| /* |
| * QEMU USB EHCI Emulation |
| * |
| * Copyright(c) 2008 Emutex Ltd. (address@hidden) |
| * |
| * EHCI project was started by Mark Burkley, with contributions by |
| * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf, |
| * Jan Kiszka and Vincent Palatin contributed bugfixes. |
| * |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or(at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * TODO: |
| * o Downstream port handoff |
| */ |
| |
| #include "hw.h" |
| #include "qemu-timer.h" |
| #include "usb.h" |
| #include "pci.h" |
| #include "monitor.h" |
| |
| #define EHCI_DEBUG 0 |
| #define STATE_DEBUG 0 /* state transitions */ |
| |
| #if EHCI_DEBUG || STATE_DEBUG |
| #define DPRINTF printf |
| #else |
| #define DPRINTF(...) |
| #endif |
| |
| #if STATE_DEBUG |
| #define DPRINTF_ST DPRINTF |
| #else |
| #define DPRINTF_ST(...) |
| #endif |
| |
| /* internal processing - reset HC to try and recover */ |
| #define USB_RET_PROCERR (-99) |
| |
| #define MMIO_SIZE 0x1000 |
| |
| /* Capability Registers Base Address - section 2.2 */ |
| #define CAPREGBASE 0x0000 |
| #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved |
| #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version # |
| #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params |
| #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params |
| #define EECP HCCPARAMS + 1 |
| #define HCSPPORTROUTE1 CAPREGBASE + 0x000c |
| #define HCSPPORTROUTE2 CAPREGBASE + 0x0010 |
| |
| #define OPREGBASE 0x0020 // Operational Registers Base Address |
| |
| #define USBCMD OPREGBASE + 0x0000 |
| #define USBCMD_RUNSTOP (1 << 0) // run / Stop |
| #define USBCMD_HCRESET (1 << 1) // HC Reset |
| #define USBCMD_FLS (3 << 2) // Frame List Size |
| #define USBCMD_FLS_SH 2 // Frame List Size Shift |
| #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable |
| #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable |
| #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell |
| #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset |
| #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count |
| #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable |
| #define USBCMD_ITC (0x7f << 16) // Int Threshold Control |
| #define USBCMD_ITC_SH 16 // Int Threshold Control Shift |
| |
| #define USBSTS OPREGBASE + 0x0004 |
| #define USBSTS_RO_MASK 0x0000003f |
| #define USBSTS_INT (1 << 0) // USB Interrupt |
| #define USBSTS_ERRINT (1 << 1) // Error Interrupt |
| #define USBSTS_PCD (1 << 2) // Port Change Detect |
| #define USBSTS_FLR (1 << 3) // Frame List Rollover |
| #define USBSTS_HSE (1 << 4) // Host System Error |
| #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance |
| #define USBSTS_HALT (1 << 12) // HC Halted |
| #define USBSTS_REC (1 << 13) // Reclamation |
| #define USBSTS_PSS (1 << 14) // Periodic Schedule Status |
| #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status |
| |
| /* |
| * Interrupt enable bits correspond to the interrupt active bits in USBSTS |
| * so no need to redefine here. |
| */ |
| #define USBINTR OPREGBASE + 0x0008 |
| #define USBINTR_MASK 0x0000003f |
| |
| #define FRINDEX OPREGBASE + 0x000c |
| #define CTRLDSSEGMENT OPREGBASE + 0x0010 |
| #define PERIODICLISTBASE OPREGBASE + 0x0014 |
| #define ASYNCLISTADDR OPREGBASE + 0x0018 |
| #define ASYNCLISTADDR_MASK 0xffffffe0 |
| |
| #define CONFIGFLAG OPREGBASE + 0x0040 |
| |
| #define PORTSC (OPREGBASE + 0x0044) |
| #define PORTSC_BEGIN PORTSC |
| #define PORTSC_END (PORTSC + 4 * NB_PORTS) |
| /* |
| * Bits that are reserverd or are read-only are masked out of values |
| * written to us by software |
| */ |
| #define PORTSC_RO_MASK 0x007021c5 |
| #define PORTSC_RWC_MASK 0x0000002a |
| #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable |
| #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable |
| #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable |
| #define PORTSC_PTC (15 << 16) // Port Test Control |
| #define PORTSC_PTC_SH 16 // Port Test Control shift |
| #define PORTSC_PIC (3 << 14) // Port Indicator Control |
| #define PORTSC_PIC_SH 14 // Port Indicator Control Shift |
| #define PORTSC_POWNER (1 << 13) // Port Owner |
| #define PORTSC_PPOWER (1 << 12) // Port Power |
| #define PORTSC_LINESTAT (3 << 10) // Port Line Status |
| #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift |
| #define PORTSC_PRESET (1 << 8) // Port Reset |
| #define PORTSC_SUSPEND (1 << 7) // Port Suspend |
| #define PORTSC_FPRES (1 << 6) // Force Port Resume |
| #define PORTSC_OCC (1 << 5) // Over Current Change |
| #define PORTSC_OCA (1 << 4) // Over Current Active |
| #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change |
| #define PORTSC_PED (1 << 2) // Port Enable/Disable |
| #define PORTSC_CSC (1 << 1) // Connect Status Change |
| #define PORTSC_CONNECT (1 << 0) // Current Connect Status |
| |
| #define FRAME_TIMER_FREQ 1000 |
| #define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ) |
| |
| #define NB_MAXINTRATE 8 // Max rate at which controller issues ints |
| #define NB_PORTS 4 // Number of downstream ports |
| #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction |
| #define MAX_ITERATIONS 20 // Max number of QH before we break the loop |
| #define MAX_QH 100 // Max allowable queue heads in a chain |
| |
| /* Internal periodic / asynchronous schedule state machine states |
| */ |
| typedef enum { |
| EST_INACTIVE = 1000, |
| EST_ACTIVE, |
| EST_EXECUTING, |
| EST_SLEEPING, |
| /* The following states are internal to the state machine function |
| */ |
| EST_WAITLISTHEAD, |
| EST_FETCHENTRY, |
| EST_FETCHQH, |
| EST_FETCHITD, |
| EST_ADVANCEQUEUE, |
| EST_FETCHQTD, |
| EST_EXECUTE, |
| EST_WRITEBACK, |
| EST_HORIZONTALQH |
| } EHCI_STATES; |
| |
| /* macros for accessing fields within next link pointer entry */ |
| #define NLPTR_GET(x) ((x) & 0xffffffe0) |
| #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3) |
| #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid |
| |
| /* link pointer types */ |
| #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor |
| #define NLPTR_TYPE_QH 1 // queue head |
| #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor |
| #define NLPTR_TYPE_FSTN 3 // frame span traversal node |
| |
| |
| /* EHCI spec version 1.0 Section 3.3 |
| */ |
| typedef struct EHCIitd { |
| uint32_t next; |
| |
| uint32_t transact[8]; |
| #define ITD_XACT_ACTIVE (1 << 31) |
| #define ITD_XACT_DBERROR (1 << 30) |
| #define ITD_XACT_BABBLE (1 << 29) |
| #define ITD_XACT_XACTERR (1 << 28) |
| #define ITD_XACT_LENGTH_MASK 0x0fff0000 |
| #define ITD_XACT_LENGTH_SH 16 |
| #define ITD_XACT_IOC (1 << 15) |
| #define ITD_XACT_PGSEL_MASK 0x00007000 |
| #define ITD_XACT_PGSEL_SH 12 |
| #define ITD_XACT_OFFSET_MASK 0x00000fff |
| |
| uint32_t bufptr[7]; |
| #define ITD_BUFPTR_MASK 0xfffff000 |
| #define ITD_BUFPTR_SH 12 |
| #define ITD_BUFPTR_EP_MASK 0x00000f00 |
| #define ITD_BUFPTR_EP_SH 8 |
| #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f |
| #define ITD_BUFPTR_DEVADDR_SH 0 |
| #define ITD_BUFPTR_DIRECTION (1 << 11) |
| #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff |
| #define ITD_BUFPTR_MAXPKT_SH 0 |
| #define ITD_BUFPTR_MULT_MASK 0x00000003 |
| } EHCIitd; |
| |
| /* EHCI spec version 1.0 Section 3.4 |
| */ |
| typedef struct EHCIsitd { |
| uint32_t next; // Standard next link pointer |
| uint32_t epchar; |
| #define SITD_EPCHAR_IO (1 << 31) |
| #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000 |
| #define SITD_EPCHAR_PORTNUM_SH 24 |
| #define SITD_EPCHAR_HUBADD_MASK 0x007f0000 |
| #define SITD_EPCHAR_HUBADDR_SH 16 |
| #define SITD_EPCHAR_EPNUM_MASK 0x00000f00 |
| #define SITD_EPCHAR_EPNUM_SH 8 |
| #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f |
| |
| uint32_t uframe; |
| #define SITD_UFRAME_CMASK_MASK 0x0000ff00 |
| #define SITD_UFRAME_CMASK_SH 8 |
| #define SITD_UFRAME_SMASK_MASK 0x000000ff |
| |
| uint32_t results; |
| #define SITD_RESULTS_IOC (1 << 31) |
| #define SITD_RESULTS_PGSEL (1 << 30) |
| #define SITD_RESULTS_TBYTES_MASK 0x03ff0000 |
| #define SITD_RESULTS_TYBYTES_SH 16 |
| #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00 |
| #define SITD_RESULTS_CPROGMASK_SH 8 |
| #define SITD_RESULTS_ACTIVE (1 << 7) |
| #define SITD_RESULTS_ERR (1 << 6) |
| #define SITD_RESULTS_DBERR (1 << 5) |
| #define SITD_RESULTS_BABBLE (1 << 4) |
| #define SITD_RESULTS_XACTERR (1 << 3) |
| #define SITD_RESULTS_MISSEDUF (1 << 2) |
| #define SITD_RESULTS_SPLITXSTATE (1 << 1) |
| |
| uint32_t bufptr[2]; |
| #define SITD_BUFPTR_MASK 0xfffff000 |
| #define SITD_BUFPTR_CURROFF_MASK 0x00000fff |
| #define SITD_BUFPTR_TPOS_MASK 0x00000018 |
| #define SITD_BUFPTR_TPOS_SH 3 |
| #define SITD_BUFPTR_TCNT_MASK 0x00000007 |
| |
| uint32_t backptr; // Standard next link pointer |
| } EHCIsitd; |
| |
| /* EHCI spec version 1.0 Section 3.5 |
| */ |
| typedef struct EHCIqtd { |
| uint32_t next; // Standard next link pointer |
| uint32_t altnext; // Standard next link pointer |
| uint32_t token; |
| #define QTD_TOKEN_DTOGGLE (1 << 31) |
| #define QTD_TOKEN_TBYTES_MASK 0x7fff0000 |
| #define QTD_TOKEN_TBYTES_SH 16 |
| #define QTD_TOKEN_IOC (1 << 15) |
| #define QTD_TOKEN_CPAGE_MASK 0x00007000 |
| #define QTD_TOKEN_CPAGE_SH 12 |
| #define QTD_TOKEN_CERR_MASK 0x00000c00 |
| #define QTD_TOKEN_CERR_SH 10 |
| #define QTD_TOKEN_PID_MASK 0x00000300 |
| #define QTD_TOKEN_PID_SH 8 |
| #define QTD_TOKEN_ACTIVE (1 << 7) |
| #define QTD_TOKEN_HALT (1 << 6) |
| #define QTD_TOKEN_DBERR (1 << 5) |
| #define QTD_TOKEN_BABBLE (1 << 4) |
| #define QTD_TOKEN_XACTERR (1 << 3) |
| #define QTD_TOKEN_MISSEDUF (1 << 2) |
| #define QTD_TOKEN_SPLITXSTATE (1 << 1) |
| #define QTD_TOKEN_PING (1 << 0) |
| |
| uint32_t bufptr[5]; // Standard buffer pointer |
| #define QTD_BUFPTR_MASK 0xfffff000 |
| } EHCIqtd; |
| |
| /* EHCI spec version 1.0 Section 3.6 |
| */ |
| typedef struct EHCIqh { |
| uint32_t next; // Standard next link pointer |
| |
| /* endpoint characteristics */ |
| uint32_t epchar; |
| #define QH_EPCHAR_RL_MASK 0xf0000000 |
| #define QH_EPCHAR_RL_SH 28 |
| #define QH_EPCHAR_C (1 << 27) |
| #define QH_EPCHAR_MPLEN_MASK 0x07FF0000 |
| #define QH_EPCHAR_MPLEN_SH 16 |
| #define QH_EPCHAR_H (1 << 15) |
| #define QH_EPCHAR_DTC (1 << 14) |
| #define QH_EPCHAR_EPS_MASK 0x00003000 |
| #define QH_EPCHAR_EPS_SH 12 |
| #define EHCI_QH_EPS_FULL 0 |
| #define EHCI_QH_EPS_LOW 1 |
| #define EHCI_QH_EPS_HIGH 2 |
| #define EHCI_QH_EPS_RESERVED 3 |
| |
| #define QH_EPCHAR_EP_MASK 0x00000f00 |
| #define QH_EPCHAR_EP_SH 8 |
| #define QH_EPCHAR_I (1 << 7) |
| #define QH_EPCHAR_DEVADDR_MASK 0x0000007f |
| #define QH_EPCHAR_DEVADDR_SH 0 |
| |
| /* endpoint capabilities */ |
| uint32_t epcap; |
| #define QH_EPCAP_MULT_MASK 0xc0000000 |
| #define QH_EPCAP_MULT_SH 30 |
| #define QH_EPCAP_PORTNUM_MASK 0x3f800000 |
| #define QH_EPCAP_PORTNUM_SH 23 |
| #define QH_EPCAP_HUBADDR_MASK 0x007f0000 |
| #define QH_EPCAP_HUBADDR_SH 16 |
| #define QH_EPCAP_CMASK_MASK 0x0000ff00 |
| #define QH_EPCAP_CMASK_SH 8 |
| #define QH_EPCAP_SMASK_MASK 0x000000ff |
| #define QH_EPCAP_SMASK_SH 0 |
| |
| uint32_t current_qtd; // Standard next link pointer |
| uint32_t next_qtd; // Standard next link pointer |
| uint32_t altnext_qtd; |
| #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e |
| #define QH_ALTNEXT_NAKCNT_SH 1 |
| |
| uint32_t token; // Same as QTD token |
| uint32_t bufptr[5]; // Standard buffer pointer |
| #define BUFPTR_CPROGMASK_MASK 0x000000ff |
| #define BUFPTR_FRAMETAG_MASK 0x0000001f |
| #define BUFPTR_SBYTES_MASK 0x00000fe0 |
| #define BUFPTR_SBYTES_SH 5 |
| } EHCIqh; |
| |
| /* EHCI spec version 1.0 Section 3.7 |
| */ |
| typedef struct EHCIfstn { |
| uint32_t next; // Standard next link pointer |
| uint32_t backptr; // Standard next link pointer |
| } EHCIfstn; |
| |
| typedef struct { |
| PCIDevice dev; |
| qemu_irq irq; |
| target_phys_addr_t mem_base; |
| int mem; |
| int num_ports; |
| /* |
| * EHCI spec version 1.0 Section 2.3 |
| * Host Controller Operational Registers |
| */ |
| union { |
| uint8_t mmio[MMIO_SIZE]; |
| struct { |
| uint8_t cap[OPREGBASE]; |
| uint32_t usbcmd; |
| uint32_t usbsts; |
| uint32_t usbintr; |
| uint32_t frindex; |
| uint32_t ctrldssegment; |
| uint32_t periodiclistbase; |
| uint32_t asynclistaddr; |
| uint32_t notused[9]; |
| uint32_t configflag; |
| uint32_t portsc[NB_PORTS]; |
| }; |
| }; |
| /* |
| * Internal states, shadow registers, etc |
| */ |
| uint32_t sofv; |
| QEMUTimer *frame_timer; |
| int attach_poll_counter; |
| int astate; // Current state in asynchronous schedule |
| int pstate; // Current state in periodic schedule |
| USBPort ports[NB_PORTS]; |
| uint8_t buffer[BUFF_SIZE]; |
| uint32_t usbsts_pending; |
| |
| /* cached data from guest - needs to be flushed |
| * when guest removes an entry (doorbell, handshake sequence) |
| */ |
| EHCIqh qh; // copy of current QH (being worked on) |
| uint32_t qhaddr; // address QH read from |
| |
| EHCIqtd qtd; // copy of current QTD (being worked on) |
| uint32_t qtdaddr; // address QTD read from |
| |
| uint32_t itdaddr; // current ITD |
| |
| uint32_t fetch_addr; // which address to look at next |
| |
| USBBus bus; |
| USBPacket usb_packet; |
| int async_complete; |
| uint32_t tbytes; |
| int pid; |
| int exec_status; |
| int isoch_pause; |
| uint32_t last_run_usec; |
| uint32_t frame_end_usec; |
| } EHCIState; |
| |
| #define SET_LAST_RUN_CLOCK(s) \ |
| (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000; |
| |
| /* nifty macros from Arnon's EHCI version */ |
| #define get_field(data, field) \ |
| (((data) & field##_MASK) >> field##_SH) |
| |
| #define set_field(data, newval, field) do { \ |
| uint32_t val = *data; \ |
| val &= ~ field##_MASK; \ |
| val |= ((newval) << field##_SH) & field##_MASK; \ |
| *data = val; \ |
| } while(0) |
| |
| |
| #if EHCI_DEBUG |
| static const char *addr2str(unsigned addr) |
| { |
| const char *r = " unknown"; |
| const char *n[] = { |
| [ CAPLENGTH ] = " CAPLENGTH", |
| [ HCIVERSION ] = "HCIVERSION", |
| [ HCSPARAMS ] = " HCSPARAMS", |
| [ HCCPARAMS ] = " HCCPARAMS", |
| [ USBCMD ] = " COMMAND", |
| [ USBSTS ] = " STATUS", |
| [ USBINTR ] = " INTERRUPT", |
| [ FRINDEX ] = " FRAME IDX", |
| [ PERIODICLISTBASE ] = "P-LIST BASE", |
| [ ASYNCLISTADDR ] = "A-LIST ADDR", |
| [ PORTSC_BEGIN ... |
| PORTSC_END ] = "PORT STATUS", |
| [ CONFIGFLAG ] = "CONFIG FLAG", |
| }; |
| |
| if (addr < ARRAY_SIZE(n) && n[addr] != NULL) { |
| return n[addr]; |
| } else { |
| return r; |
| } |
| } |
| #endif |
| |
| |
| static inline void ehci_set_interrupt(EHCIState *s, int intr) |
| { |
| int level = 0; |
| |
| // TODO honour interrupt threshold requests |
| |
| s->usbsts |= intr; |
| |
| if ((s->usbsts & USBINTR_MASK) & s->usbintr) { |
| level = 1; |
| } |
| |
| qemu_set_irq(s->irq, level); |
| } |
| |
| static inline void ehci_record_interrupt(EHCIState *s, int intr) |
| { |
| s->usbsts_pending |= intr; |
| } |
| |
| static inline void ehci_commit_interrupt(EHCIState *s) |
| { |
| if (!s->usbsts_pending) { |
| return; |
| } |
| ehci_set_interrupt(s, s->usbsts_pending); |
| s->usbsts_pending = 0; |
| } |
| |
| /* Attach or detach a device on root hub */ |
| |
| static void ehci_attach(USBPort *port) |
| { |
| EHCIState *s = port->opaque; |
| uint32_t *portsc = &s->portsc[port->index]; |
| |
| DPRINTF("ehci_attach invoked for index %d, portsc 0x%x, desc %s\n", |
| port->index, *portsc, port->dev->product_desc); |
| |
| *portsc |= PORTSC_CONNECT; |
| *portsc |= PORTSC_CSC; |
| |
| /* |
| * If a high speed device is attached then we own this port(indicated |
| * by zero in the PORTSC_POWNER bit field) so set the status bit |
| * and set an interrupt if enabled. |
| */ |
| if ( !(*portsc & PORTSC_POWNER)) { |
| ehci_set_interrupt(s, USBSTS_PCD); |
| } |
| } |
| |
| static void ehci_detach(USBPort *port) |
| { |
| EHCIState *s = port->opaque; |
| uint32_t *portsc = &s->portsc[port->index]; |
| |
| DPRINTF("ehci_attach invoked for index %d, portsc 0x%x\n", |
| port->index, *portsc); |
| |
| *portsc &= ~PORTSC_CONNECT; |
| *portsc |= PORTSC_CSC; |
| |
| /* |
| * If a high speed device is attached then we own this port(indicated |
| * by zero in the PORTSC_POWNER bit field) so set the status bit |
| * and set an interrupt if enabled. |
| */ |
| if ( !(*portsc & PORTSC_POWNER)) { |
| ehci_set_interrupt(s, USBSTS_PCD); |
| } |
| } |
| |
| /* 4.1 host controller initialization */ |
| static void ehci_reset(void *opaque) |
| { |
| EHCIState *s = opaque; |
| uint8_t *pci_conf; |
| int i; |
| |
| pci_conf = s->dev.config; |
| |
| memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE); |
| |
| s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH; |
| s->usbsts = USBSTS_HALT; |
| |
| s->astate = EST_INACTIVE; |
| s->pstate = EST_INACTIVE; |
| s->async_complete = 0; |
| s->isoch_pause = -1; |
| s->attach_poll_counter = 0; |
| |
| for(i = 0; i < NB_PORTS; i++) { |
| s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER; |
| |
| if (s->ports[i].dev) { |
| usb_attach(&s->ports[i], s->ports[i].dev); |
| } |
| } |
| } |
| |
| static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr) |
| { |
| EHCIState *s = ptr; |
| uint32_t val; |
| |
| val = s->mmio[addr]; |
| |
| return val; |
| } |
| |
| static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr) |
| { |
| EHCIState *s = ptr; |
| uint32_t val; |
| |
| val = s->mmio[addr] | (s->mmio[addr+1] << 8); |
| |
| return val; |
| } |
| |
| static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr) |
| { |
| EHCIState *s = ptr; |
| uint32_t val; |
| |
| val = s->mmio[addr] | (s->mmio[addr+1] << 8) | |
| (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24); |
| |
| return val; |
| } |
| |
| static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val) |
| { |
| fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n"); |
| exit(1); |
| } |
| |
| static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val) |
| { |
| fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n"); |
| exit(1); |
| } |
| |
| static void handle_port_status_write(EHCIState *s, int port, uint32_t val) |
| { |
| uint32_t *portsc = &s->portsc[port]; |
| int rwc; |
| USBDevice *dev = s->ports[port].dev; |
| |
| DPRINTF("port_status_write: " |
| "PORTSC (port %d) curr %08X new %08X rw-clear %08X rw %08X\n", |
| port, *portsc, val, (val & PORTSC_RWC_MASK), val & PORTSC_RO_MASK); |
| |
| rwc = val & PORTSC_RWC_MASK; |
| val &= PORTSC_RO_MASK; |
| |
| // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC); |
| |
| *portsc &= ~rwc; |
| |
| if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) { |
| DPRINTF("port_status_write: USBTRAN Port %d reset begin\n", port); |
| } |
| |
| if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) { |
| DPRINTF("port_status_write: USBTRAN Port %d reset done\n", port); |
| usb_attach(&s->ports[port], dev); |
| |
| // TODO how to handle reset of ports with no device |
| if (dev) { |
| usb_send_msg(dev, USB_MSG_RESET); |
| } |
| |
| if (s->ports[port].dev) { |
| DPRINTF("port_status_write: " |
| "Device was connected before reset, clearing CSC bit\n"); |
| *portsc &= ~PORTSC_CSC; |
| } |
| |
| /* Table 2.16 Set the enable bit(and enable bit change) to indicate |
| * to SW that this port has a high speed device attached |
| * |
| * TODO - when to disable? |
| */ |
| val |= PORTSC_PED; |
| val |= PORTSC_PEDC; |
| } |
| |
| *portsc &= ~PORTSC_RO_MASK; |
| *portsc |= val; |
| DPRINTF("port_status_write: Port %d status set to 0x%08x\n", port, *portsc); |
| } |
| |
| static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val) |
| { |
| EHCIState *s = ptr; |
| int i; |
| #if EHCI_DEBUG |
| const char *str; |
| #endif |
| |
| /* Only aligned reads are allowed on OHCI */ |
| if (addr & 3) { |
| fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x" |
| TARGET_FMT_plx "\n", addr); |
| return; |
| } |
| |
| if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) { |
| handle_port_status_write(s, (addr-PORTSC)/4, val); |
| return; |
| } |
| |
| if (addr < OPREGBASE) { |
| fprintf(stderr, "usb-ehci: write attempt to read-only register" |
| TARGET_FMT_plx "\n", addr); |
| return; |
| } |
| |
| |
| /* Do any register specific pre-write processing here. */ |
| #if EHCI_DEBUG |
| str = addr2str((unsigned) addr); |
| #endif |
| switch(addr) { |
| case USBCMD: |
| DPRINTF("ehci_mem_writel: USBCMD val=0x%08X, current cmd=0x%08X\n", |
| val, s->usbcmd); |
| |
| if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) { |
| DPRINTF("ehci_mem_writel: %s run, clear halt\n", str); |
| qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock)); |
| SET_LAST_RUN_CLOCK(s); |
| s->usbsts &= ~USBSTS_HALT; |
| } |
| |
| if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) { |
| DPRINTF(" ** STOP **\n"); |
| qemu_del_timer(s->frame_timer); |
| // TODO - should finish out some stuff before setting halt |
| s->usbsts |= USBSTS_HALT; |
| } |
| |
| if (val & USBCMD_HCRESET) { |
| DPRINTF("ehci_mem_writel: %s run, resetting\n", str); |
| ehci_reset(s); |
| val &= ~USBCMD_HCRESET; |
| } |
| |
| /* not supporting dynamic frame list size at the moment */ |
| if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) { |
| fprintf(stderr, "attempt to set frame list size -- value %d\n", |
| val & USBCMD_FLS); |
| val &= ~USBCMD_FLS; |
| } |
| #if EHCI_DEBUG |
| if ((val & USBCMD_PSE) && !(s->usbcmd & USBCMD_PSE)) { |
| DPRINTF("periodic scheduling enabled\n"); |
| } |
| if (!(val & USBCMD_PSE) && (s->usbcmd & USBCMD_PSE)) { |
| DPRINTF("periodic scheduling disabled\n"); |
| } |
| if ((val & USBCMD_ASE) && !(s->usbcmd & USBCMD_ASE)) { |
| DPRINTF("asynchronous scheduling enabled\n"); |
| } |
| if (!(val & USBCMD_ASE) && (s->usbcmd & USBCMD_ASE)) { |
| DPRINTF("asynchronous scheduling disabled\n"); |
| } |
| if ((val & USBCMD_IAAD) && !(s->usbcmd & USBCMD_IAAD)) { |
| DPRINTF("doorbell request received\n"); |
| } |
| if ((val & USBCMD_LHCR) && !(s->usbcmd & USBCMD_LHCR)) { |
| DPRINTF("light host controller reset received\n"); |
| } |
| if ((val & USBCMD_ITC) != (s->usbcmd & USBCMD_ITC)) { |
| DPRINTF("interrupt threshold control set to %x\n", |
| (val & USBCMD_ITC)>>USBCMD_ITC_SH); |
| } |
| #endif |
| break; |
| |
| |
| case USBSTS: |
| val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO |
| DPRINTF("ehci_mem_writel: %s RWC set to 0x%08X\n", str, val); |
| |
| val = (s->usbsts &= ~val); // bits 0 thru 5 are R/WC |
| |
| DPRINTF("ehci_mem_writel: %s updating interrupt condition\n", str); |
| ehci_set_interrupt(s, 0); |
| break; |
| |
| |
| case USBINTR: |
| val &= USBINTR_MASK; |
| DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val); |
| break; |
| |
| case FRINDEX: |
| s->sofv = val >> 3; |
| DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val); |
| break; |
| |
| case CONFIGFLAG: |
| DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val); |
| val &= 0x1; |
| if (val) { |
| for(i = 0; i < NB_PORTS; i++) |
| s->portsc[i] &= ~PORTSC_POWNER; |
| } |
| break; |
| |
| case PERIODICLISTBASE: |
| if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) { |
| fprintf(stderr, |
| "ehci: PERIODIC list base register set while periodic schedule\n" |
| " is enabled and HC is enabled\n"); |
| } |
| DPRINTF("ehci_mem_writel: P-LIST BASE set to 0x%08X\n", val); |
| break; |
| |
| case ASYNCLISTADDR: |
| if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) { |
| fprintf(stderr, |
| "ehci: ASYNC list address register set while async schedule\n" |
| " is enabled and HC is enabled\n"); |
| } |
| DPRINTF("ehci_mem_writel: A-LIST ADDR set to 0x%08X\n", val); |
| break; |
| } |
| |
| *(uint32_t *)(&s->mmio[addr]) = val; |
| } |
| |
| |
| // TODO : Put in common header file, duplication from usb-ohci.c |
| |
| /* Get an array of dwords from main memory */ |
| static inline int get_dwords(uint32_t addr, uint32_t *buf, int num) |
| { |
| int i; |
| |
| for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { |
| cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0); |
| *buf = le32_to_cpu(*buf); |
| } |
| |
| return 1; |
| } |
| |
| /* Put an array of dwords in to main memory */ |
| static inline int put_dwords(uint32_t addr, uint32_t *buf, int num) |
| { |
| int i; |
| |
| for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { |
| uint32_t tmp = cpu_to_le32(*buf); |
| cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1); |
| } |
| |
| return 1; |
| } |
| |
| // 4.10.2 |
| |
| static int ehci_qh_do_overlay(EHCIState *ehci, EHCIqh *qh, EHCIqtd *qtd) |
| { |
| int i; |
| int dtoggle; |
| int ping; |
| int eps; |
| int reload; |
| |
| // remember values in fields to preserve in qh after overlay |
| |
| dtoggle = qh->token & QTD_TOKEN_DTOGGLE; |
| ping = qh->token & QTD_TOKEN_PING; |
| |
| DPRINTF("setting qh.current from %08X to 0x%08X\n", qh->current_qtd, |
| ehci->qtdaddr); |
| qh->current_qtd = ehci->qtdaddr; |
| qh->next_qtd = qtd->next; |
| qh->altnext_qtd = qtd->altnext; |
| qh->token = qtd->token; |
| |
| |
| eps = get_field(qh->epchar, QH_EPCHAR_EPS); |
| if (eps == EHCI_QH_EPS_HIGH) { |
| qh->token &= ~QTD_TOKEN_PING; |
| qh->token |= ping; |
| } |
| |
| reload = get_field(qh->epchar, QH_EPCHAR_RL); |
| set_field(&qh->altnext_qtd, reload, QH_ALTNEXT_NAKCNT); |
| |
| for (i = 0; i < 5; i++) { |
| qh->bufptr[i] = qtd->bufptr[i]; |
| } |
| |
| if (!(qh->epchar & QH_EPCHAR_DTC)) { |
| // preserve QH DT bit |
| qh->token &= ~QTD_TOKEN_DTOGGLE; |
| qh->token |= dtoggle; |
| } |
| |
| qh->bufptr[1] &= ~BUFPTR_CPROGMASK_MASK; |
| qh->bufptr[2] &= ~BUFPTR_FRAMETAG_MASK; |
| |
| put_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2); |
| |
| return 0; |
| } |
| |
| static int ehci_buffer_rw(uint8_t *buffer, EHCIqh *qh, int bytes, int rw) |
| { |
| int bufpos = 0; |
| int cpage, offset; |
| uint32_t head; |
| uint32_t tail; |
| |
| |
| if (!bytes) { |
| return 0; |
| } |
| |
| cpage = get_field(qh->token, QTD_TOKEN_CPAGE); |
| if (cpage > 4) { |
| fprintf(stderr, "cpage out of range (%d)\n", cpage); |
| return USB_RET_PROCERR; |
| } |
| |
| offset = qh->bufptr[0] & ~QTD_BUFPTR_MASK; |
| DPRINTF("ehci_buffer_rw: %sing %d bytes %08x cpage %d offset %d\n", |
| rw ? "writ" : "read", bytes, qh->bufptr[0], cpage, offset); |
| |
| do { |
| /* start and end of this page */ |
| head = qh->bufptr[cpage] & QTD_BUFPTR_MASK; |
| tail = head + ~QTD_BUFPTR_MASK + 1; |
| /* add offset into page */ |
| head |= offset; |
| |
| if (bytes <= (tail - head)) { |
| tail = head + bytes; |
| } |
| |
| DPRINTF("DATA %s cpage:%d head:%08X tail:%08X target:%08X\n", |
| rw ? "WRITE" : "READ ", cpage, head, tail, bufpos); |
| |
| cpu_physical_memory_rw(head, &buffer[bufpos], tail - head, rw); |
| |
| bufpos += (tail - head); |
| bytes -= (tail - head); |
| |
| if (bytes > 0) { |
| cpage++; |
| offset = 0; |
| } |
| } while (bytes > 0); |
| |
| /* save cpage */ |
| set_field(&qh->token, cpage, QTD_TOKEN_CPAGE); |
| |
| /* save offset into cpage */ |
| offset = tail - head; |
| qh->bufptr[0] &= ~QTD_BUFPTR_MASK; |
| qh->bufptr[0] |= offset; |
| |
| return 0; |
| } |
| |
| static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet) |
| { |
| EHCIState *ehci = container_of(packet, EHCIState, usb_packet); |
| |
| DPRINTF("Async packet complete\n"); |
| ehci->async_complete = 1; |
| ehci->exec_status = packet->len; |
| } |
| |
| static int ehci_execute_complete(EHCIState *ehci, EHCIqh *qh, int ret) |
| { |
| int c_err, reload; |
| |
| if (ret == USB_RET_ASYNC && !ehci->async_complete) { |
| DPRINTF("not done yet\n"); |
| return ret; |
| } |
| |
| ehci->async_complete = 0; |
| |
| DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n", |
| ehci->qhaddr, qh->next, ehci->qtdaddr, ret); |
| |
| if (ret < 0) { |
| err: |
| /* TO-DO: put this is in a function that can be invoked below as well */ |
| c_err = get_field(qh->token, QTD_TOKEN_CERR); |
| c_err--; |
| set_field(&qh->token, c_err, QTD_TOKEN_CERR); |
| |
| switch(ret) { |
| case USB_RET_NODEV: |
| fprintf(stderr, "USB no device\n"); |
| break; |
| case USB_RET_STALL: |
| fprintf(stderr, "USB stall\n"); |
| qh->token |= QTD_TOKEN_HALT; |
| ehci_record_interrupt(ehci, USBSTS_ERRINT); |
| break; |
| case USB_RET_NAK: |
| /* 4.10.3 */ |
| reload = get_field(qh->epchar, QH_EPCHAR_RL); |
| if ((ehci->pid == USB_TOKEN_IN) && reload) { |
| int nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT); |
| nakcnt--; |
| set_field(&qh->altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT); |
| } else if (!reload) { |
| return USB_RET_NAK; |
| } |
| break; |
| case USB_RET_BABBLE: |
| fprintf(stderr, "USB babble TODO\n"); |
| qh->token |= QTD_TOKEN_BABBLE; |
| ehci_record_interrupt(ehci, USBSTS_ERRINT); |
| break; |
| default: |
| fprintf(stderr, "USB invalid response %d to handle\n", ret); |
| /* TO-DO: transaction error */ |
| ret = USB_RET_PROCERR; |
| break; |
| } |
| } else { |
| // DPRINTF("Short packet condition\n"); |
| // TODO check 4.12 for splits |
| |
| if ((ret > ehci->tbytes) && (ehci->pid == USB_TOKEN_IN)) { |
| ret = USB_RET_BABBLE; |
| goto err; |
| } |
| |
| if (ehci->tbytes && ehci->pid == USB_TOKEN_IN) { |
| if (ehci_buffer_rw(ehci->buffer, qh, ret, 1) != 0) { |
| return USB_RET_PROCERR; |
| } |
| ehci->tbytes -= ret; |
| } else { |
| ehci->tbytes = 0; |
| } |
| |
| DPRINTF("updating tbytes to %d\n", ehci->tbytes); |
| set_field(&qh->token, ehci->tbytes, QTD_TOKEN_TBYTES); |
| } |
| |
| qh->token ^= QTD_TOKEN_DTOGGLE; |
| qh->token &= ~QTD_TOKEN_ACTIVE; |
| |
| if ((ret >= 0) && (qh->token & QTD_TOKEN_IOC)) { |
| ehci_record_interrupt(ehci, USBSTS_INT); |
| } |
| |
| return ret; |
| } |
| |
| // 4.10.3 |
| |
| static int ehci_execute(EHCIState *ehci, EHCIqh *qh) |
| { |
| USBPort *port; |
| USBDevice *dev; |
| int ret; |
| int i; |
| int endp; |
| int devadr; |
| |
| if ( !(qh->token & QTD_TOKEN_ACTIVE)) { |
| fprintf(stderr, "Attempting to execute inactive QH\n"); |
| return USB_RET_PROCERR; |
| } |
| |
| ehci->tbytes = (qh->token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH; |
| if (ehci->tbytes > BUFF_SIZE) { |
| fprintf(stderr, "Request for more bytes than allowed\n"); |
| return USB_RET_PROCERR; |
| } |
| |
| ehci->pid = (qh->token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH; |
| switch(ehci->pid) { |
| case 0: ehci->pid = USB_TOKEN_OUT; break; |
| case 1: ehci->pid = USB_TOKEN_IN; break; |
| case 2: ehci->pid = USB_TOKEN_SETUP; break; |
| default: fprintf(stderr, "bad token\n"); break; |
| } |
| |
| if ((ehci->tbytes && ehci->pid != USB_TOKEN_IN) && |
| (ehci_buffer_rw(ehci->buffer, qh, ehci->tbytes, 0) != 0)) { |
| return USB_RET_PROCERR; |
| } |
| |
| endp = get_field(qh->epchar, QH_EPCHAR_EP); |
| devadr = get_field(qh->epchar, QH_EPCHAR_DEVADDR); |
| |
| ret = USB_RET_NODEV; |
| |
| // TO-DO: associating device with ehci port |
| for(i = 0; i < NB_PORTS; i++) { |
| port = &ehci->ports[i]; |
| dev = port->dev; |
| |
| // TODO sometime we will also need to check if we are the port owner |
| |
| if (!(ehci->portsc[i] &(PORTSC_CONNECT))) { |
| DPRINTF("Port %d, no exec, not connected(%08X)\n", |
| i, ehci->portsc[i]); |
| continue; |
| } |
| |
| ehci->usb_packet.pid = ehci->pid; |
| ehci->usb_packet.devaddr = devadr; |
| ehci->usb_packet.devep = endp; |
| ehci->usb_packet.data = ehci->buffer; |
| ehci->usb_packet.len = ehci->tbytes; |
| |
| ret = usb_handle_packet(dev, &ehci->usb_packet); |
| |
| DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n", |
| ehci->qhaddr, qh->next, ehci->qtdaddr, ehci->pid, |
| ehci->usb_packet.len, ehci->tbytes, endp, ret); |
| |
| if (ret != USB_RET_NODEV) { |
| break; |
| } |
| } |
| |
| if (ret > BUFF_SIZE) { |
| fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n"); |
| return USB_RET_PROCERR; |
| } |
| |
| if (ret == USB_RET_ASYNC) { |
| ehci->async_complete = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* 4.7.2 |
| */ |
| |
| static int ehci_process_itd(EHCIState *ehci, |
| EHCIitd *itd) |
| { |
| USBPort *port; |
| USBDevice *dev; |
| int ret; |
| int i, j; |
| int ptr; |
| int pid; |
| int pg; |
| int len; |
| int dir; |
| int devadr; |
| int endp; |
| int maxpkt; |
| |
| dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION); |
| devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR); |
| endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP); |
| maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); |
| |
| for(i = 0; i < 8; i++) { |
| if (itd->transact[i] & ITD_XACT_ACTIVE) { |
| DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n", |
| ehci->frindex >> 3, i); |
| |
| pg = get_field(itd->transact[i], ITD_XACT_PGSEL); |
| ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) | |
| (itd->transact[i] & ITD_XACT_OFFSET_MASK); |
| len = get_field(itd->transact[i], ITD_XACT_LENGTH); |
| |
| if (len > BUFF_SIZE) { |
| return USB_RET_PROCERR; |
| } |
| |
| DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len); |
| |
| if (!dir) { |
| cpu_physical_memory_rw(ptr, &ehci->buffer[0], len, 0); |
| pid = USB_TOKEN_OUT; |
| } else |
| pid = USB_TOKEN_IN; |
| |
| ret = USB_RET_NODEV; |
| |
| for (j = 0; j < NB_PORTS; j++) { |
| port = &ehci->ports[j]; |
| dev = port->dev; |
| |
| // TODO sometime we will also need to check if we are the port owner |
| |
| if (!(ehci->portsc[j] &(PORTSC_CONNECT))) { |
| DPRINTF("Port %d, no exec, not connected(%08X)\n", |
| j, ehci->portsc[j]); |
| continue; |
| } |
| |
| ehci->usb_packet.pid = ehci->pid; |
| ehci->usb_packet.devaddr = devadr; |
| ehci->usb_packet.devep = endp; |
| ehci->usb_packet.data = ehci->buffer; |
| ehci->usb_packet.len = len; |
| |
| DPRINTF("calling usb_handle_packet\n"); |
| ret = usb_handle_packet(dev, &ehci->usb_packet); |
| |
| if (ret != USB_RET_NODEV) { |
| break; |
| } |
| } |
| |
| /* In isoch, there is no facility to indicate a NAK so let's |
| * instead just complete a zero-byte transaction. Setting |
| * DBERR seems too draconian. |
| */ |
| |
| if (ret == USB_RET_NAK) { |
| if (ehci->isoch_pause > 0) { |
| DPRINTF("ISOCH: received a NAK but paused so returning\n"); |
| ehci->isoch_pause--; |
| return 0; |
| } else if (ehci->isoch_pause == -1) { |
| DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n"); |
| // Pause frindex for up to 50 msec waiting for data from |
| // remote |
| ehci->isoch_pause = 50; |
| return 0; |
| } else { |
| DPRINTF("ISOCH: isoch pause timeout! return 0\n"); |
| ret = 0; |
| } |
| } else { |
| DPRINTF("ISOCH: received ACK, clearing pause\n"); |
| ehci->isoch_pause = -1; |
| } |
| |
| if (ret >= 0) { |
| itd->transact[i] &= ~ITD_XACT_ACTIVE; |
| |
| if (itd->transact[i] & ITD_XACT_IOC) { |
| ehci_record_interrupt(ehci, USBSTS_INT); |
| } |
| } |
| |
| if (ret >= 0 && dir) { |
| cpu_physical_memory_rw(ptr, &ehci->buffer[0], len, 1); |
| |
| if (ret != len) { |
| DPRINTF("ISOCH IN expected %d, got %d\n", |
| len, ret); |
| set_field(&itd->transact[i], ret, ITD_XACT_LENGTH); |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* This state is the entry point for asynchronous schedule |
| * processing. Entry here consitutes a EHCI start event state (4.8.5) |
| */ |
| static int ehci_state_waitlisthead(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqh *qh = &ehci->qh; |
| int i = 0; |
| int again = 0; |
| uint32_t entry = ehci->asynclistaddr; |
| |
| /* set reclamation flag at start event (4.8.6) */ |
| if (async) { |
| ehci->usbsts |= USBSTS_REC; |
| } |
| |
| /* Find the head of the list (4.9.1.1) */ |
| for(i = 0; i < MAX_QH; i++) { |
| get_dwords(NLPTR_GET(entry), (uint32_t *) qh, sizeof(EHCIqh) >> 2); |
| |
| if (qh->epchar & QH_EPCHAR_H) { |
| DPRINTF_ST("WAITLISTHEAD: QH %08X is the HEAD of the list\n", |
| entry); |
| if (async) { |
| entry |= (NLPTR_TYPE_QH << 1); |
| } |
| |
| ehci->fetch_addr = entry; |
| *state = EST_FETCHENTRY; |
| again = 1; |
| goto out; |
| } |
| |
| DPRINTF_ST("WAITLISTHEAD: QH %08X is NOT the HEAD of the list\n", |
| entry); |
| entry = qh->next; |
| if (entry == ehci->asynclistaddr) { |
| DPRINTF("WAITLISTHEAD: reached beginning of QH list\n"); |
| break; |
| } |
| } |
| |
| /* no head found for list. */ |
| |
| *state = EST_ACTIVE; |
| |
| out: |
| return again; |
| } |
| |
| |
| /* This state is the entry point for periodic schedule processing as |
| * well as being a continuation state for async processing. |
| */ |
| static int ehci_state_fetchentry(EHCIState *ehci, int async, int *state) |
| { |
| int again = 0; |
| uint32_t entry = ehci->fetch_addr; |
| |
| #if EHCI_DEBUG == 0 |
| if (qemu_get_clock_ns(vm_clock) / 1000 >= ehci->frame_end_usec) { |
| if (async) { |
| DPRINTF("FETCHENTRY: FRAME timer elapsed, exit state machine\n"); |
| goto out; |
| } else { |
| DPRINTF("FETCHENTRY: WARNING " |
| "- frame timer elapsed during periodic\n"); |
| } |
| } |
| #endif |
| if (entry < 0x1000) { |
| DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry); |
| *state = EST_ACTIVE; |
| goto out; |
| } |
| |
| /* section 4.8, only QH in async schedule */ |
| if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) { |
| fprintf(stderr, "non queue head request in async schedule\n"); |
| return -1; |
| } |
| |
| switch (NLPTR_TYPE_GET(entry)) { |
| case NLPTR_TYPE_QH: |
| DPRINTF_ST("FETCHENTRY: entry %X is a Queue Head\n", entry); |
| *state = EST_FETCHQH; |
| ehci->qhaddr = entry; |
| again = 1; |
| break; |
| |
| case NLPTR_TYPE_ITD: |
| DPRINTF_ST("FETCHENTRY: entry %X is an ITD\n", entry); |
| *state = EST_FETCHITD; |
| ehci->itdaddr = entry; |
| again = 1; |
| break; |
| |
| default: |
| // TODO: handle siTD and FSTN types |
| fprintf(stderr, "FETCHENTRY: entry at %X is of type %d " |
| "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry)); |
| return -1; |
| } |
| |
| out: |
| return again; |
| } |
| |
| static int ehci_state_fetchqh(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqh *qh = &ehci->qh; |
| int reload; |
| int again = 0; |
| |
| get_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2); |
| |
| if (async && (qh->epchar & QH_EPCHAR_H)) { |
| |
| /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */ |
| if (ehci->usbsts & USBSTS_REC) { |
| ehci->usbsts &= ~USBSTS_REC; |
| } else { |
| DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset" |
| " - done processing\n", ehci->qhaddr); |
| *state = EST_ACTIVE; |
| goto out; |
| } |
| } |
| |
| #if EHCI_DEBUG |
| if (ehci->qhaddr != qh->next) { |
| DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n", |
| ehci->qhaddr, |
| qh->epchar & QH_EPCHAR_H, |
| qh->token & QTD_TOKEN_HALT, |
| qh->token & QTD_TOKEN_ACTIVE, |
| qh->next); |
| } |
| #endif |
| |
| reload = get_field(qh->epchar, QH_EPCHAR_RL); |
| if (reload) { |
| DPRINTF_ST("FETCHQH: reloading nakcnt to %d\n", reload); |
| set_field(&qh->altnext_qtd, reload, QH_ALTNEXT_NAKCNT); |
| } |
| |
| if (qh->token & QTD_TOKEN_HALT) { |
| DPRINTF_ST("FETCHQH: QH Halted, go horizontal\n"); |
| *state = EST_HORIZONTALQH; |
| again = 1; |
| |
| } else if ((qh->token & QTD_TOKEN_ACTIVE) && (qh->current_qtd > 0x1000)) { |
| DPRINTF_ST("FETCHQH: Active, !Halt, execute - fetch qTD\n"); |
| ehci->qtdaddr = qh->current_qtd; |
| *state = EST_FETCHQTD; |
| again = 1; |
| |
| } else { |
| /* EHCI spec version 1.0 Section 4.10.2 */ |
| DPRINTF_ST("FETCHQH: !Active, !Halt, advance queue\n"); |
| *state = EST_ADVANCEQUEUE; |
| again = 1; |
| } |
| |
| out: |
| return again; |
| } |
| |
| static int ehci_state_fetchitd(EHCIState *ehci, int async, int *state) |
| { |
| EHCIitd itd; |
| |
| get_dwords(NLPTR_GET(ehci->itdaddr),(uint32_t *) &itd, |
| sizeof(EHCIitd) >> 2); |
| DPRINTF_ST("FETCHITD: Fetched ITD at address %08X " "(next is %08X)\n", |
| ehci->itdaddr, itd.next); |
| |
| if (ehci_process_itd(ehci, &itd) != 0) { |
| return -1; |
| } |
| |
| put_dwords(NLPTR_GET(ehci->itdaddr), (uint32_t *) &itd, |
| sizeof(EHCIitd) >> 2); |
| ehci->fetch_addr = itd.next; |
| *state = EST_FETCHENTRY; |
| |
| return 1; |
| } |
| |
| /* Section 4.10.2 - paragraph 3 */ |
| static int ehci_state_advqueue(EHCIState *ehci, int async, int *state) |
| { |
| #if 0 |
| /* TO-DO: 4.10.2 - paragraph 2 |
| * if I-bit is set to 1 and QH is not active |
| * go to horizontal QH |
| */ |
| if (I-bit set) { |
| *state = EST_HORIZONTALQH; |
| goto out; |
| } |
| #endif |
| |
| /* |
| * want data and alt-next qTD is valid |
| */ |
| if (((ehci->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) && |
| (ehci->qh.altnext_qtd > 0x1000) && |
| (NLPTR_TBIT(ehci->qh.altnext_qtd) == 0)) { |
| DPRINTF_ST("ADVQUEUE: goto alt next qTD. " |
| "curr 0x%08x next 0x%08x alt 0x%08x (next qh %x)\n", |
| ehci->qh.current_qtd, ehci->qh.altnext_qtd, |
| ehci->qh.next_qtd, ehci->qh.next); |
| ehci->qtdaddr = ehci->qh.altnext_qtd; |
| *state = EST_FETCHQTD; |
| |
| /* |
| * next qTD is valid |
| */ |
| } else if ((ehci->qh.next_qtd > 0x1000) && |
| (NLPTR_TBIT(ehci->qh.next_qtd) == 0)) { |
| DPRINTF_ST("ADVQUEUE: next qTD. " |
| "curr 0x%08x next 0x%08x alt 0x%08x (next qh %x)\n", |
| ehci->qh.current_qtd, ehci->qh.altnext_qtd, |
| ehci->qh.next_qtd, ehci->qh.next); |
| ehci->qtdaddr = ehci->qh.next_qtd; |
| *state = EST_FETCHQTD; |
| |
| /* |
| * no valid qTD, try next QH |
| */ |
| } else { |
| DPRINTF_ST("ADVQUEUE: go to horizontal QH\n"); |
| *state = EST_HORIZONTALQH; |
| } |
| |
| return 1; |
| } |
| |
| /* Section 4.10.2 - paragraph 4 */ |
| static int ehci_state_fetchqtd(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqtd *qtd = &ehci->qtd; |
| int again = 0; |
| |
| get_dwords(NLPTR_GET(ehci->qtdaddr),(uint32_t *) qtd, sizeof(EHCIqtd) >> 2); |
| |
| if (qtd->token & QTD_TOKEN_ACTIVE) { |
| *state = EST_EXECUTE; |
| again = 1; |
| } else { |
| *state = EST_HORIZONTALQH; |
| again = 1; |
| } |
| |
| return again; |
| } |
| |
| static int ehci_state_horizqh(EHCIState *ehci, int async, int *state) |
| { |
| int again = 0; |
| |
| if (ehci->fetch_addr != ehci->qh.next) { |
| ehci->fetch_addr = ehci->qh.next; |
| *state = EST_FETCHENTRY; |
| again = 1; |
| } else { |
| *state = EST_ACTIVE; |
| } |
| |
| return again; |
| } |
| |
| static int ehci_state_execute(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqh *qh = &ehci->qh; |
| EHCIqtd *qtd = &ehci->qtd; |
| int again = 0; |
| int reload, nakcnt; |
| int smask; |
| |
| if (async) { |
| DPRINTF_ST(">>>>> ASYNC STATE MACHINE execute QH 0x%08x, QTD 0x%08x\n", |
| ehci->qhaddr, ehci->qtdaddr); |
| } else { |
| DPRINTF_ST(">>>>> PERIODIC STATE MACHINE execute\n"); |
| } |
| |
| if (ehci_qh_do_overlay(ehci, qh, qtd) != 0) { |
| return -1; |
| } |
| |
| smask = get_field(qh->epcap, QH_EPCAP_SMASK); |
| |
| if (!smask) { |
| reload = get_field(qh->epchar, QH_EPCHAR_RL); |
| nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT); |
| if (reload && !nakcnt) { |
| DPRINTF_ST("EXECUTE: RL != 0 but NakCnt == 0 -- no execute\n"); |
| *state = EST_HORIZONTALQH; |
| again = 1; |
| goto out; |
| } |
| } |
| |
| // TODO verify enough time remains in the uframe as in 4.4.1.1 |
| // TODO write back ptr to async list when done or out of time |
| // TODO Windows does not seem to ever set the MULT field |
| |
| if (!async) { |
| int transactCtr = get_field(qh->epcap, QH_EPCAP_MULT); |
| if (!transactCtr) { |
| DPRINTF("ZERO transactctr for int qh, go HORIZ\n"); |
| *state = EST_HORIZONTALQH; |
| again = 1; |
| goto out; |
| } |
| } |
| |
| if (async) { |
| ehci->usbsts |= USBSTS_REC; |
| } |
| |
| ehci->exec_status = ehci_execute(ehci, qh); |
| if (ehci->exec_status == USB_RET_PROCERR) { |
| again = -1; |
| goto out; |
| } |
| *state = EST_EXECUTING; |
| |
| if (ehci->exec_status != USB_RET_ASYNC) { |
| again = 1; |
| } |
| |
| out: |
| return again; |
| } |
| |
| static int ehci_state_executing(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqh *qh = &ehci->qh; |
| int again = 0; |
| int reload, nakcnt; |
| |
| ehci->exec_status = ehci_execute_complete(ehci, qh, ehci->exec_status); |
| if (ehci->exec_status == USB_RET_ASYNC) { |
| goto out; |
| } |
| if (ehci->exec_status == USB_RET_PROCERR) { |
| again = -1; |
| goto out; |
| } |
| |
| // 4.10.3 |
| if (!async) { |
| int transactCtr = get_field(qh->epcap, QH_EPCAP_MULT); |
| transactCtr--; |
| set_field(&qh->epcap, transactCtr, QH_EPCAP_MULT); |
| // 4.10.3, bottom of page 82, should exit this state when transaction |
| // counter decrements to 0 |
| } |
| |
| |
| reload = get_field(qh->epchar, QH_EPCHAR_RL); |
| if (reload) { |
| nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT); |
| if (ehci->exec_status == USB_RET_NAK) { |
| if (nakcnt) { |
| nakcnt--; |
| } |
| DPRINTF_ST("EXECUTING: Nak occured and RL != 0, dec NakCnt to %d\n", |
| nakcnt); |
| } else { |
| nakcnt = reload; |
| DPRINTF_ST("EXECUTING: Nak didn't occur, reloading to %d\n", |
| nakcnt); |
| } |
| set_field(&qh->altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT); |
| } |
| |
| /* |
| * Write the qh back to guest physical memory. This step isn't |
| * in the EHCI spec but we need to do it since we don't share |
| * physical memory with our guest VM. |
| */ |
| |
| DPRINTF("EXECUTING: write QH to VM memory: qhaddr 0x%x, next 0x%x\n", |
| ehci->qhaddr, qh->next); |
| put_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2); |
| |
| /* 4.10.5 */ |
| if ((ehci->exec_status == USB_RET_NAK) || (qh->token & QTD_TOKEN_ACTIVE)) { |
| *state = EST_HORIZONTALQH; |
| } else { |
| *state = EST_WRITEBACK; |
| } |
| |
| again = 1; |
| |
| out: |
| return again; |
| } |
| |
| |
| static int ehci_state_writeback(EHCIState *ehci, int async, int *state) |
| { |
| EHCIqh *qh = &ehci->qh; |
| int again = 0; |
| |
| /* Write back the QTD from the QH area */ |
| DPRINTF_ST("WRITEBACK: write QTD to VM memory\n"); |
| put_dwords(NLPTR_GET(ehci->qtdaddr),(uint32_t *) &qh->next_qtd, |
| sizeof(EHCIqtd) >> 2); |
| |
| /* TODO confirm next state. For now, keep going if async |
| * but stop after one qtd if periodic |
| */ |
| //if (async) { |
| *state = EST_ADVANCEQUEUE; |
| again = 1; |
| //} else { |
| // *state = EST_ACTIVE; |
| //} |
| return again; |
| } |
| |
| /* |
| * This is the state machine that is common to both async and periodic |
| */ |
| |
| static int ehci_advance_state(EHCIState *ehci, |
| int async, |
| int state) |
| { |
| int again; |
| int iter = 0; |
| |
| do { |
| if (state == EST_FETCHQH) { |
| iter++; |
| /* if we are roaming a lot of QH without executing a qTD |
| * something is wrong with the linked list. TO-DO: why is |
| * this hack needed? |
| */ |
| if (iter > MAX_ITERATIONS) { |
| DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n"); |
| state = EST_ACTIVE; |
| break; |
| } |
| } |
| switch(state) { |
| case EST_WAITLISTHEAD: |
| again = ehci_state_waitlisthead(ehci, async, &state); |
| break; |
| |
| case EST_FETCHENTRY: |
| again = ehci_state_fetchentry(ehci, async, &state); |
| break; |
| |
| case EST_FETCHQH: |
| again = ehci_state_fetchqh(ehci, async, &state); |
| break; |
| |
| case EST_FETCHITD: |
| again = ehci_state_fetchitd(ehci, async, &state); |
| break; |
| |
| case EST_ADVANCEQUEUE: |
| again = ehci_state_advqueue(ehci, async, &state); |
| break; |
| |
| case EST_FETCHQTD: |
| again = ehci_state_fetchqtd(ehci, async, &state); |
| break; |
| |
| case EST_HORIZONTALQH: |
| again = ehci_state_horizqh(ehci, async, &state); |
| break; |
| |
| case EST_EXECUTE: |
| iter = 0; |
| again = ehci_state_execute(ehci, async, &state); |
| break; |
| |
| case EST_EXECUTING: |
| again = ehci_state_executing(ehci, async, &state); |
| break; |
| |
| case EST_WRITEBACK: |
| again = ehci_state_writeback(ehci, async, &state); |
| break; |
| |
| default: |
| fprintf(stderr, "Bad state!\n"); |
| again = -1; |
| break; |
| } |
| |
| if (again < 0) { |
| fprintf(stderr, "processing error - resetting ehci HC\n"); |
| ehci_reset(ehci); |
| again = 0; |
| } |
| } |
| while (again); |
| |
| ehci_commit_interrupt(ehci); |
| return state; |
| } |
| |
| static void ehci_advance_async_state(EHCIState *ehci) |
| { |
| EHCIqh qh; |
| int state = ehci->astate; |
| |
| switch(state) { |
| case EST_INACTIVE: |
| if (!(ehci->usbcmd & USBCMD_ASE)) { |
| break; |
| } |
| ehci->usbsts |= USBSTS_ASS; |
| ehci->astate = EST_ACTIVE; |
| // No break, fall through to ACTIVE |
| |
| case EST_ACTIVE: |
| if ( !(ehci->usbcmd & USBCMD_ASE)) { |
| ehci->usbsts &= ~USBSTS_ASS; |
| ehci->astate = EST_INACTIVE; |
| break; |
| } |
| |
| /* If the doorbell is set, the guest wants to make a change to the |
| * schedule. The host controller needs to release cached data. |
| * (section 4.8.2) |
| */ |
| if (ehci->usbcmd & USBCMD_IAAD) { |
| DPRINTF("ASYNC: doorbell request acknowledged\n"); |
| ehci->usbcmd &= ~USBCMD_IAAD; |
| ehci_set_interrupt(ehci, USBSTS_IAA); |
| break; |
| } |
| |
| /* make sure guest has acknowledged */ |
| /* TO-DO: is this really needed? */ |
| if (ehci->usbsts & USBSTS_IAA) { |
| DPRINTF("IAA status bit still set.\n"); |
| break; |
| } |
| |
| DPRINTF_ST("ASYNC: waiting for listhead, starting at %08x\n", |
| ehci->asynclistaddr); |
| /* check that address register has been set */ |
| if (ehci->asynclistaddr == 0) { |
| break; |
| } |
| |
| state = EST_WAITLISTHEAD; |
| /* fall through */ |
| |
| case EST_FETCHENTRY: |
| /* fall through */ |
| |
| case EST_EXECUTING: |
| get_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) &qh, |
| sizeof(EHCIqh) >> 2); |
| ehci->astate = ehci_advance_state(ehci, 1, state); |
| break; |
| |
| default: |
| /* this should only be due to a developer mistake */ |
| fprintf(stderr, "ehci: Bad asynchronous state %d. " |
| "Resetting to active\n", ehci->astate); |
| ehci->astate = EST_ACTIVE; |
| } |
| } |
| |
| static void ehci_advance_periodic_state(EHCIState *ehci) |
| { |
| uint32_t entry; |
| uint32_t list; |
| |
| // 4.6 |
| |
| switch(ehci->pstate) { |
| case EST_INACTIVE: |
| if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) { |
| DPRINTF("PERIODIC going active\n"); |
| ehci->usbsts |= USBSTS_PSS; |
| ehci->pstate = EST_ACTIVE; |
| // No break, fall through to ACTIVE |
| } else |
| break; |
| |
| case EST_ACTIVE: |
| if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) { |
| DPRINTF("PERIODIC going inactive\n"); |
| ehci->usbsts &= ~USBSTS_PSS; |
| ehci->pstate = EST_INACTIVE; |
| break; |
| } |
| |
| list = ehci->periodiclistbase & 0xfffff000; |
| /* check that register has been set */ |
| if (list == 0) { |
| break; |
| } |
| list |= ((ehci->frindex & 0x1ff8) >> 1); |
| |
| cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0); |
| entry = le32_to_cpu(entry); |
| |
| DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n", |
| ehci->frindex / 8, list, entry); |
| ehci->fetch_addr = entry; |
| ehci->pstate = ehci_advance_state(ehci, 0, EST_FETCHENTRY); |
| break; |
| |
| case EST_EXECUTING: |
| DPRINTF("PERIODIC state adv for executing\n"); |
| ehci->pstate = ehci_advance_state(ehci, 0, EST_EXECUTING); |
| break; |
| |
| default: |
| /* this should only be due to a developer mistake */ |
| fprintf(stderr, "ehci: Bad periodic state %d. " |
| "Resetting to active\n", ehci->pstate); |
| ehci->pstate = EST_ACTIVE; |
| } |
| } |
| |
| static void ehci_frame_timer(void *opaque) |
| { |
| EHCIState *ehci = opaque; |
| int64_t expire_time, t_now; |
| int usec_elapsed; |
| int frames; |
| int usec_now; |
| int i; |
| int skipped_frames = 0; |
| |
| |
| t_now = qemu_get_clock_ns(vm_clock); |
| expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ); |
| if (expire_time == t_now) { |
| expire_time++; |
| } |
| |
| usec_now = t_now / 1000; |
| usec_elapsed = usec_now - ehci->last_run_usec; |
| frames = usec_elapsed / FRAME_TIMER_USEC; |
| ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10; |
| |
| for (i = 0; i < frames; i++) { |
| if ( !(ehci->usbsts & USBSTS_HALT)) { |
| if (ehci->isoch_pause <= 0) { |
| ehci->frindex += 8; |
| } |
| |
| if (ehci->frindex > 0x00001fff) { |
| ehci->frindex = 0; |
| ehci_set_interrupt(ehci, USBSTS_FLR); |
| } |
| |
| ehci->sofv = (ehci->frindex - 1) >> 3; |
| ehci->sofv &= 0x000003ff; |
| } |
| |
| if (frames - i > 10) { |
| skipped_frames++; |
| } else { |
| // TODO could this cause periodic frames to get skipped if async |
| // active? |
| if (ehci->astate != EST_EXECUTING) { |
| ehci_advance_periodic_state(ehci); |
| } |
| } |
| |
| ehci->last_run_usec += FRAME_TIMER_USEC; |
| } |
| |
| #if 0 |
| if (skipped_frames) { |
| DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames); |
| } |
| #endif |
| |
| /* Async is not inside loop since it executes everything it can once |
| * called |
| */ |
| if (ehci->pstate != EST_EXECUTING) { |
| ehci_advance_async_state(ehci); |
| } |
| |
| qemu_mod_timer(ehci->frame_timer, expire_time); |
| } |
| |
| static CPUReadMemoryFunc *ehci_readfn[3]={ |
| ehci_mem_readb, |
| ehci_mem_readw, |
| ehci_mem_readl |
| }; |
| |
| static CPUWriteMemoryFunc *ehci_writefn[3]={ |
| ehci_mem_writeb, |
| ehci_mem_writew, |
| ehci_mem_writel |
| }; |
| |
| static void ehci_map(PCIDevice *pci_dev, int region_num, |
| pcibus_t addr, pcibus_t size, int type) |
| { |
| EHCIState *s =(EHCIState *)pci_dev; |
| |
| DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n", |
| region_num, addr, size, s->mem); |
| s->mem_base = addr; |
| cpu_register_physical_memory(addr, size, s->mem); |
| } |
| |
| static int usb_ehci_initfn(PCIDevice *dev); |
| |
| static USBPortOps ehci_port_ops = { |
| .attach = ehci_attach, |
| .detach = ehci_detach, |
| .complete = ehci_async_complete_packet, |
| }; |
| |
| static PCIDeviceInfo ehci_info = { |
| .qdev.name = "usb-ehci", |
| .qdev.size = sizeof(EHCIState), |
| .init = usb_ehci_initfn, |
| }; |
| |
| static int usb_ehci_initfn(PCIDevice *dev) |
| { |
| EHCIState *s = DO_UPCAST(EHCIState, dev, dev); |
| uint8_t *pci_conf = s->dev.config; |
| int i; |
| |
| pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); |
| pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D); |
| pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10); |
| pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20); |
| pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB); |
| pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL); |
| |
| /* capabilities pointer */ |
| pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00); |
| //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50); |
| |
| pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3 |
| pci_set_byte(&pci_conf[PCI_MIN_GNT], 0); |
| pci_set_byte(&pci_conf[PCI_MAX_LAT], 0); |
| |
| // pci_conf[0x50] = 0x01; // power management caps |
| |
| pci_set_byte(&pci_conf[0x60], 0x20); // spec release number (2.1.4) |
| pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5) |
| pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6) |
| |
| pci_conf[0x64] = 0x00; |
| pci_conf[0x65] = 0x00; |
| pci_conf[0x66] = 0x00; |
| pci_conf[0x67] = 0x00; |
| pci_conf[0x68] = 0x01; |
| pci_conf[0x69] = 0x00; |
| pci_conf[0x6a] = 0x00; |
| pci_conf[0x6b] = 0x00; // USBLEGSUP |
| pci_conf[0x6c] = 0x00; |
| pci_conf[0x6d] = 0x00; |
| pci_conf[0x6e] = 0x00; |
| pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS |
| |
| // 2.2 host controller interface version |
| s->mmio[0x00] = (uint8_t) OPREGBASE; |
| s->mmio[0x01] = 0x00; |
| s->mmio[0x02] = 0x00; |
| s->mmio[0x03] = 0x01; // HC version |
| s->mmio[0x04] = NB_PORTS; // Number of downstream ports |
| s->mmio[0x05] = 0x00; // No companion ports at present |
| s->mmio[0x06] = 0x00; |
| s->mmio[0x07] = 0x00; |
| s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable |
| s->mmio[0x09] = 0x68; // EECP |
| s->mmio[0x0a] = 0x00; |
| s->mmio[0x0b] = 0x00; |
| |
| s->irq = s->dev.irq[3]; |
| |
| usb_bus_new(&s->bus, &s->dev.qdev); |
| for(i = 0; i < NB_PORTS; i++) { |
| usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops, |
| USB_SPEED_MASK_HIGH); |
| usb_port_location(&s->ports[i], NULL, i+1); |
| s->ports[i].dev = 0; |
| } |
| |
| s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s); |
| |
| qemu_register_reset(ehci_reset, s); |
| |
| s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s, |
| DEVICE_LITTLE_ENDIAN); |
| |
| pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY, |
| ehci_map); |
| |
| fprintf(stderr, "*** EHCI support is under development ***\n"); |
| |
| return 0; |
| } |
| |
| static void ehci_register(void) |
| { |
| pci_qdev_register(&ehci_info); |
| } |
| device_init(ehci_register); |
| |
| /* |
| * vim: expandtab ts=4 |
| */ |