; | 
|  | CPUArchState *env; | 
|  | tb_page_addr_t page_addr0; | 
|  | uint32_t flags; | 
|  | uint32_t cflags; | 
|  | }; | 
|  |  | 
|  | static bool tb_lookup_cmp(const void *p, const void *d) | 
|  | { | 
|  | const TranslationBlock *tb = p; | 
|  | const struct tb_desc *desc = d; | 
|  |  | 
|  | if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && | 
|  | tb_page_addr0(tb) == desc->page_addr0 && | 
|  | tb->cs_base == desc->cs_base && | 
|  | tb->flags == desc->flags && | 
|  | tb_cflags(tb) == desc->cflags) { | 
|  | /* check next page if needed */ | 
|  | tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); | 
|  | if (tb_phys_page1 == -1) { | 
|  | return true; | 
|  | } else { | 
|  | tb_page_addr_t phys_page1; | 
|  | vaddr virt_page1; | 
|  |  | 
|  | /* | 
|  | * We know that the first page matched, and an otherwise valid TB | 
|  | * encountered an incomplete instruction at the end of that page, | 
|  | * therefore we know that generating a new TB from the current PC | 
|  | * must also require reading from the next page -- even if the | 
|  | * second pages do not match, and therefore the resulting insn | 
|  | * is different for the new TB.  Therefore any exception raised | 
|  | * here by the faulting lookup is not premature. | 
|  | */ | 
|  | virt_page1 = TARGET_PAGE_ALIGN(desc->pc); | 
|  | phys_page1 = get_page_addr_code(desc->env, virt_page1); | 
|  | if (tb_phys_page1 == phys_page1) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, | 
|  | uint64_t cs_base, uint32_t flags, | 
|  | uint32_t cflags) | 
|  | { | 
|  | tb_page_addr_t phys_pc; | 
|  | struct tb_desc desc; | 
|  | uint32_t h; | 
|  |  | 
|  | desc.env = cpu_env(cpu); | 
|  | desc.cs_base = cs_base; | 
|  | desc.flags = flags; | 
|  | desc.cflags = cflags; | 
|  | desc.pc = pc; | 
|  | phys_pc = get_page_addr_code(desc.env, pc); | 
|  | if (phys_pc == -1) { | 
|  | return NULL; | 
|  | } | 
|  | desc.page_addr0 = phys_pc; | 
|  | h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), | 
|  | flags, cs_base, cflags); | 
|  | return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); | 
|  | } | 
|  |  | 
|  | /* Might cause an exception, so have a longjmp destination ready */ | 
|  | static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, | 
|  | uint64_t cs_base, uint32_t flags, | 
|  | uint32_t cflags) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | CPUJumpCache *jc; | 
|  | uint32_t hash; | 
|  |  | 
|  | /* we should never be trying to look up an INVALID tb */ | 
|  | tcg_debug_assert(!(cflags & CF_INVALID)); | 
|  |  | 
|  | hash = tb_jmp_cache_hash_func(pc); | 
|  | jc = cpu->tb_jmp_cache; | 
|  |  | 
|  | tb = qatomic_read(&jc->array[hash].tb); | 
|  | if (likely(tb && | 
|  | jc->array[hash].pc == pc && | 
|  | tb->cs_base == cs_base && | 
|  | tb->flags == flags && | 
|  | tb_cflags(tb) == cflags)) { | 
|  | goto hit; | 
|  | } | 
|  |  | 
|  | tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); | 
|  | if (tb == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | jc->array[hash].pc = pc; | 
|  | qatomic_set(&jc->array[hash].tb, tb); | 
|  |  | 
|  | hit: | 
|  | /* | 
|  | * As long as tb is not NULL, the contents are consistent.  Therefore, | 
|  | * the virtual PC has to match for non-CF_PCREL translations. | 
|  | */ | 
|  | assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | static void log_cpu_exec(vaddr pc, CPUState *cpu, | 
|  | const TranslationBlock *tb) | 
|  | { | 
|  | if (qemu_log_in_addr_range(pc)) { | 
|  | qemu_log_mask(CPU_LOG_EXEC, | 
|  | "Trace %d: %p [%08" PRIx64 | 
|  | "/%016" VADDR_PRIx "/%08x/%08x] %s\n", | 
|  | cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, | 
|  | tb->flags, tb->cflags, lookup_symbol(pc)); | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { | 
|  | FILE *logfile = qemu_log_trylock(); | 
|  | if (logfile) { | 
|  | int flags = 0; | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { | 
|  | flags |= CPU_DUMP_FPU; | 
|  | } | 
|  | #if defined(TARGET_I386) | 
|  | flags |= CPU_DUMP_CCOP; | 
|  | #endif | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { | 
|  | flags |= CPU_DUMP_VPU; | 
|  | } | 
|  | cpu_dump_state(cpu, logfile, flags); | 
|  | qemu_log_unlock(logfile); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, | 
|  | uint32_t *cflags) | 
|  | { | 
|  | CPUBreakpoint *bp; | 
|  | bool match_page = false; | 
|  |  | 
|  | /* | 
|  | * Singlestep overrides breakpoints. | 
|  | * This requirement is visible in the record-replay tests, where | 
|  | * we would fail to make forward progress in reverse-continue. | 
|  | * | 
|  | * TODO: gdb singlestep should only override gdb breakpoints, | 
|  | * so that one could (gdb) singlestep into the guest kernel's | 
|  | * architectural breakpoint handler. | 
|  | */ | 
|  | if (cpu->singlestep_enabled) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | 
|  | /* | 
|  | * If we have an exact pc match, trigger the breakpoint. | 
|  | * Otherwise, note matches within the page. | 
|  | */ | 
|  | if (pc == bp->pc) { | 
|  | bool match_bp = false; | 
|  |  | 
|  | if (bp->flags & BP_GDB) { | 
|  | match_bp = true; | 
|  | } else if (bp->flags & BP_CPU) { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | g_assert_not_reached(); | 
|  | #else | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  | assert(tcg_ops->debug_check_breakpoint); | 
|  | match_bp = tcg_ops->debug_check_breakpoint(cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (match_bp) { | 
|  | cpu->exception_index = EXCP_DEBUG; | 
|  | return true; | 
|  | } | 
|  | } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { | 
|  | match_page = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Within the same page as a breakpoint, single-step, | 
|  | * returning to helper_lookup_tb_ptr after each insn looking | 
|  | * for the actual breakpoint. | 
|  | * | 
|  | * TODO: Perhaps better to record all of the TBs associated | 
|  | * with a given virtual page that contains a breakpoint, and | 
|  | * then invalidate them when a new overlapping breakpoint is | 
|  | * set on the page.  Non-overlapping TBs would not be | 
|  | * invalidated, nor would any TB need to be invalidated as | 
|  | * breakpoints are removed. | 
|  | */ | 
|  | if (match_page) { | 
|  | *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, | 
|  | uint32_t *cflags) | 
|  | { | 
|  | return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && | 
|  | check_for_breakpoints_slow(cpu, pc, cflags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * helper_lookup_tb_ptr: quick check for next tb | 
|  | * @env: current cpu state | 
|  | * | 
|  | * Look for an existing TB matching the current cpu state. | 
|  | * If found, return the code pointer.  If not found, return | 
|  | * the tcg epilogue so that we return into cpu_tb_exec. | 
|  | */ | 
|  | const void *HELPER(lookup_tb_ptr)(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = env_cpu(env); | 
|  | TranslationBlock *tb; | 
|  | vaddr pc; | 
|  | uint64_t cs_base; | 
|  | uint32_t flags, cflags; | 
|  |  | 
|  | /* | 
|  | * By definition we've just finished a TB, so I/O is OK. | 
|  | * Avoid the possibility of calling cpu_io_recompile() if | 
|  | * a page table walk triggered by tb_lookup() calling | 
|  | * probe_access_internal() happens to touch an MMIO device. | 
|  | * The next TB, if we chain to it, will clear the flag again. | 
|  | */ | 
|  | cpu->neg.can_do_io = true; | 
|  | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | 
|  |  | 
|  | cflags = curr_cflags(cpu); | 
|  | if (check_for_breakpoints(cpu, pc, &cflags)) { | 
|  | cpu_loop_exit(cpu); | 
|  | } | 
|  |  | 
|  | tb = tb_lookup(cpu, pc, cs_base, flags, cflags); | 
|  | if (tb == NULL) { | 
|  | return tcg_code_gen_epilogue; | 
|  | } | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { | 
|  | log_cpu_exec(pc, cpu, tb); | 
|  | } | 
|  |  | 
|  | return tb->tc.ptr; | 
|  | } | 
|  |  | 
|  | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | 
|  | /* | 
|  | * Disable CFI checks. | 
|  | * TCG creates binary blobs at runtime, with the transformed code. | 
|  | * A TB is a blob of binary code, created at runtime and called with an | 
|  | * indirect function call. Since such function did not exist at compile time, | 
|  | * the CFI runtime has no way to verify its signature and would fail. | 
|  | * TCG is not considered a security-sensitive part of QEMU so this does not | 
|  | * affect the impact of CFI in environment with high security requirements | 
|  | */ | 
|  | static inline TranslationBlock * QEMU_DISABLE_CFI | 
|  | cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) | 
|  | { | 
|  | uintptr_t ret; | 
|  | TranslationBlock *last_tb; | 
|  | const void *tb_ptr = itb->tc.ptr; | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { | 
|  | log_cpu_exec(log_pc(cpu, itb), cpu, itb); | 
|  | } | 
|  |  | 
|  | qemu_thread_jit_execute(); | 
|  | ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); | 
|  | cpu->neg.can_do_io = true; | 
|  | qemu_plugin_disable_mem_helpers(cpu); | 
|  | /* | 
|  | * TODO: Delay swapping back to the read-write region of the TB | 
|  | * until we actually need to modify the TB.  The read-only copy, | 
|  | * coming from the rx region, shares the same host TLB entry as | 
|  | * the code that executed the exit_tb opcode that arrived here. | 
|  | * If we insist on touching both the RX and the RW pages, we | 
|  | * double the host TLB pressure. | 
|  | */ | 
|  | last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); | 
|  | *tb_exit = ret & TB_EXIT_MASK; | 
|  |  | 
|  | trace_exec_tb_exit(last_tb, *tb_exit); | 
|  |  | 
|  | if (*tb_exit > TB_EXIT_IDX1) { | 
|  | /* We didn't start executing this TB (eg because the instruction | 
|  | * counter hit zero); we must restore the guest PC to the address | 
|  | * of the start of the TB. | 
|  | */ | 
|  | CPUClass *cc = cpu->cc; | 
|  | const TCGCPUOps *tcg_ops = cc->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->synchronize_from_tb) { | 
|  | tcg_ops->synchronize_from_tb(cpu, last_tb); | 
|  | } else { | 
|  | tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); | 
|  | assert(cc->set_pc); | 
|  | cc->set_pc(cpu, last_tb->pc); | 
|  | } | 
|  | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | 
|  | vaddr pc = log_pc(cpu, last_tb); | 
|  | if (qemu_log_in_addr_range(pc)) { | 
|  | qemu_log("Stopped execution of TB chain before %p [%016" | 
|  | VADDR_PRIx "] %s\n", | 
|  | last_tb->tc.ptr, pc, lookup_symbol(pc)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If gdb single-step, and we haven't raised another exception, | 
|  | * raise a debug exception.  Single-step with another exception | 
|  | * is handled in cpu_handle_exception. | 
|  | */ | 
|  | if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { | 
|  | cpu->exception_index = EXCP_DEBUG; | 
|  | cpu_loop_exit(cpu); | 
|  | } | 
|  |  | 
|  | return last_tb; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cpu_exec_enter(CPUState *cpu) | 
|  | { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->cpu_exec_enter) { | 
|  | tcg_ops->cpu_exec_enter(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_exec_exit(CPUState *cpu) | 
|  | { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->cpu_exec_exit) { | 
|  | tcg_ops->cpu_exec_exit(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_exec_longjmp_cleanup(CPUState *cpu) | 
|  | { | 
|  | /* Non-buggy compilers preserve this; assert the correct value. */ | 
|  | g_assert(cpu == current_cpu); | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | clear_helper_retaddr(); | 
|  | if (have_mmap_lock()) { | 
|  | mmap_unlock(); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * For softmmu, a tlb_fill fault during translation will land here, | 
|  | * and we need to release any page locks held.  In system mode we | 
|  | * have one tcg_ctx per thread, so we know it was this cpu doing | 
|  | * the translation. | 
|  | * | 
|  | * Alternative 1: Install a cleanup to be called via an exception | 
|  | * handling safe longjmp.  It seems plausible that all our hosts | 
|  | * support such a thing.  We'd have to properly register unwind info | 
|  | * for the JIT for EH, rather that just for GDB. | 
|  | * | 
|  | * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to | 
|  | * capture the cpu_loop_exit longjmp, perform the cleanup, and | 
|  | * jump again to arrive here. | 
|  | */ | 
|  | if (tcg_ctx->gen_tb) { | 
|  | tb_unlock_pages(tcg_ctx->gen_tb); | 
|  | tcg_ctx->gen_tb = NULL; | 
|  | } | 
|  | #endif | 
|  | if (bql_locked()) { | 
|  | bql_unlock(); | 
|  | } | 
|  | assert_no_pages_locked(); | 
|  | } | 
|  |  | 
|  | void cpu_exec_step_atomic(CPUState *cpu) | 
|  | { | 
|  | CPUArchState *env = cpu_env(cpu); | 
|  | TranslationBlock *tb; | 
|  | vaddr pc; | 
|  | uint64_t cs_base; | 
|  | uint32_t flags, cflags; | 
|  | int tb_exit; | 
|  |  | 
|  | if (sigsetjmp(cpu->jmp_env, 0) == 0) { | 
|  | start_exclusive(); | 
|  | g_assert(cpu == current_cpu); | 
|  | g_assert(!cpu->running); | 
|  | cpu->running = true; | 
|  |  | 
|  | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | 
|  |  | 
|  | cflags = curr_cflags(cpu); | 
|  | /* Execute in a serial context. */ | 
|  | cflags &= ~CF_PARALLEL; | 
|  | /* After 1 insn, return and release the exclusive lock. */ | 
|  | cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; | 
|  | /* | 
|  | * No need to check_for_breakpoints here. | 
|  | * We only arrive in cpu_exec_step_atomic after beginning execution | 
|  | * of an insn that includes an atomic operation we can't handle. | 
|  | * Any breakpoint for this insn will have been recognized earlier. | 
|  | */ | 
|  |  | 
|  | tb = tb_lookup(cpu, pc, cs_base, flags, cflags); | 
|  | if (tb == NULL) { | 
|  | mmap_lock(); | 
|  | tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); | 
|  | mmap_unlock(); | 
|  | } | 
|  |  | 
|  | cpu_exec_enter(cpu); | 
|  | /* execute the generated code */ | 
|  | trace_exec_tb(tb, pc); | 
|  | cpu_tb_exec(cpu, tb, &tb_exit); | 
|  | cpu_exec_exit(cpu); | 
|  | } else { | 
|  | cpu_exec_longjmp_cleanup(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As we start the exclusive region before codegen we must still | 
|  | * be in the region if we longjump out of either the codegen or | 
|  | * the execution. | 
|  | */ | 
|  | g_assert(cpu_in_exclusive_context(cpu)); | 
|  | cpu->running = false; | 
|  | end_exclusive(); | 
|  | } | 
|  |  | 
|  | void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) | 
|  | { | 
|  | /* | 
|  | * Get the rx view of the structure, from which we find the | 
|  | * executable code address, and tb_target_set_jmp_target can | 
|  | * produce a pc-relative displacement to jmp_target_addr[n]. | 
|  | */ | 
|  | const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); | 
|  | uintptr_t offset = tb->jmp_insn_offset[n]; | 
|  | uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; | 
|  | uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; | 
|  |  | 
|  | tb->jmp_target_addr[n] = addr; | 
|  | tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); | 
|  | } | 
|  |  | 
|  | static inline void tb_add_jump(TranslationBlock *tb, int n, | 
|  | TranslationBlock *tb_next) | 
|  | { | 
|  | uintptr_t old; | 
|  |  | 
|  | qemu_thread_jit_write(); | 
|  | assert(n < ARRAY_SIZE(tb->jmp_list_next)); | 
|  | qemu_spin_lock(&tb_next->jmp_lock); | 
|  |  | 
|  | /* make sure the destination TB is valid */ | 
|  | if (tb_next->cflags & CF_INVALID) { | 
|  | goto out_unlock_next; | 
|  | } | 
|  | /* Atomically claim the jump destination slot only if it was NULL */ | 
|  | old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, | 
|  | (uintptr_t)tb_next); | 
|  | if (old) { | 
|  | goto out_unlock_next; | 
|  | } | 
|  |  | 
|  | /* patch the native jump address */ | 
|  | tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); | 
|  |  | 
|  | /* add in TB jmp list */ | 
|  | tb->jmp_list_next[n] = tb_next->jmp_list_head; | 
|  | tb_next->jmp_list_head = (uintptr_t)tb | n; | 
|  |  | 
|  | qemu_spin_unlock(&tb_next->jmp_lock); | 
|  |  | 
|  | qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", | 
|  | tb->tc.ptr, n, tb_next->tc.ptr); | 
|  | return; | 
|  |  | 
|  | out_unlock_next: | 
|  | qemu_spin_unlock(&tb_next->jmp_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_handle_halt(CPUState *cpu) | 
|  | { | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (cpu->halted) { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  | bool leave_halt; | 
|  |  | 
|  | if (tcg_ops->cpu_exec_halt) { | 
|  | leave_halt = tcg_ops->cpu_exec_halt(cpu); | 
|  | } else { | 
|  | leave_halt = cpu_has_work(cpu); | 
|  | } | 
|  | if (!leave_halt) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | cpu->halted = 0; | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void cpu_handle_debug_exception(CPUState *cpu) | 
|  | { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  | CPUWatchpoint *wp; | 
|  |  | 
|  | if (!cpu->watchpoint_hit) { | 
|  | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | 
|  | wp->flags &= ~BP_WATCHPOINT_HIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tcg_ops->debug_excp_handler) { | 
|  | tcg_ops->debug_excp_handler(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool cpu_handle_exception(CPUState *cpu, int *ret) | 
|  | { | 
|  | if (cpu->exception_index < 0) { | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (replay_has_exception() | 
|  | && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { | 
|  | /* Execute just one insn to trigger exception pending in the log */ | 
|  | cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 
|  | | CF_NOIRQ | 1; | 
|  | } | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cpu->exception_index >= EXCP_INTERRUPT) { | 
|  | /* exit request from the cpu execution loop */ | 
|  | *ret = cpu->exception_index; | 
|  | if (*ret == EXCP_DEBUG) { | 
|  | cpu_handle_debug_exception(cpu); | 
|  | } | 
|  | cpu->exception_index = -1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* | 
|  | * If user mode only, we simulate a fake exception which will be | 
|  | * handled outside the cpu execution loop. | 
|  | */ | 
|  | #if defined(TARGET_I386) | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  | tcg_ops->fake_user_interrupt(cpu); | 
|  | #endif /* TARGET_I386 */ | 
|  | *ret = cpu->exception_index; | 
|  | cpu->exception_index = -1; | 
|  | return true; | 
|  | #else | 
|  | if (replay_exception()) { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  |  | 
|  | bql_lock(); | 
|  | tcg_ops->do_interrupt(cpu); | 
|  | bql_unlock(); | 
|  | cpu->exception_index = -1; | 
|  |  | 
|  | if (unlikely(cpu->singlestep_enabled)) { | 
|  | /* | 
|  | * After processing the exception, ensure an EXCP_DEBUG is | 
|  | * raised when single-stepping so that GDB doesn't miss the | 
|  | * next instruction. | 
|  | */ | 
|  | *ret = EXCP_DEBUG; | 
|  | cpu_handle_debug_exception(cpu); | 
|  | return true; | 
|  | } | 
|  | } else if (!replay_has_interrupt()) { | 
|  | /* give a chance to iothread in replay mode */ | 
|  | *ret = EXCP_INTERRUPT; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool icount_exit_request(CPUState *cpu) | 
|  | { | 
|  | if (!icount_enabled()) { | 
|  | return false; | 
|  | } | 
|  | if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { | 
|  | return false; | 
|  | } | 
|  | return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_handle_interrupt(CPUState *cpu, | 
|  | TranslationBlock **last_tb) | 
|  | { | 
|  | /* | 
|  | * If we have requested custom cflags with CF_NOIRQ we should | 
|  | * skip checking here. Any pending interrupts will get picked up | 
|  | * by the next TB we execute under normal cflags. | 
|  | */ | 
|  | if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Clear the interrupt flag now since we're processing | 
|  | * cpu->interrupt_request and cpu->exit_request. | 
|  | * Ensure zeroing happens before reading cpu->exit_request or | 
|  | * cpu->interrupt_request (see also smp_wmb in cpu_exit()) | 
|  | */ | 
|  | qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); | 
|  |  | 
|  | if (unlikely(qatomic_read(&cpu->interrupt_request))) { | 
|  | int interrupt_request; | 
|  | bql_lock(); | 
|  | interrupt_request = cpu->interrupt_request; | 
|  | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | 
|  | /* Mask out external interrupts for this step. */ | 
|  | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | 
|  | } | 
|  | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | 
|  | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | 
|  | cpu->exception_index = EXCP_DEBUG; | 
|  | bql_unlock(); | 
|  | return true; | 
|  | } | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { | 
|  | /* Do nothing */ | 
|  | } else if (interrupt_request & CPU_INTERRUPT_HALT) { | 
|  | replay_interrupt(); | 
|  | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | 
|  | cpu->halted = 1; | 
|  | cpu->exception_index = EXCP_HLT; | 
|  | bql_unlock(); | 
|  | return true; | 
|  | } | 
|  | #if defined(TARGET_I386) | 
|  | else if (interrupt_request & CPU_INTERRUPT_INIT) { | 
|  | X86CPU *x86_cpu = X86_CPU(cpu); | 
|  | CPUArchState *env = &x86_cpu->env; | 
|  | replay_interrupt(); | 
|  | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); | 
|  | do_cpu_init(x86_cpu); | 
|  | cpu->exception_index = EXCP_HALTED; | 
|  | bql_unlock(); | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | else if (interrupt_request & CPU_INTERRUPT_RESET) { | 
|  | replay_interrupt(); | 
|  | cpu_reset(cpu); | 
|  | bql_unlock(); | 
|  | return true; | 
|  | } | 
|  | #endif /* !TARGET_I386 */ | 
|  | /* The target hook has 3 exit conditions: | 
|  | False when the interrupt isn't processed, | 
|  | True when it is, and we should restart on a new TB, | 
|  | and via longjmp via cpu_loop_exit.  */ | 
|  | else { | 
|  | const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->cpu_exec_interrupt && | 
|  | tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { | 
|  | if (!tcg_ops->need_replay_interrupt || | 
|  | tcg_ops->need_replay_interrupt(interrupt_request)) { | 
|  | replay_interrupt(); | 
|  | } | 
|  | /* | 
|  | * After processing the interrupt, ensure an EXCP_DEBUG is | 
|  | * raised when single-stepping so that GDB doesn't miss the | 
|  | * next instruction. | 
|  | */ | 
|  | if (unlikely(cpu->singlestep_enabled)) { | 
|  | cpu->exception_index = EXCP_DEBUG; | 
|  | bql_unlock(); | 
|  | return true; | 
|  | } | 
|  | cpu->exception_index = -1; | 
|  | *last_tb = NULL; | 
|  | } | 
|  | /* The target hook may have updated the 'cpu->interrupt_request'; | 
|  | * reload the 'interrupt_request' value */ | 
|  | interrupt_request = cpu->interrupt_request; | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  | if (interrupt_request & CPU_INTERRUPT_EXITTB) { | 
|  | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | 
|  | /* ensure that no TB jump will be modified as | 
|  | the program flow was changed */ | 
|  | *last_tb = NULL; | 
|  | } | 
|  |  | 
|  | /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ | 
|  | bql_unlock(); | 
|  | } | 
|  |  | 
|  | /* Finally, check if we need to exit to the main loop.  */ | 
|  | if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { | 
|  | qatomic_set(&cpu->exit_request, 0); | 
|  | if (cpu->exception_index == -1) { | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, | 
|  | vaddr pc, TranslationBlock **last_tb, | 
|  | int *tb_exit) | 
|  | { | 
|  | trace_exec_tb(tb, pc); | 
|  | tb = cpu_tb_exec(cpu, tb, tb_exit); | 
|  | if (*tb_exit != TB_EXIT_REQUESTED) { | 
|  | *last_tb = tb; | 
|  | return; | 
|  | } | 
|  |  | 
|  | *last_tb = NULL; | 
|  | if (cpu_loop_exit_requested(cpu)) { | 
|  | /* Something asked us to stop executing chained TBs; just | 
|  | * continue round the main loop. Whatever requested the exit | 
|  | * will also have set something else (eg exit_request or | 
|  | * interrupt_request) which will be handled by | 
|  | * cpu_handle_interrupt.  cpu_handle_interrupt will also | 
|  | * clear cpu->icount_decr.u16.high. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Instruction counter expired.  */ | 
|  | assert(icount_enabled()); | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* Ensure global icount has gone forward */ | 
|  | icount_update(cpu); | 
|  | /* Refill decrementer and continue execution.  */ | 
|  | int32_t insns_left = MIN(0xffff, cpu->icount_budget); | 
|  | cpu->neg.icount_decr.u16.low = insns_left; | 
|  | cpu->icount_extra = cpu->icount_budget - insns_left; | 
|  |  | 
|  | /* | 
|  | * If the next tb has more instructions than we have left to | 
|  | * execute we need to ensure we find/generate a TB with exactly | 
|  | * insns_left instructions in it. | 
|  | */ | 
|  | if (insns_left > 0 && insns_left < tb->icount)  { | 
|  | assert(insns_left <= CF_COUNT_MASK); | 
|  | assert(cpu->icount_extra == 0); | 
|  | cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* main execution loop */ | 
|  |  | 
|  | static int __attribute__((noinline)) | 
|  | cpu_exec_loop(CPUState *cpu, SyncClocks *sc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* if an exception is pending, we execute it here */ | 
|  | while (!cpu_handle_exception(cpu, &ret)) { | 
|  | TranslationBlock *last_tb = NULL; | 
|  | int tb_exit = 0; | 
|  |  | 
|  | while (!cpu_handle_interrupt(cpu, &last_tb)) { | 
|  | TranslationBlock *tb; | 
|  | vaddr pc; | 
|  | uint64_t cs_base; | 
|  | uint32_t flags, cflags; | 
|  |  | 
|  | cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); | 
|  |  | 
|  | /* | 
|  | * When requested, use an exact setting for cflags for the next | 
|  | * execution.  This is used for icount, precise smc, and stop- | 
|  | * after-access watchpoints.  Since this request should never | 
|  | * have CF_INVALID set, -1 is a convenient invalid value that | 
|  | * does not require tcg headers for cpu_common_reset. | 
|  | */ | 
|  | cflags = cpu->cflags_next_tb; | 
|  | if (cflags == -1) { | 
|  | cflags = curr_cflags(cpu); | 
|  | } else { | 
|  | cpu->cflags_next_tb = -1; | 
|  | } | 
|  |  | 
|  | if (check_for_breakpoints(cpu, pc, &cflags)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | tb = tb_lookup(cpu, pc, cs_base, flags, cflags); | 
|  | if (tb == NULL) { | 
|  | CPUJumpCache *jc; | 
|  | uint32_t h; | 
|  |  | 
|  | mmap_lock(); | 
|  | tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); | 
|  | mmap_unlock(); | 
|  |  | 
|  | /* | 
|  | * We add the TB in the virtual pc hash table | 
|  | * for the fast lookup | 
|  | */ | 
|  | h = tb_jmp_cache_hash_func(pc); | 
|  | jc = cpu->tb_jmp_cache; | 
|  | jc->array[h].pc = pc; | 
|  | qatomic_set(&jc->array[h].tb, tb); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* | 
|  | * We don't take care of direct jumps when address mapping | 
|  | * changes in system emulation.  So it's not safe to make a | 
|  | * direct jump to a TB spanning two pages because the mapping | 
|  | * for the second page can change. | 
|  | */ | 
|  | if (tb_page_addr1(tb) != -1) { | 
|  | last_tb = NULL; | 
|  | } | 
|  | #endif | 
|  | /* See if we can patch the calling TB. */ | 
|  | if (last_tb) { | 
|  | tb_add_jump(last_tb, tb_exit, tb); | 
|  | } | 
|  |  | 
|  | cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); | 
|  |  | 
|  | /* Try to align the host and virtual clocks | 
|  | if the guest is in advance */ | 
|  | align_clocks(sc, cpu); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) | 
|  | { | 
|  | /* Prepare setjmp context for exception handling. */ | 
|  | if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { | 
|  | cpu_exec_longjmp_cleanup(cpu); | 
|  | } | 
|  |  | 
|  | return cpu_exec_loop(cpu, sc); | 
|  | } | 
|  |  | 
|  | int cpu_exec(CPUState *cpu) | 
|  | { | 
|  | int ret; | 
|  | SyncClocks sc = { 0 }; | 
|  |  | 
|  | /* replay_interrupt may need current_cpu */ | 
|  | current_cpu = cpu; | 
|  |  | 
|  | if (cpu_handle_halt(cpu)) { | 
|  | return EXCP_HALTED; | 
|  | } | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | cpu_exec_enter(cpu); | 
|  |  | 
|  | /* | 
|  | * Calculate difference between guest clock and host clock. | 
|  | * This delay includes the delay of the last cycle, so | 
|  | * what we have to do is sleep until it is 0. As for the | 
|  | * advance/delay we gain here, we try to fix it next time. | 
|  | */ | 
|  | init_delay_params(&sc, cpu); | 
|  |  | 
|  | ret = cpu_exec_setjmp(cpu, &sc); | 
|  |  | 
|  | cpu_exec_exit(cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool tcg_exec_realizefn(CPUState *cpu, Error **errp) | 
|  | { | 
|  | static bool tcg_target_initialized; | 
|  |  | 
|  | if (!tcg_target_initialized) { | 
|  | cpu->cc->tcg_ops->initialize(); | 
|  | tcg_target_initialized = true; | 
|  | } | 
|  |  | 
|  | cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); | 
|  | tlb_init(cpu); | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | tcg_iommu_init_notifier_list(cpu); | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  | /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* undo the initializations in reverse order */ | 
|  | void tcg_exec_unrealizefn(CPUState *cpu) | 
|  | { | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | tcg_iommu_free_notifier_list(cpu); | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | tlb_destroy(cpu); | 
|  | g_free_rcu(cpu->tb_jmp_cache, rcu); | 
|  | } |