| /* |
| * ARM translation |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * Copyright (c) 2005-2007 CodeSourcery |
| * Copyright (c) 2007 OpenedHand, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "translate.h" |
| #include "translate-a32.h" |
| #include "qemu/log.h" |
| #include "disas/disas.h" |
| #include "arm_ldst.h" |
| #include "semihosting/semihost.h" |
| #include "cpregs.h" |
| #include "exec/helper-proto.h" |
| |
| #define HELPER_H "helper.h" |
| #include "exec/helper-info.c.inc" |
| #undef HELPER_H |
| |
| #define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T) |
| #define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5) |
| /* currently all emulated v5 cores are also v5TE, so don't bother */ |
| #define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5) |
| #define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s) |
| #define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6) |
| #define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K) |
| #define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2) |
| #define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7) |
| #define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8) |
| |
| /* These are TCG temporaries used only by the legacy iwMMXt decoder */ |
| static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; |
| /* These are TCG globals which alias CPUARMState fields */ |
| static TCGv_i32 cpu_R[16]; |
| TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF; |
| TCGv_i64 cpu_exclusive_addr; |
| TCGv_i64 cpu_exclusive_val; |
| |
| static const char * const regnames[] = |
| { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" }; |
| |
| |
| /* initialize TCG globals. */ |
| void arm_translate_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| cpu_R[i] = tcg_global_mem_new_i32(tcg_env, |
| offsetof(CPUARMState, regs[i]), |
| regnames[i]); |
| } |
| cpu_CF = tcg_global_mem_new_i32(tcg_env, offsetof(CPUARMState, CF), "CF"); |
| cpu_NF = tcg_global_mem_new_i32(tcg_env, offsetof(CPUARMState, NF), "NF"); |
| cpu_VF = tcg_global_mem_new_i32(tcg_env, offsetof(CPUARMState, VF), "VF"); |
| cpu_ZF = tcg_global_mem_new_i32(tcg_env, offsetof(CPUARMState, ZF), "ZF"); |
| |
| cpu_exclusive_addr = tcg_global_mem_new_i64(tcg_env, |
| offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); |
| cpu_exclusive_val = tcg_global_mem_new_i64(tcg_env, |
| offsetof(CPUARMState, exclusive_val), "exclusive_val"); |
| |
| a64_translate_init(); |
| } |
| |
| uint64_t asimd_imm_const(uint32_t imm, int cmode, int op) |
| { |
| /* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */ |
| switch (cmode) { |
| case 0: case 1: |
| /* no-op */ |
| break; |
| case 2: case 3: |
| imm <<= 8; |
| break; |
| case 4: case 5: |
| imm <<= 16; |
| break; |
| case 6: case 7: |
| imm <<= 24; |
| break; |
| case 8: case 9: |
| imm |= imm << 16; |
| break; |
| case 10: case 11: |
| imm = (imm << 8) | (imm << 24); |
| break; |
| case 12: |
| imm = (imm << 8) | 0xff; |
| break; |
| case 13: |
| imm = (imm << 16) | 0xffff; |
| break; |
| case 14: |
| if (op) { |
| /* |
| * This and cmode == 15 op == 1 are the only cases where |
| * the top and bottom 32 bits of the encoded constant differ. |
| */ |
| uint64_t imm64 = 0; |
| int n; |
| |
| for (n = 0; n < 8; n++) { |
| if (imm & (1 << n)) { |
| imm64 |= (0xffULL << (n * 8)); |
| } |
| } |
| return imm64; |
| } |
| imm |= (imm << 8) | (imm << 16) | (imm << 24); |
| break; |
| case 15: |
| if (op) { |
| /* Reserved encoding for AArch32; valid for AArch64 */ |
| uint64_t imm64 = (uint64_t)(imm & 0x3f) << 48; |
| if (imm & 0x80) { |
| imm64 |= 0x8000000000000000ULL; |
| } |
| if (imm & 0x40) { |
| imm64 |= 0x3fc0000000000000ULL; |
| } else { |
| imm64 |= 0x4000000000000000ULL; |
| } |
| return imm64; |
| } |
| imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) |
| | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); |
| break; |
| } |
| if (op) { |
| imm = ~imm; |
| } |
| return dup_const(MO_32, imm); |
| } |
| |
| /* Generate a label used for skipping this instruction */ |
| void arm_gen_condlabel(DisasContext *s) |
| { |
| if (!s->condjmp) { |
| s->condlabel = gen_disas_label(s); |
| s->condjmp = 1; |
| } |
| } |
| |
| /* Flags for the disas_set_da_iss info argument: |
| * lower bits hold the Rt register number, higher bits are flags. |
| */ |
| typedef enum ISSInfo { |
| ISSNone = 0, |
| ISSRegMask = 0x1f, |
| ISSInvalid = (1 << 5), |
| ISSIsAcqRel = (1 << 6), |
| ISSIsWrite = (1 << 7), |
| ISSIs16Bit = (1 << 8), |
| } ISSInfo; |
| |
| /* |
| * Store var into env + offset to a member with size bytes. |
| * Free var after use. |
| */ |
| void store_cpu_offset(TCGv_i32 var, int offset, int size) |
| { |
| switch (size) { |
| case 1: |
| tcg_gen_st8_i32(var, tcg_env, offset); |
| break; |
| case 4: |
| tcg_gen_st_i32(var, tcg_env, offset); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Save the syndrome information for a Data Abort */ |
| static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo) |
| { |
| uint32_t syn; |
| int sas = memop & MO_SIZE; |
| bool sse = memop & MO_SIGN; |
| bool is_acqrel = issinfo & ISSIsAcqRel; |
| bool is_write = issinfo & ISSIsWrite; |
| bool is_16bit = issinfo & ISSIs16Bit; |
| int srt = issinfo & ISSRegMask; |
| |
| if (issinfo & ISSInvalid) { |
| /* Some callsites want to conditionally provide ISS info, |
| * eg "only if this was not a writeback" |
| */ |
| return; |
| } |
| |
| if (srt == 15) { |
| /* For AArch32, insns where the src/dest is R15 never generate |
| * ISS information. Catching that here saves checking at all |
| * the call sites. |
| */ |
| return; |
| } |
| |
| syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel, |
| 0, 0, 0, is_write, 0, is_16bit); |
| disas_set_insn_syndrome(s, syn); |
| } |
| |
| static inline int get_a32_user_mem_index(DisasContext *s) |
| { |
| /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store" |
| * insns: |
| * if PL2, UNPREDICTABLE (we choose to implement as if PL0) |
| * otherwise, access as if at PL0. |
| */ |
| switch (s->mmu_idx) { |
| case ARMMMUIdx_E3: |
| case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */ |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| return arm_to_core_mmu_idx(ARMMMUIdx_E10_0); |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MPriv: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MUser); |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPrivNegPri: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri); |
| case ARMMMUIdx_MSUser: |
| case ARMMMUIdx_MSPriv: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MSUser); |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPrivNegPri: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* The pc_curr difference for an architectural jump. */ |
| static target_long jmp_diff(DisasContext *s, target_long diff) |
| { |
| return diff + (s->thumb ? 4 : 8); |
| } |
| |
| static void gen_pc_plus_diff(DisasContext *s, TCGv_i32 var, target_long diff) |
| { |
| assert(s->pc_save != -1); |
| if (tb_cflags(s->base.tb) & CF_PCREL) { |
| tcg_gen_addi_i32(var, cpu_R[15], (s->pc_curr - s->pc_save) + diff); |
| } else { |
| tcg_gen_movi_i32(var, s->pc_curr + diff); |
| } |
| } |
| |
| /* Set a variable to the value of a CPU register. */ |
| void load_reg_var(DisasContext *s, TCGv_i32 var, int reg) |
| { |
| if (reg == 15) { |
| gen_pc_plus_diff(s, var, jmp_diff(s, 0)); |
| } else { |
| tcg_gen_mov_i32(var, cpu_R[reg]); |
| } |
| } |
| |
| /* |
| * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4). |
| * This is used for load/store for which use of PC implies (literal), |
| * or ADD that implies ADR. |
| */ |
| TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| if (reg == 15) { |
| /* |
| * This address is computed from an aligned PC: |
| * subtract off the low bits. |
| */ |
| gen_pc_plus_diff(s, tmp, jmp_diff(s, ofs - (s->pc_curr & 3))); |
| } else { |
| tcg_gen_addi_i32(tmp, cpu_R[reg], ofs); |
| } |
| return tmp; |
| } |
| |
| /* Set a CPU register. The source must be a temporary and will be |
| marked as dead. */ |
| void store_reg(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15) { |
| /* In Thumb mode, we must ignore bit 0. |
| * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0] |
| * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0]. |
| * We choose to ignore [1:0] in ARM mode for all architecture versions. |
| */ |
| tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3); |
| s->base.is_jmp = DISAS_JUMP; |
| s->pc_save = -1; |
| } else if (reg == 13 && arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* For M-profile SP bits [1:0] are always zero */ |
| tcg_gen_andi_i32(var, var, ~3); |
| } |
| tcg_gen_mov_i32(cpu_R[reg], var); |
| } |
| |
| /* |
| * Variant of store_reg which applies v8M stack-limit checks before updating |
| * SP. If the check fails this will result in an exception being taken. |
| * We disable the stack checks for CONFIG_USER_ONLY because we have |
| * no idea what the stack limits should be in that case. |
| * If stack checking is not being done this just acts like store_reg(). |
| */ |
| static void store_sp_checked(DisasContext *s, TCGv_i32 var) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (s->v8m_stackcheck) { |
| gen_helper_v8m_stackcheck(tcg_env, var); |
| } |
| #endif |
| store_reg(s, 13, var); |
| } |
| |
| /* Value extensions. */ |
| #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) |
| #define gen_uxth(var) tcg_gen_ext16u_i32(var, var) |
| #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) |
| #define gen_sxth(var) tcg_gen_ext16s_i32(var, var) |
| |
| #define gen_sxtb16(var) gen_helper_sxtb16(var, var) |
| #define gen_uxtb16(var) gen_helper_uxtb16(var, var) |
| |
| void gen_set_cpsr(TCGv_i32 var, uint32_t mask) |
| { |
| gen_helper_cpsr_write(tcg_env, var, tcg_constant_i32(mask)); |
| } |
| |
| static void gen_rebuild_hflags(DisasContext *s, bool new_el) |
| { |
| bool m_profile = arm_dc_feature(s, ARM_FEATURE_M); |
| |
| if (new_el) { |
| if (m_profile) { |
| gen_helper_rebuild_hflags_m32_newel(tcg_env); |
| } else { |
| gen_helper_rebuild_hflags_a32_newel(tcg_env); |
| } |
| } else { |
| TCGv_i32 tcg_el = tcg_constant_i32(s->current_el); |
| if (m_profile) { |
| gen_helper_rebuild_hflags_m32(tcg_env, tcg_el); |
| } else { |
| gen_helper_rebuild_hflags_a32(tcg_env, tcg_el); |
| } |
| } |
| } |
| |
| static void gen_exception_internal(int excp) |
| { |
| assert(excp_is_internal(excp)); |
| gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); |
| } |
| |
| static void gen_singlestep_exception(DisasContext *s) |
| { |
| /* We just completed step of an insn. Move from Active-not-pending |
| * to Active-pending, and then also take the swstep exception. |
| * This corresponds to making the (IMPDEF) choice to prioritize |
| * swstep exceptions over asynchronous exceptions taken to an exception |
| * level where debug is disabled. This choice has the advantage that |
| * we do not need to maintain internal state corresponding to the |
| * ISV/EX syndrome bits between completion of the step and generation |
| * of the exception, and our syndrome information is always correct. |
| */ |
| gen_ss_advance(s); |
| gen_swstep_exception(s, 1, s->is_ldex); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| void clear_eci_state(DisasContext *s) |
| { |
| /* |
| * Clear any ECI/ICI state: used when a load multiple/store |
| * multiple insn executes. |
| */ |
| if (s->eci) { |
| store_cpu_field_constant(0, condexec_bits); |
| s->eci = 0; |
| } |
| } |
| |
| static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 tmp1 = tcg_temp_new_i32(); |
| TCGv_i32 tmp2 = tcg_temp_new_i32(); |
| tcg_gen_ext16s_i32(tmp1, a); |
| tcg_gen_ext16s_i32(tmp2, b); |
| tcg_gen_mul_i32(tmp1, tmp1, tmp2); |
| tcg_gen_sari_i32(a, a, 16); |
| tcg_gen_sari_i32(b, b, 16); |
| tcg_gen_mul_i32(b, b, a); |
| tcg_gen_mov_i32(a, tmp1); |
| } |
| |
| /* Byteswap each halfword. */ |
| void gen_rev16(TCGv_i32 dest, TCGv_i32 var) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 mask = tcg_constant_i32(0x00ff00ff); |
| tcg_gen_shri_i32(tmp, var, 8); |
| tcg_gen_and_i32(tmp, tmp, mask); |
| tcg_gen_and_i32(var, var, mask); |
| tcg_gen_shli_i32(var, var, 8); |
| tcg_gen_or_i32(dest, var, tmp); |
| } |
| |
| /* Byteswap low halfword and sign extend. */ |
| static void gen_revsh(TCGv_i32 dest, TCGv_i32 var) |
| { |
| tcg_gen_bswap16_i32(var, var, TCG_BSWAP_OS); |
| } |
| |
| /* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. |
| tmp = (t0 ^ t1) & 0x8000; |
| t0 &= ~0x8000; |
| t1 &= ~0x8000; |
| t0 = (t0 + t1) ^ tmp; |
| */ |
| |
| static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andi_i32(tmp, tmp, 0x8000); |
| tcg_gen_andi_i32(t0, t0, ~0x8000); |
| tcg_gen_andi_i32(t1, t1, ~0x8000); |
| tcg_gen_add_i32(t0, t0, t1); |
| tcg_gen_xor_i32(dest, t0, tmp); |
| } |
| |
| /* Set N and Z flags from var. */ |
| static inline void gen_logic_CC(TCGv_i32 var) |
| { |
| tcg_gen_mov_i32(cpu_NF, var); |
| tcg_gen_mov_i32(cpu_ZF, var); |
| } |
| |
| /* dest = T0 + T1 + CF. */ |
| static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| tcg_gen_add_i32(dest, t0, t1); |
| tcg_gen_add_i32(dest, dest, cpu_CF); |
| } |
| |
| /* dest = T0 - T1 + CF - 1. */ |
| static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| tcg_gen_sub_i32(dest, t0, t1); |
| tcg_gen_add_i32(dest, dest, cpu_CF); |
| tcg_gen_subi_i32(dest, dest, 1); |
| } |
| |
| /* dest = T0 + T1. Compute C, N, V and Z flags */ |
| static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */ |
| static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| if (TCG_TARGET_HAS_add2_i32) { |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp); |
| } else { |
| TCGv_i64 q0 = tcg_temp_new_i64(); |
| TCGv_i64 q1 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(q0, t0); |
| tcg_gen_extu_i32_i64(q1, t1); |
| tcg_gen_add_i64(q0, q0, q1); |
| tcg_gen_extu_i32_i64(q1, cpu_CF); |
| tcg_gen_add_i64(q0, q0, q1); |
| tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0); |
| } |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 - T1. Compute C, N, V and Z flags */ |
| static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp; |
| tcg_gen_sub_i32(cpu_NF, t0, t1); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */ |
| static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_not_i32(tmp, t1); |
| gen_adc_CC(dest, t0, tmp); |
| } |
| |
| #define GEN_SHIFT(name) \ |
| static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \ |
| { \ |
| TCGv_i32 tmpd = tcg_temp_new_i32(); \ |
| TCGv_i32 tmp1 = tcg_temp_new_i32(); \ |
| TCGv_i32 zero = tcg_constant_i32(0); \ |
| tcg_gen_andi_i32(tmp1, t1, 0x1f); \ |
| tcg_gen_##name##_i32(tmpd, t0, tmp1); \ |
| tcg_gen_andi_i32(tmp1, t1, 0xe0); \ |
| tcg_gen_movcond_i32(TCG_COND_NE, dest, tmp1, zero, zero, tmpd); \ |
| } |
| GEN_SHIFT(shl) |
| GEN_SHIFT(shr) |
| #undef GEN_SHIFT |
| |
| static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp1 = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(tmp1, t1, 0xff); |
| tcg_gen_umin_i32(tmp1, tmp1, tcg_constant_i32(31)); |
| tcg_gen_sar_i32(dest, t0, tmp1); |
| } |
| |
| static void shifter_out_im(TCGv_i32 var, int shift) |
| { |
| tcg_gen_extract_i32(cpu_CF, var, shift, 1); |
| } |
| |
| /* Shift by immediate. Includes special handling for shift == 0. */ |
| static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop, |
| int shift, int flags) |
| { |
| switch (shiftop) { |
| case 0: /* LSL */ |
| if (shift != 0) { |
| if (flags) |
| shifter_out_im(var, 32 - shift); |
| tcg_gen_shli_i32(var, var, shift); |
| } |
| break; |
| case 1: /* LSR */ |
| if (shift == 0) { |
| if (flags) { |
| tcg_gen_shri_i32(cpu_CF, var, 31); |
| } |
| tcg_gen_movi_i32(var, 0); |
| } else { |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| tcg_gen_shri_i32(var, var, shift); |
| } |
| break; |
| case 2: /* ASR */ |
| if (shift == 0) |
| shift = 32; |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| if (shift == 32) |
| shift = 31; |
| tcg_gen_sari_i32(var, var, shift); |
| break; |
| case 3: /* ROR/RRX */ |
| if (shift != 0) { |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| tcg_gen_rotri_i32(var, var, shift); break; |
| } else { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_shli_i32(tmp, cpu_CF, 31); |
| if (flags) |
| shifter_out_im(var, 0); |
| tcg_gen_shri_i32(var, var, 1); |
| tcg_gen_or_i32(var, var, tmp); |
| } |
| } |
| }; |
| |
| static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop, |
| TCGv_i32 shift, int flags) |
| { |
| if (flags) { |
| switch (shiftop) { |
| case 0: gen_helper_shl_cc(var, tcg_env, var, shift); break; |
| case 1: gen_helper_shr_cc(var, tcg_env, var, shift); break; |
| case 2: gen_helper_sar_cc(var, tcg_env, var, shift); break; |
| case 3: gen_helper_ror_cc(var, tcg_env, var, shift); break; |
| } |
| } else { |
| switch (shiftop) { |
| case 0: |
| gen_shl(var, var, shift); |
| break; |
| case 1: |
| gen_shr(var, var, shift); |
| break; |
| case 2: |
| gen_sar(var, var, shift); |
| break; |
| case 3: tcg_gen_andi_i32(shift, shift, 0x1f); |
| tcg_gen_rotr_i32(var, var, shift); break; |
| } |
| } |
| } |
| |
| /* |
| * Generate a conditional based on ARM condition code cc. |
| * This is common between ARM and Aarch64 targets. |
| */ |
| void arm_test_cc(DisasCompare *cmp, int cc) |
| { |
| TCGv_i32 value; |
| TCGCond cond; |
| |
| switch (cc) { |
| case 0: /* eq: Z */ |
| case 1: /* ne: !Z */ |
| cond = TCG_COND_EQ; |
| value = cpu_ZF; |
| break; |
| |
| case 2: /* cs: C */ |
| case 3: /* cc: !C */ |
| cond = TCG_COND_NE; |
| value = cpu_CF; |
| break; |
| |
| case 4: /* mi: N */ |
| case 5: /* pl: !N */ |
| cond = TCG_COND_LT; |
| value = cpu_NF; |
| break; |
| |
| case 6: /* vs: V */ |
| case 7: /* vc: !V */ |
| cond = TCG_COND_LT; |
| value = cpu_VF; |
| break; |
| |
| case 8: /* hi: C && !Z */ |
| case 9: /* ls: !C || Z -> !(C && !Z) */ |
| cond = TCG_COND_NE; |
| value = tcg_temp_new_i32(); |
| /* CF is 1 for C, so -CF is an all-bits-set mask for C; |
| ZF is non-zero for !Z; so AND the two subexpressions. */ |
| tcg_gen_neg_i32(value, cpu_CF); |
| tcg_gen_and_i32(value, value, cpu_ZF); |
| break; |
| |
| case 10: /* ge: N == V -> N ^ V == 0 */ |
| case 11: /* lt: N != V -> N ^ V != 0 */ |
| /* Since we're only interested in the sign bit, == 0 is >= 0. */ |
| cond = TCG_COND_GE; |
| value = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(value, cpu_VF, cpu_NF); |
| break; |
| |
| case 12: /* gt: !Z && N == V */ |
| case 13: /* le: Z || N != V */ |
| cond = TCG_COND_NE; |
| value = tcg_temp_new_i32(); |
| /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate |
| * the sign bit then AND with ZF to yield the result. */ |
| tcg_gen_xor_i32(value, cpu_VF, cpu_NF); |
| tcg_gen_sari_i32(value, value, 31); |
| tcg_gen_andc_i32(value, cpu_ZF, value); |
| break; |
| |
| case 14: /* always */ |
| case 15: /* always */ |
| /* Use the ALWAYS condition, which will fold early. |
| * It doesn't matter what we use for the value. */ |
| cond = TCG_COND_ALWAYS; |
| value = cpu_ZF; |
| goto no_invert; |
| |
| default: |
| fprintf(stderr, "Bad condition code 0x%x\n", cc); |
| abort(); |
| } |
| |
| if (cc & 1) { |
| cond = tcg_invert_cond(cond); |
| } |
| |
| no_invert: |
| cmp->cond = cond; |
| cmp->value = value; |
| } |
| |
| void arm_jump_cc(DisasCompare *cmp, TCGLabel *label) |
| { |
| tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label); |
| } |
| |
| void arm_gen_test_cc(int cc, TCGLabel *label) |
| { |
| DisasCompare cmp; |
| arm_test_cc(&cmp, cc); |
| arm_jump_cc(&cmp, label); |
| } |
| |
| void gen_set_condexec(DisasContext *s) |
| { |
| if (s->condexec_mask) { |
| uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); |
| |
| store_cpu_field_constant(val, condexec_bits); |
| } |
| } |
| |
| void gen_update_pc(DisasContext *s, target_long diff) |
| { |
| gen_pc_plus_diff(s, cpu_R[15], diff); |
| s->pc_save = s->pc_curr + diff; |
| } |
| |
| /* Set PC and Thumb state from var. var is marked as dead. */ |
| static inline void gen_bx(DisasContext *s, TCGv_i32 var) |
| { |
| s->base.is_jmp = DISAS_JUMP; |
| tcg_gen_andi_i32(cpu_R[15], var, ~1); |
| tcg_gen_andi_i32(var, var, 1); |
| store_cpu_field(var, thumb); |
| s->pc_save = -1; |
| } |
| |
| /* |
| * Set PC and Thumb state from var. var is marked as dead. |
| * For M-profile CPUs, include logic to detect exception-return |
| * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC, |
| * and BX reg, and no others, and happens only for code in Handler mode. |
| * The Security Extension also requires us to check for the FNC_RETURN |
| * which signals a function return from non-secure state; this can happen |
| * in both Handler and Thread mode. |
| * To avoid having to do multiple comparisons in inline generated code, |
| * we make the check we do here loose, so it will match for EXC_RETURN |
| * in Thread mode. For system emulation do_v7m_exception_exit() checks |
| * for these spurious cases and returns without doing anything (giving |
| * the same behaviour as for a branch to a non-magic address). |
| * |
| * In linux-user mode it is unclear what the right behaviour for an |
| * attempted FNC_RETURN should be, because in real hardware this will go |
| * directly to Secure code (ie not the Linux kernel) which will then treat |
| * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN |
| * attempt behave the way it would on a CPU without the security extension, |
| * which is to say "like a normal branch". That means we can simply treat |
| * all branches as normal with no magic address behaviour. |
| */ |
| static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var) |
| { |
| /* Generate the same code here as for a simple bx, but flag via |
| * s->base.is_jmp that we need to do the rest of the work later. |
| */ |
| gen_bx(s, var); |
| #ifndef CONFIG_USER_ONLY |
| if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) || |
| (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) { |
| s->base.is_jmp = DISAS_BX_EXCRET; |
| } |
| #endif |
| } |
| |
| static inline void gen_bx_excret_final_code(DisasContext *s) |
| { |
| /* Generate the code to finish possible exception return and end the TB */ |
| DisasLabel excret_label = gen_disas_label(s); |
| uint32_t min_magic; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) { |
| /* Covers FNC_RETURN and EXC_RETURN magic */ |
| min_magic = FNC_RETURN_MIN_MAGIC; |
| } else { |
| /* EXC_RETURN magic only */ |
| min_magic = EXC_RETURN_MIN_MAGIC; |
| } |
| |
| /* Is the new PC value in the magic range indicating exception return? */ |
| tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label.label); |
| /* No: end the TB as we would for a DISAS_JMP */ |
| if (s->ss_active) { |
| gen_singlestep_exception(s); |
| } else { |
| tcg_gen_exit_tb(NULL, 0); |
| } |
| set_disas_label(s, excret_label); |
| /* Yes: this is an exception return. |
| * At this point in runtime env->regs[15] and env->thumb will hold |
| * the exception-return magic number, which do_v7m_exception_exit() |
| * will read. Nothing else will be able to see those values because |
| * the cpu-exec main loop guarantees that we will always go straight |
| * from raising the exception to the exception-handling code. |
| * |
| * gen_ss_advance(s) does nothing on M profile currently but |
| * calling it is conceptually the right thing as we have executed |
| * this instruction (compare SWI, HVC, SMC handling). |
| */ |
| gen_ss_advance(s); |
| gen_exception_internal(EXCP_EXCEPTION_EXIT); |
| } |
| |
| static inline void gen_bxns(DisasContext *s, int rm) |
| { |
| TCGv_i32 var = load_reg(s, rm); |
| |
| /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory |
| * we need to sync state before calling it, but: |
| * - we don't need to do gen_update_pc() because the bxns helper will |
| * always set the PC itself |
| * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE |
| * unless it's outside an IT block or the last insn in an IT block, |
| * so we know that condexec == 0 (already set at the top of the TB) |
| * is correct in the non-UNPREDICTABLE cases, and we can choose |
| * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise. |
| */ |
| gen_helper_v7m_bxns(tcg_env, var); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| static inline void gen_blxns(DisasContext *s, int rm) |
| { |
| TCGv_i32 var = load_reg(s, rm); |
| |
| /* We don't need to sync condexec state, for the same reason as bxns. |
| * We do however need to set the PC, because the blxns helper reads it. |
| * The blxns helper may throw an exception. |
| */ |
| gen_update_pc(s, curr_insn_len(s)); |
| gen_helper_v7m_blxns(tcg_env, var); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| /* Variant of store_reg which uses branch&exchange logic when storing |
| to r15 in ARM architecture v7 and above. The source must be a temporary |
| and will be marked as dead. */ |
| static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15 && ENABLE_ARCH_7) { |
| gen_bx(s, var); |
| } else { |
| store_reg(s, reg, var); |
| } |
| } |
| |
| /* Variant of store_reg which uses branch&exchange logic when storing |
| * to r15 in ARM architecture v5T and above. This is used for storing |
| * the results of a LDR/LDM/POP into r15, and corresponds to the cases |
| * in the ARM ARM which use the LoadWritePC() pseudocode function. */ |
| static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15 && ENABLE_ARCH_5) { |
| gen_bx_excret(s, var); |
| } else { |
| store_reg(s, reg, var); |
| } |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| #define IS_USER_ONLY 1 |
| #else |
| #define IS_USER_ONLY 0 |
| #endif |
| |
| MemOp pow2_align(unsigned i) |
| { |
| static const MemOp mop_align[] = { |
| 0, MO_ALIGN_2, MO_ALIGN_4, MO_ALIGN_8, MO_ALIGN_16, MO_ALIGN_32 |
| }; |
| g_assert(i < ARRAY_SIZE(mop_align)); |
| return mop_align[i]; |
| } |
| |
| /* |
| * Abstractions of "generate code to do a guest load/store for |
| * AArch32", where a vaddr is always 32 bits (and is zero |
| * extended if we're a 64 bit core) and data is also |
| * 32 bits unless specifically doing a 64 bit access. |
| * These functions work like tcg_gen_qemu_{ld,st}* except |
| * that the address argument is TCGv_i32 rather than TCGv. |
| */ |
| |
| static TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op) |
| { |
| TCGv addr = tcg_temp_new(); |
| tcg_gen_extu_i32_tl(addr, a32); |
| |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) { |
| tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE))); |
| } |
| return addr; |
| } |
| |
| /* |
| * Internal routines are used for NEON cases where the endianness |
| * and/or alignment has already been taken into account and manipulated. |
| */ |
| void gen_aa32_ld_internal_i32(DisasContext *s, TCGv_i32 val, |
| TCGv_i32 a32, int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| tcg_gen_qemu_ld_i32(val, addr, index, opc); |
| } |
| |
| void gen_aa32_st_internal_i32(DisasContext *s, TCGv_i32 val, |
| TCGv_i32 a32, int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| tcg_gen_qemu_st_i32(val, addr, index, opc); |
| } |
| |
| void gen_aa32_ld_internal_i64(DisasContext *s, TCGv_i64 val, |
| TCGv_i32 a32, int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| |
| tcg_gen_qemu_ld_i64(val, addr, index, opc); |
| |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { |
| tcg_gen_rotri_i64(val, val, 32); |
| } |
| } |
| |
| void gen_aa32_st_internal_i64(DisasContext *s, TCGv_i64 val, |
| TCGv_i32 a32, int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_rotri_i64(tmp, val, 32); |
| tcg_gen_qemu_st_i64(tmp, addr, index, opc); |
| } else { |
| tcg_gen_qemu_st_i64(val, addr, index, opc); |
| } |
| } |
| |
| void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| gen_aa32_ld_internal_i32(s, val, a32, index, finalize_memop(s, opc)); |
| } |
| |
| void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| gen_aa32_st_internal_i32(s, val, a32, index, finalize_memop(s, opc)); |
| } |
| |
| void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| gen_aa32_ld_internal_i64(s, val, a32, index, finalize_memop(s, opc)); |
| } |
| |
| void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| gen_aa32_st_internal_i64(s, val, a32, index, finalize_memop(s, opc)); |
| } |
| |
| #define DO_GEN_LD(SUFF, OPC) \ |
| static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \ |
| TCGv_i32 a32, int index) \ |
| { \ |
| gen_aa32_ld_i32(s, val, a32, index, OPC); \ |
| } |
| |
| #define DO_GEN_ST(SUFF, OPC) \ |
| static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \ |
| TCGv_i32 a32, int index) \ |
| { \ |
| gen_aa32_st_i32(s, val, a32, index, OPC); \ |
| } |
| |
| static inline void gen_hvc(DisasContext *s, int imm16) |
| { |
| /* The pre HVC helper handles cases when HVC gets trapped |
| * as an undefined insn by runtime configuration (ie before |
| * the insn really executes). |
| */ |
| gen_update_pc(s, 0); |
| gen_helper_pre_hvc(tcg_env); |
| /* Otherwise we will treat this as a real exception which |
| * happens after execution of the insn. (The distinction matters |
| * for the PC value reported to the exception handler and also |
| * for single stepping.) |
| */ |
| s->svc_imm = imm16; |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_HVC; |
| } |
| |
| static inline void gen_smc(DisasContext *s) |
| { |
| /* As with HVC, we may take an exception either before or after |
| * the insn executes. |
| */ |
| gen_update_pc(s, 0); |
| gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa32_smc())); |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_SMC; |
| } |
| |
| static void gen_exception_internal_insn(DisasContext *s, int excp) |
| { |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| gen_exception_internal(excp); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_el_v(int excp, uint32_t syndrome, TCGv_i32 tcg_el) |
| { |
| gen_helper_exception_with_syndrome_el(tcg_env, tcg_constant_i32(excp), |
| tcg_constant_i32(syndrome), tcg_el); |
| } |
| |
| static void gen_exception_el(int excp, uint32_t syndrome, uint32_t target_el) |
| { |
| gen_exception_el_v(excp, syndrome, tcg_constant_i32(target_el)); |
| } |
| |
| static void gen_exception(int excp, uint32_t syndrome) |
| { |
| gen_helper_exception_with_syndrome(tcg_env, tcg_constant_i32(excp), |
| tcg_constant_i32(syndrome)); |
| } |
| |
| static void gen_exception_insn_el_v(DisasContext *s, target_long pc_diff, |
| int excp, uint32_t syn, TCGv_i32 tcg_el) |
| { |
| if (s->aarch64) { |
| gen_a64_update_pc(s, pc_diff); |
| } else { |
| gen_set_condexec(s); |
| gen_update_pc(s, pc_diff); |
| } |
| gen_exception_el_v(excp, syn, tcg_el); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, |
| uint32_t syn, uint32_t target_el) |
| { |
| gen_exception_insn_el_v(s, pc_diff, excp, syn, |
| tcg_constant_i32(target_el)); |
| } |
| |
| void gen_exception_insn(DisasContext *s, target_long pc_diff, |
| int excp, uint32_t syn) |
| { |
| if (s->aarch64) { |
| gen_a64_update_pc(s, pc_diff); |
| } else { |
| gen_set_condexec(s); |
| gen_update_pc(s, pc_diff); |
| } |
| gen_exception(excp, syn); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn) |
| { |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syn)); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| void unallocated_encoding(DisasContext *s) |
| { |
| /* Unallocated and reserved encodings are uncategorized */ |
| gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); |
| } |
| |
| /* Force a TB lookup after an instruction that changes the CPU state. */ |
| void gen_lookup_tb(DisasContext *s) |
| { |
| gen_pc_plus_diff(s, cpu_R[15], curr_insn_len(s)); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| static inline void gen_hlt(DisasContext *s, int imm) |
| { |
| /* HLT. This has two purposes. |
| * Architecturally, it is an external halting debug instruction. |
| * Since QEMU doesn't implement external debug, we treat this as |
| * it is required for halting debug disabled: it will UNDEF. |
| * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction, |
| * and "HLT 0xF000" is an A32 semihosting syscall. These traps |
| * must trigger semihosting even for ARMv7 and earlier, where |
| * HLT was an undefined encoding. |
| * In system mode, we don't allow userspace access to |
| * semihosting, to provide some semblance of security |
| * (and for consistency with our 32-bit semihosting). |
| */ |
| if (semihosting_enabled(s->current_el == 0) && |
| (imm == (s->thumb ? 0x3c : 0xf000))) { |
| gen_exception_internal_insn(s, EXCP_SEMIHOST); |
| return; |
| } |
| |
| unallocated_encoding(s); |
| } |
| |
| /* |
| * Return the offset of a "full" NEON Dreg. |
| */ |
| long neon_full_reg_offset(unsigned reg) |
| { |
| return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]); |
| } |
| |
| /* |
| * Return the offset of a 2**SIZE piece of a NEON register, at index ELE, |
| * where 0 is the least significant end of the register. |
| */ |
| long neon_element_offset(int reg, int element, MemOp memop) |
| { |
| int element_size = 1 << (memop & MO_SIZE); |
| int ofs = element * element_size; |
| #if HOST_BIG_ENDIAN |
| /* |
| * Calculate the offset assuming fully little-endian, |
| * then XOR to account for the order of the 8-byte units. |
| */ |
| if (element_size < 8) { |
| ofs ^= 8 - element_size; |
| } |
| #endif |
| return neon_full_reg_offset(reg) + ofs; |
| } |
| |
| /* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */ |
| long vfp_reg_offset(bool dp, unsigned reg) |
| { |
| if (dp) { |
| return neon_element_offset(reg, 0, MO_64); |
| } else { |
| return neon_element_offset(reg >> 1, reg & 1, MO_32); |
| } |
| } |
| |
| void read_neon_element32(TCGv_i32 dest, int reg, int ele, MemOp memop) |
| { |
| long off = neon_element_offset(reg, ele, memop); |
| |
| switch (memop) { |
| case MO_SB: |
| tcg_gen_ld8s_i32(dest, tcg_env, off); |
| break; |
| case MO_UB: |
| tcg_gen_ld8u_i32(dest, tcg_env, off); |
| break; |
| case MO_SW: |
| tcg_gen_ld16s_i32(dest, tcg_env, off); |
| break; |
| case MO_UW: |
| tcg_gen_ld16u_i32(dest, tcg_env, off); |
| break; |
| case MO_UL: |
| case MO_SL: |
| tcg_gen_ld_i32(dest, tcg_env, off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void read_neon_element64(TCGv_i64 dest, int reg, int ele, MemOp memop) |
| { |
| long off = neon_element_offset(reg, ele, memop); |
| |
| switch (memop) { |
| case MO_SL: |
| tcg_gen_ld32s_i64(dest, tcg_env, off); |
| break; |
| case MO_UL: |
| tcg_gen_ld32u_i64(dest, tcg_env, off); |
| break; |
| case MO_UQ: |
| tcg_gen_ld_i64(dest, tcg_env, off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void write_neon_element32(TCGv_i32 src, int reg, int ele, MemOp memop) |
| { |
| long off = neon_element_offset(reg, ele, memop); |
| |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i32(src, tcg_env, off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i32(src, tcg_env, off); |
| break; |
| case MO_32: |
| tcg_gen_st_i32(src, tcg_env, off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void write_neon_element64(TCGv_i64 src, int reg, int ele, MemOp memop) |
| { |
| long off = neon_element_offset(reg, ele, memop); |
| |
| switch (memop) { |
| case MO_32: |
| tcg_gen_st32_i64(src, tcg_env, off); |
| break; |
| case MO_64: |
| tcg_gen_st_i64(src, tcg_env, off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| #define ARM_CP_RW_BIT (1 << 20) |
| |
| static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) |
| { |
| tcg_gen_ld_i64(var, tcg_env, offsetof(CPUARMState, iwmmxt.regs[reg])); |
| } |
| |
| static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) |
| { |
| tcg_gen_st_i64(var, tcg_env, offsetof(CPUARMState, iwmmxt.regs[reg])); |
| } |
| |
| static inline TCGv_i32 iwmmxt_load_creg(int reg) |
| { |
| TCGv_i32 var = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(var, tcg_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); |
| return var; |
| } |
| |
| static inline void iwmmxt_store_creg(int reg, TCGv_i32 var) |
| { |
| tcg_gen_st_i32(var, tcg_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); |
| } |
| |
| static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) |
| { |
| iwmmxt_store_reg(cpu_M0, rn); |
| } |
| |
| static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_M0, rn); |
| } |
| |
| static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| #define IWMMXT_OP(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ |
| { \ |
| iwmmxt_load_reg(cpu_V1, rn); \ |
| gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ |
| } |
| |
| #define IWMMXT_OP_ENV(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ |
| { \ |
| iwmmxt_load_reg(cpu_V1, rn); \ |
| gen_helper_iwmmxt_##name(cpu_M0, tcg_env, cpu_M0, cpu_V1); \ |
| } |
| |
| #define IWMMXT_OP_ENV_SIZE(name) \ |
| IWMMXT_OP_ENV(name##b) \ |
| IWMMXT_OP_ENV(name##w) \ |
| IWMMXT_OP_ENV(name##l) |
| |
| #define IWMMXT_OP_ENV1(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0(void) \ |
| { \ |
| gen_helper_iwmmxt_##name(cpu_M0, tcg_env, cpu_M0); \ |
| } |
| |
| IWMMXT_OP(maddsq) |
| IWMMXT_OP(madduq) |
| IWMMXT_OP(sadb) |
| IWMMXT_OP(sadw) |
| IWMMXT_OP(mulslw) |
| IWMMXT_OP(mulshw) |
| IWMMXT_OP(mululw) |
| IWMMXT_OP(muluhw) |
| IWMMXT_OP(macsw) |
| IWMMXT_OP(macuw) |
| |
| IWMMXT_OP_ENV_SIZE(unpackl) |
| IWMMXT_OP_ENV_SIZE(unpackh) |
| |
| IWMMXT_OP_ENV1(unpacklub) |
| IWMMXT_OP_ENV1(unpackluw) |
| IWMMXT_OP_ENV1(unpacklul) |
| IWMMXT_OP_ENV1(unpackhub) |
| IWMMXT_OP_ENV1(unpackhuw) |
| IWMMXT_OP_ENV1(unpackhul) |
| IWMMXT_OP_ENV1(unpacklsb) |
| IWMMXT_OP_ENV1(unpacklsw) |
| IWMMXT_OP_ENV1(unpacklsl) |
| IWMMXT_OP_ENV1(unpackhsb) |
| IWMMXT_OP_ENV1(unpackhsw) |
| IWMMXT_OP_ENV1(unpackhsl) |
| |
| IWMMXT_OP_ENV_SIZE(cmpeq) |
| IWMMXT_OP_ENV_SIZE(cmpgtu) |
| IWMMXT_OP_ENV_SIZE(cmpgts) |
| |
| IWMMXT_OP_ENV_SIZE(mins) |
| IWMMXT_OP_ENV_SIZE(minu) |
| IWMMXT_OP_ENV_SIZE(maxs) |
| IWMMXT_OP_ENV_SIZE(maxu) |
| |
| IWMMXT_OP_ENV_SIZE(subn) |
| IWMMXT_OP_ENV_SIZE(addn) |
| IWMMXT_OP_ENV_SIZE(subu) |
| IWMMXT_OP_ENV_SIZE(addu) |
| IWMMXT_OP_ENV_SIZE(subs) |
| IWMMXT_OP_ENV_SIZE(adds) |
| |
| IWMMXT_OP_ENV(avgb0) |
| IWMMXT_OP_ENV(avgb1) |
| IWMMXT_OP_ENV(avgw0) |
| IWMMXT_OP_ENV(avgw1) |
| |
| IWMMXT_OP_ENV(packuw) |
| IWMMXT_OP_ENV(packul) |
| IWMMXT_OP_ENV(packuq) |
| IWMMXT_OP_ENV(packsw) |
| IWMMXT_OP_ENV(packsl) |
| IWMMXT_OP_ENV(packsq) |
| |
| static void gen_op_iwmmxt_set_mup(void) |
| { |
| TCGv_i32 tmp; |
| tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| tcg_gen_ori_i32(tmp, tmp, 2); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| } |
| |
| static void gen_op_iwmmxt_set_cup(void) |
| { |
| TCGv_i32 tmp; |
| tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| tcg_gen_ori_i32(tmp, tmp, 1); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| } |
| |
| static void gen_op_iwmmxt_setpsr_nz(void) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); |
| } |
| |
| static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_ext32u_i64(cpu_V1, cpu_V1); |
| tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, |
| TCGv_i32 dest) |
| { |
| int rd; |
| uint32_t offset; |
| TCGv_i32 tmp; |
| |
| rd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| |
| offset = (insn & 0xff) << ((insn >> 7) & 2); |
| if (insn & (1 << 24)) { |
| /* Pre indexed */ |
| if (insn & (1 << 23)) |
| tcg_gen_addi_i32(tmp, tmp, offset); |
| else |
| tcg_gen_addi_i32(tmp, tmp, -offset); |
| tcg_gen_mov_i32(dest, tmp); |
| if (insn & (1 << 21)) { |
| store_reg(s, rd, tmp); |
| } |
| } else if (insn & (1 << 21)) { |
| /* Post indexed */ |
| tcg_gen_mov_i32(dest, tmp); |
| if (insn & (1 << 23)) |
| tcg_gen_addi_i32(tmp, tmp, offset); |
| else |
| tcg_gen_addi_i32(tmp, tmp, -offset); |
| store_reg(s, rd, tmp); |
| } else if (!(insn & (1 << 23))) |
| return 1; |
| return 0; |
| } |
| |
| static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest) |
| { |
| int rd = (insn >> 0) & 0xf; |
| TCGv_i32 tmp; |
| |
| if (insn & (1 << 8)) { |
| if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { |
| return 1; |
| } else { |
| tmp = iwmmxt_load_creg(rd); |
| } |
| } else { |
| tmp = tcg_temp_new_i32(); |
| iwmmxt_load_reg(cpu_V0, rd); |
| tcg_gen_extrl_i64_i32(tmp, cpu_V0); |
| } |
| tcg_gen_andi_i32(tmp, tmp, mask); |
| tcg_gen_mov_i32(dest, tmp); |
| return 0; |
| } |
| |
| /* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred |
| (ie. an undefined instruction). */ |
| static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn) |
| { |
| int rd, wrd; |
| int rdhi, rdlo, rd0, rd1, i; |
| TCGv_i32 addr; |
| TCGv_i32 tmp, tmp2, tmp3; |
| |
| if ((insn & 0x0e000e00) == 0x0c000000) { |
| if ((insn & 0x0fe00ff0) == 0x0c400000) { |
| wrd = insn & 0xf; |
| rdlo = (insn >> 12) & 0xf; |
| rdhi = (insn >> 16) & 0xf; |
| if (insn & ARM_CP_RW_BIT) { /* TMRRC */ |
| iwmmxt_load_reg(cpu_V0, wrd); |
| tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); |
| tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); |
| } else { /* TMCRR */ |
| tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); |
| iwmmxt_store_reg(cpu_V0, wrd); |
| gen_op_iwmmxt_set_mup(); |
| } |
| return 0; |
| } |
| |
| wrd = (insn >> 12) & 0xf; |
| addr = tcg_temp_new_i32(); |
| if (gen_iwmmxt_address(s, insn, addr)) { |
| return 1; |
| } |
| if (insn & ARM_CP_RW_BIT) { |
| if ((insn >> 28) == 0xf) { /* WLDRW wCx */ |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); |
| iwmmxt_store_creg(wrd, tmp); |
| } else { |
| i = 1; |
| if (insn & (1 << 8)) { |
| if (insn & (1 << 22)) { /* WLDRD */ |
| gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s)); |
| i = 0; |
| } else { /* WLDRW wRd */ |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); |
| } |
| } else { |
| tmp = tcg_temp_new_i32(); |
| if (insn & (1 << 22)) { /* WLDRH */ |
| gen_aa32_ld16u(s, tmp, addr, get_mem_index(s)); |
| } else { /* WLDRB */ |
| gen_aa32_ld8u(s, tmp, addr, get_mem_index(s)); |
| } |
| } |
| if (i) { |
| tcg_gen_extu_i32_i64(cpu_M0, tmp); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| } |
| } else { |
| if ((insn >> 28) == 0xf) { /* WSTRW wCx */ |
| tmp = iwmmxt_load_creg(wrd); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| } else { |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = tcg_temp_new_i32(); |
| if (insn & (1 << 8)) { |
| if (insn & (1 << 22)) { /* WSTRD */ |
| gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s)); |
| } else { /* WSTRW wRd */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| } |
| } else { |
| if (insn & (1 << 22)) { /* WSTRH */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st16(s, tmp, addr, get_mem_index(s)); |
| } else { /* WSTRB */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st8(s, tmp, addr, get_mem_index(s)); |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| if ((insn & 0x0f000000) != 0x0e000000) |
| return 1; |
| |
| switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { |
| case 0x000: /* WOR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_orq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x011: /* TMCR */ |
| if (insn & 0xf) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| switch (wrd) { |
| case ARM_IWMMXT_wCID: |
| case ARM_IWMMXT_wCASF: |
| break; |
| case ARM_IWMMXT_wCon: |
| gen_op_iwmmxt_set_cup(); |
| /* Fall through. */ |
| case ARM_IWMMXT_wCSSF: |
| tmp = iwmmxt_load_creg(wrd); |
| tmp2 = load_reg(s, rd); |
| tcg_gen_andc_i32(tmp, tmp, tmp2); |
| iwmmxt_store_creg(wrd, tmp); |
| break; |
| case ARM_IWMMXT_wCGR0: |
| case ARM_IWMMXT_wCGR1: |
| case ARM_IWMMXT_wCGR2: |
| case ARM_IWMMXT_wCGR3: |
| gen_op_iwmmxt_set_cup(); |
| tmp = load_reg(s, rd); |
| iwmmxt_store_creg(wrd, tmp); |
| break; |
| default: |
| return 1; |
| } |
| break; |
| case 0x100: /* WXOR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_xorq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x111: /* TMRC */ |
| if (insn & 0xf) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = iwmmxt_load_creg(wrd); |
| store_reg(s, rd, tmp); |
| break; |
| case 0x300: /* WANDN */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tcg_gen_neg_i64(cpu_M0, cpu_M0); |
| gen_op_iwmmxt_andq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x200: /* WAND */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_andq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x810: case 0xa10: /* WMADD */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maddsq_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_madduq_M0_wRn(rd1); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_unpacklb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_unpacklw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_unpackll_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_unpackhb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_unpackhw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_unpackhl_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 22)) |
| gen_op_iwmmxt_sadw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_sadb_M0_wRn(rd1); |
| if (!(insn & (1 << 20))) |
| gen_op_iwmmxt_addl_M0_wRn(wrd); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_mulshw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_mulslw_M0_wRn(rd1); |
| } else { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_muluhw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_mululw_M0_wRn(rd1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_macsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_macuw_M0_wRn(rd1); |
| if (!(insn & (1 << 20))) { |
| iwmmxt_load_reg(cpu_V1, wrd); |
| tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_cmpeql_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 22)) { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_avgw1_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_avgw0_M0_wRn(rd1); |
| } else { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_avgb1_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_avgb0_M0_wRn(rd1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); |
| tcg_gen_andi_i32(tmp, tmp, 7); |
| iwmmxt_load_reg(cpu_V1, rd1); |
| gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */ |
| if (((insn >> 6) & 3) == 3) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| switch ((insn >> 6) & 3) { |
| case 0: |
| tmp2 = tcg_constant_i32(0xff); |
| tmp3 = tcg_constant_i32((insn & 7) << 3); |
| break; |
| case 1: |
| tmp2 = tcg_constant_i32(0xffff); |
| tmp3 = tcg_constant_i32((insn & 3) << 4); |
| break; |
| case 2: |
| tmp2 = tcg_constant_i32(0xffffffff); |
| tmp3 = tcg_constant_i32((insn & 1) << 5); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */ |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| if (rd == 15 || ((insn >> 22) & 3) == 3) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| if (insn & 8) { |
| tcg_gen_ext8s_i32(tmp, tmp); |
| } else { |
| tcg_gen_andi_i32(tmp, tmp, 0xff); |
| } |
| break; |
| case 1: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| if (insn & 8) { |
| tcg_gen_ext16s_i32(tmp, tmp); |
| } else { |
| tcg_gen_andi_i32(tmp, tmp, 0xffff); |
| } |
| break; |
| case 2: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| break; |
| } |
| store_reg(s, rd, tmp); |
| break; |
| case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */ |
| if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); |
| break; |
| case 1: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); |
| break; |
| case 2: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); |
| break; |
| } |
| tcg_gen_shli_i32(tmp, tmp, 28); |
| gen_set_nzcv(tmp); |
| break; |
| case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */ |
| if (((insn >> 6) & 3) == 3) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| switch ((insn >> 6) & 3) { |
| case 0: |
| gen_helper_iwmmxt_bcstb(cpu_M0, tmp); |
| break; |
| case 1: |
| gen_helper_iwmmxt_bcstw(cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_bcstl(cpu_M0, tmp); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */ |
| if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| tmp2 = tcg_temp_new_i32(); |
| tcg_gen_mov_i32(tmp2, tmp); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| for (i = 0; i < 7; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 4); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 1: |
| for (i = 0; i < 3; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 8); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 2: |
| tcg_gen_shli_i32(tmp2, tmp2, 16); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| break; |
| } |
| gen_set_nzcv(tmp); |
| break; |
| case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); |
| break; |
| case 1: |
| gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); |
| break; |
| case 2: |
| gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */ |
| if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| tmp2 = tcg_temp_new_i32(); |
| tcg_gen_mov_i32(tmp2, tmp); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| for (i = 0; i < 7; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 4); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 1: |
| for (i = 0; i < 3; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 8); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 2: |
| tcg_gen_shli_i32(tmp2, tmp2, 16); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| break; |
| } |
| gen_set_nzcv(tmp); |
| break; |
| case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */ |
| rd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_helper_iwmmxt_msbb(tmp, cpu_M0); |
| break; |
| case 1: |
| gen_helper_iwmmxt_msbw(tmp, cpu_M0); |
| break; |
| case 2: |
| gen_helper_iwmmxt_msbl(tmp, cpu_M0); |
| break; |
| } |
| store_reg(s, rd, tmp); |
| break; |
| case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */ |
| case 0x906: case 0xb06: case 0xd06: case 0xf06: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */ |
| case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsb_M0(); |
| else |
| gen_op_iwmmxt_unpacklub_M0(); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsw_M0(); |
| else |
| gen_op_iwmmxt_unpackluw_M0(); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsl_M0(); |
| else |
| gen_op_iwmmxt_unpacklul_M0(); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */ |
| case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsb_M0(); |
| else |
| gen_op_iwmmxt_unpackhub_M0(); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsw_M0(); |
| else |
| gen_op_iwmmxt_unpackhuw_M0(); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsl_M0(); |
| else |
| gen_op_iwmmxt_unpackhul_M0(); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */ |
| case 0x214: case 0x614: case 0xa14: case 0xe14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_srlw(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_srll(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_srlq(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */ |
| case 0x014: case 0x414: case 0x814: case 0xc14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_sraw(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_sral(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_sraq(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */ |
| case 0x114: case 0x514: case 0x914: case 0xd14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_sllw(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_slll(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_sllq(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */ |
| case 0x314: case 0x714: case 0xb14: case 0xf14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 1: |
| if (gen_iwmmxt_shift(insn, 0xf, tmp)) { |
| return 1; |
| } |
| gen_helper_iwmmxt_rorw(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 2: |
| if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { |
| return 1; |
| } |
| gen_helper_iwmmxt_rorl(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| case 3: |
| if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { |
| return 1; |
| } |
| gen_helper_iwmmxt_rorq(cpu_M0, tcg_env, cpu_M0, tmp); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */ |
| case 0x916: case 0xb16: case 0xd16: case 0xf16: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */ |
| case 0x816: case 0xa16: case 0xc16: case 0xe16: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */ |
| case 0x402: case 0x502: case 0x602: case 0x702: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| iwmmxt_load_reg(cpu_V1, rd1); |
| gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, |
| tcg_constant_i32((insn >> 20) & 3)); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */ |
| case 0x41a: case 0x51a: case 0x61a: case 0x71a: |
| case 0x81a: case 0x91a: case 0xa1a: case 0xb1a: |
| case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 20) & 0xf) { |
| case 0x0: |
| gen_op_iwmmxt_subnb_M0_wRn(rd1); |
| break; |
| case 0x1: |
| gen_op_iwmmxt_subub_M0_wRn(rd1); |
| break; |
| case 0x3: |
| gen_op_iwmmxt_subsb_M0_wRn(rd1); |
| break; |
| case 0x4: |
| gen_op_iwmmxt_subnw_M0_wRn(rd1); |
| break; |
| case 0x5: |
| gen_op_iwmmxt_subuw_M0_wRn(rd1); |
| break; |
| case 0x7: |
| gen_op_iwmmxt_subsw_M0_wRn(rd1); |
| break; |
| case 0x8: |
| gen_op_iwmmxt_subnl_M0_wRn(rd1); |
| break; |
| case 0x9: |
| gen_op_iwmmxt_subul_M0_wRn(rd1); |
| break; |
| case 0xb: |
| gen_op_iwmmxt_subsl_M0_wRn(rd1); |
| break; |
| default: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */ |
| case 0x41e: case 0x51e: case 0x61e: case 0x71e: |
| case 0x81e: case 0x91e: case 0xa1e: case 0xb1e: |
| case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_constant_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); |
| gen_helper_iwmmxt_shufh(cpu_M0, tcg_env, cpu_M0, tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */ |
| case 0x418: case 0x518: case 0x618: case 0x718: |
| case 0x818: case 0x918: case 0xa18: case 0xb18: |
| case 0xc18: case 0xd18: case 0xe18: case 0xf18: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 20) & 0xf) { |
| case 0x0: |
| gen_op_iwmmxt_addnb_M0_wRn(rd1); |
| break; |
| case 0x1: |
| gen_op_iwmmxt_addub_M0_wRn(rd1); |
| break; |
| case 0x3: |
| gen_op_iwmmxt_addsb_M0_wRn(rd1); |
| break; |
| case 0x4: |
| gen_op_iwmmxt_addnw_M0_wRn(rd1); |
| break; |
| case 0x5: |
| gen_op_iwmmxt_adduw_M0_wRn(rd1); |
| break; |
| case 0x7: |
| gen_op_iwmmxt_addsw_M0_wRn(rd1); |
| break; |
| case 0x8: |
| gen_op_iwmmxt_addnl_M0_wRn(rd1); |
| break; |
| case 0x9: |
| gen_op_iwmmxt_addul_M0_wRn(rd1); |
| break; |
| case 0xb: |
| gen_op_iwmmxt_addsl_M0_wRn(rd1); |
| break; |
| default: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */ |
| case 0x408: case 0x508: case 0x608: case 0x708: |
| case 0x808: case 0x908: case 0xa08: case 0xb08: |
| case 0xc08: case 0xd08: case 0xe08: case 0xf08: |
| if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packul_M0_wRn(rd1); |
| break; |
| case 3: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsq_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packuq_M0_wRn(rd1); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x201: case 0x203: case 0x205: case 0x207: |
| case 0x209: case 0x20b: case 0x20d: case 0x20f: |
| case 0x211: case 0x213: case 0x215: case 0x217: |
| case 0x219: case 0x21b: case 0x21d: case 0x21f: |
| wrd = (insn >> 5) & 0xf; |
| rd0 = (insn >> 12) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| if (rd0 == 0xf || rd1 == 0xf) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = load_reg(s, rd0); |
| tmp2 = load_reg(s, rd1); |
| switch ((insn >> 16) & 0xf) { |
| case 0x0: /* TMIA */ |
| gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0x8: /* TMIAPH */ |
| gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */ |
| if (insn & (1 << 16)) |
| tcg_gen_shri_i32(tmp, tmp, 16); |
| if (insn & (1 << 17)) |
| tcg_gen_shri_i32(tmp2, tmp2, 16); |
| gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| default: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred |
| (ie. an undefined instruction). */ |
| static int disas_dsp_insn(DisasContext *s, uint32_t insn) |
| { |
| int acc, rd0, rd1, rdhi, rdlo; |
| TCGv_i32 tmp, tmp2; |
| |
| if ((insn & 0x0ff00f10) == 0x0e200010) { |
| /* Multiply with Internal Accumulate Format */ |
| rd0 = (insn >> 12) & 0xf; |
| rd1 = insn & 0xf; |
| acc = (insn >> 5) & 7; |
| |
| if (acc != 0) |
| return 1; |
| |
| tmp = load_reg(s, rd0); |
| tmp2 = load_reg(s, rd1); |
| switch ((insn >> 16) & 0xf) { |
| case 0x0: /* MIA */ |
| gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0x8: /* MIAPH */ |
| gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0xc: /* MIABB */ |
| case 0xd: /* MIABT */ |
| case 0xe: /* MIATB */ |
| case 0xf: /* MIATT */ |
| if (insn & (1 << 16)) |
| tcg_gen_shri_i32(tmp, tmp, 16); |
| if (insn & (1 << 17)) |
| tcg_gen_shri_i32(tmp2, tmp2, 16); |
| gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| default: |
| return 1; |
| } |
| |
| gen_op_iwmmxt_movq_wRn_M0(acc); |
| return 0; |
| } |
| |
| if ((insn & 0x0fe00ff8) == 0x0c400000) { |
| /* Internal Accumulator Access Format */ |
| rdhi = (insn >> 16) & 0xf; |
| rdlo = (insn >> 12) & 0xf; |
| acc = insn & 7; |
| |
| if (acc != 0) |
| return 1; |
| |
| if (insn & ARM_CP_RW_BIT) { /* MRA */ |
| iwmmxt_load_reg(cpu_V0, acc); |
| tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); |
| tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); |
| tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); |
| } else { /* MAR */ |
| tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); |
| iwmmxt_store_reg(cpu_V0, acc); |
| } |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void gen_goto_ptr(void) |
| { |
| tcg_gen_lookup_and_goto_ptr(); |
| } |
| |
| /* This will end the TB but doesn't guarantee we'll return to |
| * cpu_loop_exec. Any live exit_requests will be processed as we |
| * enter the next TB. |
| */ |
| static void gen_goto_tb(DisasContext *s, int n, target_long diff) |
| { |
| if (translator_use_goto_tb(&s->base, s->pc_curr + diff)) { |
| /* |
| * For pcrel, the pc must always be up-to-date on entry to |
| * the linked TB, so that it can use simple additions for all |
| * further adjustments. For !pcrel, the linked TB is compiled |
| * to know its full virtual address, so we can delay the |
| * update to pc to the unlinked path. A long chain of links |
| * can thus avoid many updates to the PC. |
| */ |
| if (tb_cflags(s->base.tb) & CF_PCREL) { |
| gen_update_pc(s, diff); |
| tcg_gen_goto_tb(n); |
| } else { |
| tcg_gen_goto_tb(n); |
| gen_update_pc(s, diff); |
| } |
| tcg_gen_exit_tb(s->base.tb, n); |
| } else { |
| gen_update_pc(s, diff); |
| gen_goto_ptr(); |
| } |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| /* Jump, specifying which TB number to use if we gen_goto_tb() */ |
| static void gen_jmp_tb(DisasContext *s, target_long diff, int tbno) |
| { |
| if (unlikely(s->ss_active)) { |
| /* An indirect jump so that we still trigger the debug exception. */ |
| gen_update_pc(s, diff); |
| s->base.is_jmp = DISAS_JUMP; |
| return; |
| } |
| switch (s->base.is_jmp) { |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| case DISAS_NORETURN: |
| /* |
| * The normal case: just go to the destination TB. |
| * NB: NORETURN happens if we generate code like |
| * gen_brcondi(l); |
| * gen_jmp(); |
| * gen_set_label(l); |
| * gen_jmp(); |
| * on the second call to gen_jmp(). |
| */ |
| gen_goto_tb(s, tbno, diff); |
| break; |
| case DISAS_UPDATE_NOCHAIN: |
| case DISAS_UPDATE_EXIT: |
| /* |
| * We already decided we're leaving the TB for some other reason. |
| * Avoid using goto_tb so we really do exit back to the main loop |
| * and don't chain to another TB. |
| */ |
| gen_update_pc(s, diff); |
| gen_goto_ptr(); |
| s->base.is_jmp = DISAS_NORETURN; |
| break; |
| default: |
| /* |
| * We shouldn't be emitting code for a jump and also have |
| * is_jmp set to one of the special cases like DISAS_SWI. |
| */ |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline void gen_jmp(DisasContext *s, target_long diff) |
| { |
| gen_jmp_tb(s, diff, 0); |
| } |
| |
| static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y) |
| { |
| if (x) |
| tcg_gen_sari_i32(t0, t0, 16); |
| else |
| gen_sxth(t0); |
| if (y) |
| tcg_gen_sari_i32(t1, t1, 16); |
| else |
| gen_sxth(t1); |
| tcg_gen_mul_i32(t0, t0, t1); |
| } |
| |
| /* Return the mask of PSR bits set by a MSR instruction. */ |
| static uint32_t msr_mask(DisasContext *s, int flags, int spsr) |
| { |
| uint32_t mask = 0; |
| |
| if (flags & (1 << 0)) { |
| mask |= 0xff; |
| } |
| if (flags & (1 << 1)) { |
| mask |= 0xff00; |
| } |
| if (flags & (1 << 2)) { |
| mask |= 0xff0000; |
| } |
| if (flags & (1 << 3)) { |
| mask |= 0xff000000; |
| } |
| |
| /* Mask out undefined and reserved bits. */ |
| mask &= aarch32_cpsr_valid_mask(s->features, s->isar); |
| |
| /* Mask out execution state. */ |
| if (!spsr) { |
| mask &= ~CPSR_EXEC; |
| } |
| |
| /* Mask out privileged bits. */ |
| if (IS_USER(s)) { |
| mask &= CPSR_USER; |
| } |
| return mask; |
| } |
| |
| /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ |
| static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0) |
| { |
| TCGv_i32 tmp; |
| if (spsr) { |
| /* ??? This is also undefined in system mode. */ |
| if (IS_USER(s)) |
| return 1; |
| |
| tmp = load_cpu_field(spsr); |
| tcg_gen_andi_i32(tmp, tmp, ~mask); |
| tcg_gen_andi_i32(t0, t0, mask); |
| tcg_gen_or_i32(tmp, tmp, t0); |
| store_cpu_field(tmp, spsr); |
| } else { |
| gen_set_cpsr(t0, mask); |
| } |
| gen_lookup_tb(s); |
| return 0; |
| } |
| |
| /* Returns nonzero if access to the PSR is not permitted. */ |
| static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) |
| { |
| TCGv_i32 tmp; |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, val); |
| return gen_set_psr(s, mask, spsr, tmp); |
| } |
| |
| static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn, |
| int *tgtmode, int *regno) |
| { |
| /* Decode the r and sysm fields of MSR/MRS banked accesses into |
| * the target mode and register number, and identify the various |
| * unpredictable cases. |
| * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if: |
| * + executed in user mode |
| * + using R15 as the src/dest register |
| * + accessing an unimplemented register |
| * + accessing a register that's inaccessible at current PL/security state* |
| * + accessing a register that you could access with a different insn |
| * We choose to UNDEF in all these cases. |
| * Since we don't know which of the various AArch32 modes we are in |
| * we have to defer some checks to runtime. |
| * Accesses to Monitor mode registers from Secure EL1 (which implies |
| * that EL3 is AArch64) must trap to EL3. |
| * |
| * If the access checks fail this function will emit code to take |
| * an exception and return false. Otherwise it will return true, |
| * and set *tgtmode and *regno appropriately. |
| */ |
| /* These instructions are present only in ARMv8, or in ARMv7 with the |
| * Virtualization Extensions. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_V8) && |
| !arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| goto undef; |
| } |
| |
| if (IS_USER(s) || rn == 15) { |
| goto undef; |
| } |
| |
| /* The table in the v8 ARM ARM section F5.2.3 describes the encoding |
| * of registers into (r, sysm). |
| */ |
| if (r) { |
| /* SPSRs for other modes */ |
| switch (sysm) { |
| case 0xe: /* SPSR_fiq */ |
| *tgtmode = ARM_CPU_MODE_FIQ; |
| break; |
| case 0x10: /* SPSR_irq */ |
| *tgtmode = ARM_CPU_MODE_IRQ; |
| break; |
| case 0x12: /* SPSR_svc */ |
| *tgtmode = ARM_CPU_MODE_SVC; |
| break; |
| case 0x14: /* SPSR_abt */ |
| *tgtmode = ARM_CPU_MODE_ABT; |
| break; |
| case 0x16: /* SPSR_und */ |
| *tgtmode = ARM_CPU_MODE_UND; |
| break; |
| case 0x1c: /* SPSR_mon */ |
| *tgtmode = ARM_CPU_MODE_MON; |
| break; |
| case 0x1e: /* SPSR_hyp */ |
| *tgtmode = ARM_CPU_MODE_HYP; |
| break; |
| default: /* unallocated */ |
| goto undef; |
| } |
| /* We arbitrarily assign SPSR a register number of 16. */ |
| *regno = 16; |
| } else { |
| /* general purpose registers for other modes */ |
| switch (sysm) { |
| case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */ |
| *tgtmode = ARM_CPU_MODE_USR; |
| *regno = sysm + 8; |
| break; |
| case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */ |
| *tgtmode = ARM_CPU_MODE_FIQ; |
| *regno = sysm; |
| break; |
| case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */ |
| *tgtmode = ARM_CPU_MODE_IRQ; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */ |
| *tgtmode = ARM_CPU_MODE_SVC; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */ |
| *tgtmode = ARM_CPU_MODE_ABT; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */ |
| *tgtmode = ARM_CPU_MODE_UND; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */ |
| *tgtmode = ARM_CPU_MODE_MON; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */ |
| *tgtmode = ARM_CPU_MODE_HYP; |
| /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */ |
| *regno = sysm & 1 ? 13 : 17; |
| break; |
| default: /* unallocated */ |
| goto undef; |
| } |
| } |
| |
| /* Catch the 'accessing inaccessible register' cases we can detect |
| * at translate time. |
| */ |
| switch (*tgtmode) { |
| case ARM_CPU_MODE_MON: |
| if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) { |
| goto undef; |
| } |
| if (s->current_el == 1) { |
| /* If we're in Secure EL1 (which implies that EL3 is AArch64) |
| * then accesses to Mon registers trap to Secure EL2, if it exists, |
| * otherwise EL3. |
| */ |
| TCGv_i32 tcg_el; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_AARCH64) && |
| dc_isar_feature(aa64_sel2, s)) { |
| /* Target EL is EL<3 minus SCR_EL3.EEL2> */ |
| tcg_el = load_cpu_field_low32(cp15.scr_el3); |
| tcg_gen_sextract_i32(tcg_el, tcg_el, ctz32(SCR_EEL2), 1); |
| tcg_gen_addi_i32(tcg_el, tcg_el, 3); |
| } else { |
| tcg_el = tcg_constant_i32(3); |
| } |
| |
| gen_exception_insn_el_v(s, 0, EXCP_UDEF, |
| syn_uncategorized(), tcg_el); |
| return false; |
| } |
| break; |
| case ARM_CPU_MODE_HYP: |
| /* |
| * r13_hyp can only be accessed from Monitor mode, and so we |
| * can forbid accesses from EL2 or below. |
| * elr_hyp can be accessed also from Hyp mode, so forbid |
| * accesses from EL0 or EL1. |
| * SPSR_hyp is supposed to be in the same category as r13_hyp |
| * and UNPREDICTABLE if accessed from anything except Monitor |
| * mode. However there is some real-world code that will do |
| * it because at least some hardware happens to permit the |
| * access. (Notably a standard Cortex-R52 startup code fragment |
| * does this.) So we permit SPSR_hyp from Hyp mode also, to allow |
| * this (incorrect) guest code to run. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 |
| || (s->current_el < 3 && *regno != 16 && *regno != 17)) { |
| goto undef; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| |
| undef: |
| /* If we get here then some access check did not pass */ |
| gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); |
| return false; |
| } |
| |
| static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn) |
| { |
| TCGv_i32 tcg_reg; |
| int tgtmode = 0, regno = 0; |
| |
| if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { |
| return; |
| } |
| |
| /* Sync state because msr_banked() can raise exceptions */ |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| tcg_reg = load_reg(s, rn); |
| gen_helper_msr_banked(tcg_env, tcg_reg, |
| tcg_constant_i32(tgtmode), |
| tcg_constant_i32(regno)); |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| } |
| |
| static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn) |
| { |
| TCGv_i32 tcg_reg; |
| int tgtmode = 0, regno = 0; |
| |
| if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { |
| return; |
| } |
| |
| /* Sync state because mrs_banked() can raise exceptions */ |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| tcg_reg = tcg_temp_new_i32(); |
| gen_helper_mrs_banked(tcg_reg, tcg_env, |
| tcg_constant_i32(tgtmode), |
| tcg_constant_i32(regno)); |
| store_reg(s, rn, tcg_reg); |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| } |
| |
| /* Store value to PC as for an exception return (ie don't |
| * mask bits). The subsequent call to gen_helper_cpsr_write_eret() |
| * will do the masking based on the new value of the Thumb bit. |
| */ |
| static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc) |
| { |
| tcg_gen_mov_i32(cpu_R[15], pc); |
| } |
| |
| /* Generate a v6 exception return. Marks both values as dead. */ |
| static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) |
| { |
| store_pc_exc_ret(s, pc); |
| /* The cpsr_write_eret helper will mask the low bits of PC |
| * appropriately depending on the new Thumb bit, so it must |
| * be called after storing the new PC. |
| */ |
| translator_io_start(&s->base); |
| gen_helper_cpsr_write_eret(tcg_env, cpsr); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| /* Generate an old-style exception return. Marks pc as dead. */ |
| static void gen_exception_return(DisasContext *s, TCGv_i32 pc) |
| { |
| gen_rfe(s, pc, load_cpu_field(spsr)); |
| } |
| |
| static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz, |
| gen_helper_gvec_3_ptr *fn) |
| { |
| TCGv_ptr qc_ptr = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); |
| tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr, |
| opr_sz, max_sz, 0, fn); |
| } |
| |
| void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static gen_helper_gvec_3_ptr * const fns[2] = { |
| gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32 |
| }; |
| tcg_debug_assert(vece >= 1 && vece <= 2); |
| gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); |
| } |
| |
| void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static gen_helper_gvec_3_ptr * const fns[2] = { |
| gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32 |
| }; |
| tcg_debug_assert(vece >= 1 && vece <= 2); |
| gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); |
| } |
| |
| #define GEN_CMP0(NAME, COND) \ |
| void NAME(unsigned vece, uint32_t d, uint32_t m, \ |
| uint32_t opr_sz, uint32_t max_sz) \ |
| { tcg_gen_gvec_cmpi(COND, vece, d, m, 0, opr_sz, max_sz); } |
| |
| GEN_CMP0(gen_gvec_ceq0, TCG_COND_EQ) |
| GEN_CMP0(gen_gvec_cle0, TCG_COND_LE) |
| GEN_CMP0(gen_gvec_cge0, TCG_COND_GE) |
| GEN_CMP0(gen_gvec_clt0, TCG_COND_LT) |
| GEN_CMP0(gen_gvec_cgt0, TCG_COND_GT) |
| |
| #undef GEN_CMP0 |
| |
| static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_sari_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_sari_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_sari_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sari_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_ssra8_i64, |
| .fniv = gen_ssra_vec, |
| .fno = gen_helper_gvec_ssra_b, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = gen_ssra16_i64, |
| .fniv = gen_ssra_vec, |
| .fno = gen_helper_gvec_ssra_h, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_ssra32_i32, |
| .fniv = gen_ssra_vec, |
| .fno = gen_helper_gvec_ssra_s, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_ssra64_i64, |
| .fniv = gen_ssra_vec, |
| .fno = gen_helper_gvec_ssra_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize]. */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| /* |
| * Shifts larger than the element size are architecturally valid. |
| * Signed results in all sign bits. |
| */ |
| shift = MIN(shift, (8 << vece) - 1); |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| |
| static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_shri_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_shri_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_usra8_i64, |
| .fniv = gen_usra_vec, |
| .fno = gen_helper_gvec_usra_b, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8, }, |
| { .fni8 = gen_usra16_i64, |
| .fniv = gen_usra_vec, |
| .fno = gen_helper_gvec_usra_h, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16, }, |
| { .fni4 = gen_usra32_i32, |
| .fniv = gen_usra_vec, |
| .fno = gen_helper_gvec_usra_s, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32, }, |
| { .fni8 = gen_usra64_i64, |
| .fniv = gen_usra_vec, |
| .fno = gen_helper_gvec_usra_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64, }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize]. */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| /* |
| * Shifts larger than the element size are architecturally valid. |
| * Unsigned results in all zeros as input to accumulate: nop. |
| */ |
| if (shift < (8 << vece)) { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } else { |
| /* Nop, but we do need to clear the tail. */ |
| tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); |
| } |
| } |
| |
| /* |
| * Shift one less than the requested amount, and the low bit is |
| * the rounding bit. For the 8 and 16-bit operations, because we |
| * mask the low bit, we can perform a normal integer shift instead |
| * of a vector shift. |
| */ |
| static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, sh - 1); |
| tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); |
| tcg_gen_vec_sar8i_i64(d, a, sh); |
| tcg_gen_vec_add8_i64(d, d, t); |
| } |
| |
| static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, sh - 1); |
| tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); |
| tcg_gen_vec_sar16i_i64(d, a, sh); |
| tcg_gen_vec_add16_i64(d, d, t); |
| } |
| |
| static void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) |
| { |
| TCGv_i32 t; |
| |
| /* Handle shift by the input size for the benefit of trans_SRSHR_ri */ |
| if (sh == 32) { |
| tcg_gen_movi_i32(d, 0); |
| return; |
| } |
| t = tcg_temp_new_i32(); |
| tcg_gen_extract_i32(t, a, sh - 1, 1); |
| tcg_gen_sari_i32(d, a, sh); |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_extract_i64(t, a, sh - 1, 1); |
| tcg_gen_sari_i64(d, a, sh); |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec ones = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_shri_vec(vece, t, a, sh - 1); |
| tcg_gen_dupi_vec(vece, ones, 1); |
| tcg_gen_and_vec(vece, t, t, ones); |
| tcg_gen_sari_vec(vece, d, a, sh); |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_srshr8_i64, |
| .fniv = gen_srshr_vec, |
| .fno = gen_helper_gvec_srshr_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = gen_srshr16_i64, |
| .fniv = gen_srshr_vec, |
| .fno = gen_helper_gvec_srshr_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_srshr32_i32, |
| .fniv = gen_srshr_vec, |
| .fno = gen_helper_gvec_srshr_s, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_srshr64_i64, |
| .fniv = gen_srshr_vec, |
| .fno = gen_helper_gvec_srshr_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize] */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| if (shift == (8 << vece)) { |
| /* |
| * Shifts larger than the element size are architecturally valid. |
| * Signed results in all sign bits. With rounding, this produces |
| * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. |
| * I.e. always zero. |
| */ |
| tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); |
| } else { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| } |
| |
| static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| gen_srshr8_i64(t, a, sh); |
| tcg_gen_vec_add8_i64(d, d, t); |
| } |
| |
| static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| gen_srshr16_i64(t, a, sh); |
| tcg_gen_vec_add16_i64(d, d, t); |
| } |
| |
| static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| gen_srshr32_i32(t, a, sh); |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| gen_srshr64_i64(t, a, sh); |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| |
| gen_srshr_vec(vece, t, a, sh); |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_srsra8_i64, |
| .fniv = gen_srsra_vec, |
| .fno = gen_helper_gvec_srsra_b, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fni8 = gen_srsra16_i64, |
| .fniv = gen_srsra_vec, |
| .fno = gen_helper_gvec_srsra_h, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_srsra32_i32, |
| .fniv = gen_srsra_vec, |
| .fno = gen_helper_gvec_srsra_s, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_srsra64_i64, |
| .fniv = gen_srsra_vec, |
| .fno = gen_helper_gvec_srsra_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize] */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| /* |
| * Shifts larger than the element size are architecturally valid. |
| * Signed results in all sign bits. With rounding, this produces |
| * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. |
| * I.e. always zero. With accumulation, this leaves D unchanged. |
| */ |
| if (shift == (8 << vece)) { |
| /* Nop, but we do need to clear the tail. */ |
| tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); |
| } else { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| } |
| |
| static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, sh - 1); |
| tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); |
| tcg_gen_vec_shr8i_i64(d, a, sh); |
| tcg_gen_vec_add8_i64(d, d, t); |
| } |
| |
| static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, sh - 1); |
| tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); |
| tcg_gen_vec_shr16i_i64(d, a, sh); |
| tcg_gen_vec_add16_i64(d, d, t); |
| } |
| |
| static void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) |
| { |
| TCGv_i32 t; |
| |
| /* Handle shift by the input size for the benefit of trans_URSHR_ri */ |
| if (sh == 32) { |
| tcg_gen_extract_i32(d, a, sh - 1, 1); |
| return; |
| } |
| t = tcg_temp_new_i32(); |
| tcg_gen_extract_i32(t, a, sh - 1, 1); |
| tcg_gen_shri_i32(d, a, sh); |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_extract_i64(t, a, sh - 1, 1); |
| tcg_gen_shri_i64(d, a, sh); |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec ones = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_shri_vec(vece, t, a, shift - 1); |
| tcg_gen_dupi_vec(vece, ones, 1); |
| tcg_gen_and_vec(vece, t, t, ones); |
| tcg_gen_shri_vec(vece, d, a, shift); |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_shri_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_urshr8_i64, |
| .fniv = gen_urshr_vec, |
| .fno = gen_helper_gvec_urshr_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = gen_urshr16_i64, |
| .fniv = gen_urshr_vec, |
| .fno = gen_helper_gvec_urshr_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_urshr32_i32, |
| .fniv = gen_urshr_vec, |
| .fno = gen_helper_gvec_urshr_s, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_urshr64_i64, |
| .fniv = gen_urshr_vec, |
| .fno = gen_helper_gvec_urshr_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize] */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| if (shift == (8 << vece)) { |
| /* |
| * Shifts larger than the element size are architecturally valid. |
| * Unsigned results in zero. With rounding, this produces a |
| * copy of the most significant bit. |
| */ |
| tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz); |
| } else { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| } |
| |
| static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| if (sh == 8) { |
| tcg_gen_vec_shr8i_i64(t, a, 7); |
| } else { |
| gen_urshr8_i64(t, a, sh); |
| } |
| tcg_gen_vec_add8_i64(d, d, t); |
| } |
| |
| static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| if (sh == 16) { |
| tcg_gen_vec_shr16i_i64(t, a, 15); |
| } else { |
| gen_urshr16_i64(t, a, sh); |
| } |
| tcg_gen_vec_add16_i64(d, d, t); |
| } |
| |
| static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| if (sh == 32) { |
| tcg_gen_shri_i32(t, a, 31); |
| } else { |
| gen_urshr32_i32(t, a, sh); |
| } |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| if (sh == 64) { |
| tcg_gen_shri_i64(t, a, 63); |
| } else { |
| gen_urshr64_i64(t, a, sh); |
| } |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| |
| if (sh == (8 << vece)) { |
| tcg_gen_shri_vec(vece, t, a, sh - 1); |
| } else { |
| gen_urshr_vec(vece, t, a, sh); |
| } |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_shri_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen2i ops[4] = { |
| { .fni8 = gen_ursra8_i64, |
| .fniv = gen_ursra_vec, |
| .fno = gen_helper_gvec_ursra_b, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fni8 = gen_ursra16_i64, |
| .fniv = gen_ursra_vec, |
| .fno = gen_helper_gvec_ursra_h, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_ursra32_i32, |
| .fniv = gen_ursra_vec, |
| .fno = gen_helper_gvec_ursra_s, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_ursra64_i64, |
| .fniv = gen_ursra_vec, |
| .fno = gen_helper_gvec_ursra_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize] */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| |
| static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| } |
| |
| static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| } |
| |
| static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); |
| } |
| |
| static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); |
| } |
| |
| static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh)); |
| tcg_gen_shri_vec(vece, t, a, sh); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; |
| const GVecGen2i ops[4] = { |
| { .fni8 = gen_shr8_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .fno = gen_helper_gvec_sri_b, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = gen_shr16_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .fno = gen_helper_gvec_sri_h, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_shr32_ins_i32, |
| .fniv = gen_shr_ins_vec, |
| .fno = gen_helper_gvec_sri_s, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_shr64_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .fno = gen_helper_gvec_sri_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [1..esize]. */ |
| tcg_debug_assert(shift > 0); |
| tcg_debug_assert(shift <= (8 << vece)); |
| |
| /* Shift of esize leaves destination unchanged. */ |
| if (shift < (8 << vece)) { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } else { |
| /* Nop, but we do need to clear the tail. */ |
| tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); |
| } |
| } |
| |
| static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| } |
| |
| static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| } |
| |
| static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); |
| } |
| |
| static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); |
| } |
| |
| static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_shli_vec(vece, t, a, sh); |
| tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh)); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; |
| const GVecGen2i ops[4] = { |
| { .fni8 = gen_shl8_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .fno = gen_helper_gvec_sli_b, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = gen_shl16_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .fno = gen_helper_gvec_sli_h, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_shl32_ins_i32, |
| .fniv = gen_shl_ins_vec, |
| .fno = gen_helper_gvec_sli_s, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_shl64_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .fno = gen_helper_gvec_sli_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| |
| /* tszimm encoding produces immediates in the range [0..esize-1]. */ |
| tcg_debug_assert(shift >= 0); |
| tcg_debug_assert(shift < (8 << vece)); |
| |
| if (shift == 0) { |
| tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz); |
| } else { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); |
| } |
| } |
| |
| static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_add_u8(d, d, a); |
| } |
| |
| static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_sub_u8(d, d, a); |
| } |
| |
| static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_add_u16(d, d, a); |
| } |
| |
| static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_sub_u16(d, d, a); |
| } |
| |
| static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_sub_i32(d, d, a); |
| } |
| |
| static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_sub_i64(d, d, a); |
| } |
| |
| static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_sub_vec(vece, d, d, a); |
| } |
| |
| /* Note that while NEON does not support VMLA and VMLS as 64-bit ops, |
| * these tables are shared with AArch64 which does support them. |
| */ |
| void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_mul_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fni4 = gen_mla8_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni4 = gen_mla16_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_mla32_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_mla64_i64, |
| .fniv = gen_mla_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_mul_vec, INDEX_op_sub_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fni4 = gen_mls8_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni4 = gen_mls16_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_mls32_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_mls64_i64, |
| .fniv = gen_mls_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| /* CMTST : test is "if (X & Y != 0)". */ |
| static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_and_i32(d, a, b); |
| tcg_gen_negsetcond_i32(TCG_COND_NE, d, d, tcg_constant_i32(0)); |
| } |
| |
| void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_and_i64(d, a, b); |
| tcg_gen_negsetcond_i64(TCG_COND_NE, d, d, tcg_constant_i64(0)); |
| } |
| |
| static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_and_vec(vece, d, a, b); |
| tcg_gen_dupi_vec(vece, a, 0); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); |
| } |
| |
| void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 }; |
| static const GVecGen3 ops[4] = { |
| { .fni4 = gen_helper_neon_tst_u8, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni4 = gen_helper_neon_tst_u16, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_cmtst_i32, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_cmtst_i64, |
| .fniv = gen_cmtst_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) |
| { |
| TCGv_i32 lval = tcg_temp_new_i32(); |
| TCGv_i32 rval = tcg_temp_new_i32(); |
| TCGv_i32 lsh = tcg_temp_new_i32(); |
| TCGv_i32 rsh = tcg_temp_new_i32(); |
| TCGv_i32 zero = tcg_constant_i32(0); |
| TCGv_i32 max = tcg_constant_i32(32); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i32(lsh, shift); |
| tcg_gen_neg_i32(rsh, lsh); |
| tcg_gen_shl_i32(lval, src, lsh); |
| tcg_gen_shr_i32(rval, src, rsh); |
| tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); |
| tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); |
| } |
| |
| void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) |
| { |
| TCGv_i64 lval = tcg_temp_new_i64(); |
| TCGv_i64 rval = tcg_temp_new_i64(); |
| TCGv_i64 lsh = tcg_temp_new_i64(); |
| TCGv_i64 rsh = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_constant_i64(0); |
| TCGv_i64 max = tcg_constant_i64(64); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i64(lsh, shift); |
| tcg_gen_neg_i64(rsh, lsh); |
| tcg_gen_shl_i64(lval, src, lsh); |
| tcg_gen_shr_i64(rval, src, rsh); |
| tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); |
| tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); |
| } |
| |
| static void gen_ushl_vec(unsigned vece, TCGv_vec dst, |
| TCGv_vec src, TCGv_vec shift) |
| { |
| TCGv_vec lval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec lsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec msk, max; |
| |
| tcg_gen_neg_vec(vece, rsh, shift); |
| if (vece == MO_8) { |
| tcg_gen_mov_vec(lsh, shift); |
| } else { |
| msk = tcg_temp_new_vec_matching(dst); |
| tcg_gen_dupi_vec(vece, msk, 0xff); |
| tcg_gen_and_vec(vece, lsh, shift, msk); |
| tcg_gen_and_vec(vece, rsh, rsh, msk); |
| } |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_shlv_vec(vece, lval, src, lsh); |
| tcg_gen_shrv_vec(vece, rval, src, rsh); |
| |
| max = tcg_temp_new_vec_matching(dst); |
| tcg_gen_dupi_vec(vece, max, 8 << vece); |
| |
| /* |
| * The choice of LT (signed) and GEU (unsigned) are biased toward |
| * the instructions of the x86_64 host. For MO_8, the whole byte |
| * is significant so we must use an unsigned compare; otherwise we |
| * have already masked to a byte and so a signed compare works. |
| * Other tcg hosts have a full set of comparisons and do not care. |
| */ |
| if (vece == MO_8) { |
| tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max); |
| tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max); |
| tcg_gen_andc_vec(vece, lval, lval, lsh); |
| tcg_gen_andc_vec(vece, rval, rval, rsh); |
| } else { |
| tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max); |
| tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max); |
| tcg_gen_and_vec(vece, lval, lval, lsh); |
| tcg_gen_and_vec(vece, rval, rval, rsh); |
| } |
| tcg_gen_or_vec(vece, dst, lval, rval); |
| } |
| |
| void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_neg_vec, INDEX_op_shlv_vec, |
| INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_ushl_vec, |
| .fno = gen_helper_gvec_ushl_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = gen_ushl_vec, |
| .fno = gen_helper_gvec_ushl_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_ushl_i32, |
| .fniv = gen_ushl_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_ushl_i64, |
| .fniv = gen_ushl_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) |
| { |
| TCGv_i32 lval = tcg_temp_new_i32(); |
| TCGv_i32 rval = tcg_temp_new_i32(); |
| TCGv_i32 lsh = tcg_temp_new_i32(); |
| TCGv_i32 rsh = tcg_temp_new_i32(); |
| TCGv_i32 zero = tcg_constant_i32(0); |
| TCGv_i32 max = tcg_constant_i32(31); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i32(lsh, shift); |
| tcg_gen_neg_i32(rsh, lsh); |
| tcg_gen_shl_i32(lval, src, lsh); |
| tcg_gen_umin_i32(rsh, rsh, max); |
| tcg_gen_sar_i32(rval, src, rsh); |
| tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); |
| tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); |
| } |
| |
| void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) |
| { |
| TCGv_i64 lval = tcg_temp_new_i64(); |
| TCGv_i64 rval = tcg_temp_new_i64(); |
| TCGv_i64 lsh = tcg_temp_new_i64(); |
| TCGv_i64 rsh = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_constant_i64(0); |
| TCGv_i64 max = tcg_constant_i64(63); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i64(lsh, shift); |
| tcg_gen_neg_i64(rsh, lsh); |
| tcg_gen_shl_i64(lval, src, lsh); |
| tcg_gen_umin_i64(rsh, rsh, max); |
| tcg_gen_sar_i64(rval, src, rsh); |
| tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); |
| tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); |
| } |
| |
| static void gen_sshl_vec(unsigned vece, TCGv_vec dst, |
| TCGv_vec src, TCGv_vec shift) |
| { |
| TCGv_vec lval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec lsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec tmp = tcg_temp_new_vec_matching(dst); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_neg_vec(vece, rsh, shift); |
| if (vece == MO_8) { |
| tcg_gen_mov_vec(lsh, shift); |
| } else { |
| tcg_gen_dupi_vec(vece, tmp, 0xff); |
| tcg_gen_and_vec(vece, lsh, shift, tmp); |
| tcg_gen_and_vec(vece, rsh, rsh, tmp); |
| } |
| |
| /* Bound rsh so out of bound right shift gets -1. */ |
| tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1); |
| tcg_gen_umin_vec(vece, rsh, rsh, tmp); |
| tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp); |
| |
| tcg_gen_shlv_vec(vece, lval, src, lsh); |
| tcg_gen_sarv_vec(vece, rval, src, rsh); |
| |
| /* Select in-bound left shift. */ |
| tcg_gen_andc_vec(vece, lval, lval, tmp); |
| |
| /* Select between left and right shift. */ |
| if (vece == MO_8) { |
| tcg_gen_dupi_vec(vece, tmp, 0); |
| tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval); |
| } else { |
| tcg_gen_dupi_vec(vece, tmp, 0x80); |
| tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval); |
| } |
| } |
| |
| void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, |
| INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_sshl_vec, |
| .fno = gen_helper_gvec_sshl_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = gen_sshl_vec, |
| .fno = gen_helper_gvec_sshl_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_sshl_i32, |
| .fniv = gen_sshl_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_sshl_i64, |
| .fniv = gen_sshl_vec, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_add_vec(vece, x, a, b); |
| tcg_gen_usadd_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| } |
| |
| void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen4 ops[4] = { |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_b, |
| .write_aofs = true, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_h, |
| .write_aofs = true, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_s, |
| .write_aofs = true, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_d, |
| .write_aofs = true, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), |
| rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_add_vec(vece, x, a, b); |
| tcg_gen_ssadd_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| } |
| |
| void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 |
| }; |
| static const GVecGen4 ops[4] = { |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_b, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_h, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_s, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_d, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), |
| rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_sub_vec(vece, x, a, b); |
| tcg_gen_ussub_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| } |
| |
| void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 |
| }; |
| static const GVecGen4 ops[4] = { |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_b, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_h, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_s, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_d, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), |
| rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_sub_vec(vece, x, a, b); |
| tcg_gen_sssub_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| } |
| |
| void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 |
| }; |
| static const GVecGen4 ops[4] = { |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_b, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_h, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_s, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_d, |
| .opt_opc = vecop_list, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), |
| rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_i32(t, a, b); |
| tcg_gen_sub_i32(d, b, a); |
| tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t); |
| } |
| |
| static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_sub_i64(t, a, b); |
| tcg_gen_sub_i64(d, b, a); |
| tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t); |
| } |
| |
| static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_smin_vec(vece, t, a, b); |
| tcg_gen_smax_vec(vece, d, a, b); |
| tcg_gen_sub_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_sabd_vec, |
| .fno = gen_helper_gvec_sabd_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = gen_sabd_vec, |
| .fno = gen_helper_gvec_sabd_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_sabd_i32, |
| .fniv = gen_sabd_vec, |
| .fno = gen_helper_gvec_sabd_s, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_sabd_i64, |
| .fniv = gen_sabd_vec, |
| .fno = gen_helper_gvec_sabd_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_i32(t, a, b); |
| tcg_gen_sub_i32(d, b, a); |
| tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t); |
| } |
| |
| static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_sub_i64(t, a, b); |
| tcg_gen_sub_i64(d, b, a); |
| tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t); |
| } |
| |
| static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_umin_vec(vece, t, a, b); |
| tcg_gen_umax_vec(vece, d, a, b); |
| tcg_gen_sub_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_uabd_vec, |
| .fno = gen_helper_gvec_uabd_b, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = gen_uabd_vec, |
| .fno = gen_helper_gvec_uabd_h, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_uabd_i32, |
| .fniv = gen_uabd_vec, |
| .fno = gen_helper_gvec_uabd_s, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_uabd_i64, |
| .fniv = gen_uabd_vec, |
| .fno = gen_helper_gvec_uabd_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| gen_sabd_i32(t, a, b); |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| gen_sabd_i64(t, a, b); |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| gen_sabd_vec(vece, t, a, b); |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sub_vec, INDEX_op_add_vec, |
| INDEX_op_smin_vec, INDEX_op_smax_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_saba_vec, |
| .fno = gen_helper_gvec_saba_b, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fniv = gen_saba_vec, |
| .fno = gen_helper_gvec_saba_h, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_saba_i32, |
| .fniv = gen_saba_vec, |
| .fno = gen_helper_gvec_saba_s, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_saba_i64, |
| .fniv = gen_saba_vec, |
| .fno = gen_helper_gvec_saba_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| gen_uabd_i32(t, a, b); |
| tcg_gen_add_i32(d, d, t); |
| } |
| |
| static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| gen_uabd_i64(t, a, b); |
| tcg_gen_add_i64(d, d, t); |
| } |
| |
| static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| gen_uabd_vec(vece, t, a, b); |
| tcg_gen_add_vec(vece, d, d, t); |
| } |
| |
| void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) |
| { |
| static const TCGOpcode vecop_list[] = { |
| INDEX_op_sub_vec, INDEX_op_add_vec, |
| INDEX_op_umin_vec, INDEX_op_umax_vec, 0 |
| }; |
| static const GVecGen3 ops[4] = { |
| { .fniv = gen_uaba_vec, |
| .fno = gen_helper_gvec_uaba_b, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fniv = gen_uaba_vec, |
| .fno = gen_helper_gvec_uaba_h, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_uaba_i32, |
| .fniv = gen_uaba_vec, |
| .fno = gen_helper_gvec_uaba_s, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_uaba_i64, |
| .fniv = gen_uaba_vec, |
| .fno = gen_helper_gvec_uaba_d, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); |
| } |
| |
| static bool aa32_cpreg_encoding_in_impdef_space(uint8_t crn, uint8_t crm) |
| { |
| static const uint16_t mask[3] = { |
| 0b0000000111100111, /* crn == 9, crm == {c0-c2, c5-c8} */ |
| 0b0000000100010011, /* crn == 10, crm == {c0, c1, c4, c8} */ |
| 0b1000000111111111, /* crn == 11, crm == {c0-c8, c15} */ |
| }; |
| |
| if (crn >= 9 && crn <= 11) { |
| return (mask[crn - 9] >> crm) & 1; |
| } |
| return false; |
| } |
| |
| static void do_coproc_insn(DisasContext *s, int cpnum, int is64, |
| int opc1, int crn, int crm, int opc2, |
| bool isread, int rt, int rt2) |
| { |
| uint32_t key = ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2); |
| const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); |
| TCGv_ptr tcg_ri = NULL; |
| bool need_exit_tb = false; |
| uint32_t syndrome; |
| |
| /* |
| * Note that since we are an implementation which takes an |
| * exception on a trapped conditional instruction only if the |
| * instruction passes its condition code check, we can take |
| * advantage of the clause in the ARM ARM that allows us to set |
| * the COND field in the instruction to 0xE in all cases. |
| * We could fish the actual condition out of the insn (ARM) |
| * or the condexec bits (Thumb) but it isn't necessary. |
| */ |
| switch (cpnum) { |
| case 14: |
| if (is64) { |
| syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2, |
| isread, false); |
| } else { |
| syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm, |
| rt, isread, false); |
| } |
| break; |
| case 15: |
| if (is64) { |
| syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2, |
| isread, false); |
| } else { |
| syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm, |
| rt, isread, false); |
| } |
| break; |
| default: |
| /* |
| * ARMv8 defines that only coprocessors 14 and 15 exist, |
| * so this can only happen if this is an ARMv7 or earlier CPU, |
| * in which case the syndrome information won't actually be |
| * guest visible. |
| */ |
| assert(!arm_dc_feature(s, ARM_FEATURE_V8)); |
| syndrome = syn_uncategorized(); |
| break; |
| } |
| |
| if (s->hstr_active && cpnum == 15 && s->current_el == 1) { |
| /* |
| * At EL1, check for a HSTR_EL2 trap, which must take precedence |
| * over the UNDEF for "no such register" or the UNDEF for "access |
| * permissions forbid this EL1 access". HSTR_EL2 traps from EL0 |
| * only happen if the cpreg doesn't UNDEF at EL0, so we do those in |
| * access_check_cp_reg(), after the checks for whether the access |
| * configurably trapped to EL1. |
| */ |
| uint32_t maskbit = is64 ? crm : crn; |
| |
| if (maskbit != 4 && maskbit != 14) { |
| /* T4 and T14 are RES0 so never cause traps */ |
| TCGv_i32 t; |
| DisasLabel over = gen_disas_label(s); |
| |
| t = load_cpu_offset(offsetoflow32(CPUARMState, cp15.hstr_el2)); |
| tcg_gen_andi_i32(t, t, 1u << maskbit); |
| tcg_gen_brcondi_i32(TCG_COND_EQ, t, 0, over.label); |
| |
| gen_exception_insn(s, 0, EXCP_UDEF, syndrome); |
| /* |
| * gen_exception_insn() will set is_jmp to DISAS_NORETURN, |
| * but since we're conditionally branching over it, we want |
| * to assume continue-to-next-instruction. |
| */ |
| s->base.is_jmp = DISAS_NEXT; |
| set_disas_label(s, over); |
| } |
| } |
| |
| if (cpnum == 15 && aa32_cpreg_encoding_in_impdef_space(crn, crm)) { |
| /* |
| * Check for TIDCP trap, which must take precedence over the UNDEF |
| * for "no such register" etc. It shares precedence with HSTR, |
| * but raises the same exception, so order doesn't matter. |
| */ |
| switch (s->current_el) { |
| case 0: |
| if (arm_dc_feature(s, ARM_FEATURE_AARCH64) |
| && dc_isar_feature(aa64_tidcp1, s)) { |
| gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); |
| } |
| break; |
| case 1: |
| gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); |
| break; |
| } |
| } |
| |
| if (!ri) { |
| /* |
| * Unknown register; this might be a guest error or a QEMU |
| * unimplemented feature. |
| */ |
| if (is64) { |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " |
| "64 bit system register cp:%d opc1: %d crm:%d " |
| "(%s)\n", |
| isread ? "read" : "write", cpnum, opc1, crm, |
| s->ns ? "non-secure" : "secure"); |
| } else { |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " |
| "system register cp:%d opc1:%d crn:%d crm:%d " |
| "opc2:%d (%s)\n", |
| isread ? "read" : "write", cpnum, opc1, crn, |
| crm, opc2, s->ns ? "non-secure" : "secure"); |
| } |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Check access permissions */ |
| if (!cp_access_ok(s->current_el, ri, isread)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if ((s->hstr_active && s->current_el == 0) || ri->accessfn || |
| (ri->fgt && s->fgt_active) || |
| (arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) { |
| /* |
| * Emit code to perform further access permissions checks at |
| * runtime; this may result in an exception. |
| * Note that on XScale all cp0..c13 registers do an access check |
| * call in order to handle c15_cpar. |
| */ |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| tcg_ri = tcg_temp_new_ptr(); |
| gen_helper_access_check_cp_reg(tcg_ri, tcg_env, |
| tcg_constant_i32(key), |
| tcg_constant_i32(syndrome), |
| tcg_constant_i32(isread)); |
| } else if (ri->type & ARM_CP_RAISES_EXC) { |
| /* |
| * The readfn or writefn might raise an exception; |
| * synchronize the CPU state in case it does. |
| */ |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| } |
| |
| /* Handle special cases first */ |
| switch (ri->type & ARM_CP_SPECIAL_MASK) { |
| case 0: |
| break; |
| case ARM_CP_NOP: |
| return; |
| case ARM_CP_WFI: |
| if (isread) { |
| unallocated_encoding(s); |
| } else { |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_WFI; |
| } |
| return; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (ri->type & ARM_CP_IO) { |
| /* I/O operations must end the TB here (whether read or write) */ |
| need_exit_tb = translator_io_start(&s->base); |
| } |
| |
| if (isread) { |
| /* Read */ |
| if (is64) { |
| TCGv_i64 tmp64; |
| TCGv_i32 tmp; |
| if (ri->type & ARM_CP_CONST) { |
| tmp64 = tcg_constant_i64(ri->resetvalue); |
| } else if (ri->readfn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| tmp64 = tcg_temp_new_i64(); |
| gen_helper_get_cp_reg64(tmp64, tcg_env, tcg_ri); |
| } else { |
| tmp64 = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(tmp64, tcg_env, ri->fieldoffset); |
| } |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, tmp64); |
| store_reg(s, rt, tmp); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrh_i64_i32(tmp, tmp64); |
| store_reg(s, rt2, tmp); |
| } else { |
| TCGv_i32 tmp; |
| if (ri->type & ARM_CP_CONST) { |
| tmp = tcg_constant_i32(ri->resetvalue); |
| } else if (ri->readfn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| tmp = tcg_temp_new_i32(); |
| gen_helper_get_cp_reg(tmp, tcg_env, tcg_ri); |
| } else { |
| tmp = load_cpu_offset(ri->fieldoffset); |
| } |
| if (rt == 15) { |
| /* Destination register of r15 for 32 bit loads sets |
| * the condition codes from the high 4 bits of the value |
| */ |
| gen_set_nzcv(tmp); |
| } else { |
| store_reg(s, rt, tmp); |
| } |
| } |
| } else { |
| /* Write */ |
| if (ri->type & ARM_CP_CONST) { |
| /* If not forbidden by access permissions, treat as WI */ |
| return; |
| } |
| |
| if (is64) { |
| TCGv_i32 tmplo, tmphi; |
| TCGv_i64 tmp64 = tcg_temp_new_i64(); |
| tmplo = load_reg(s, rt); |
| tmphi = load_reg(s, rt2); |
| tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi); |
| if (ri->writefn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| gen_helper_set_cp_reg64(tcg_env, tcg_ri, tmp64); |
| } else { |
| tcg_gen_st_i64(tmp64, tcg_env, ri->fieldoffset); |
| } |
| } else { |
| TCGv_i32 tmp = load_reg(s, rt); |
| if (ri->writefn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| gen_helper_set_cp_reg(tcg_env, tcg_ri, tmp); |
| } else { |
| store_cpu_offset(tmp, ri->fieldoffset, 4); |
| } |
| } |
| } |
| |
| if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { |
| /* |
| * A write to any coprocessor register that ends a TB |
| * must rebuild the hflags for the next TB. |
| */ |
| gen_rebuild_hflags(s, ri->type & ARM_CP_NEWEL); |
| /* |
| * We default to ending the TB on a coprocessor register write, |
| * but allow this to be suppressed by the register definition |
| * (usually only necessary to work around guest bugs). |
| */ |
| need_exit_tb = true; |
| } |
| if (need_exit_tb) { |
| gen_lookup_tb(s); |
| } |
| } |
| |
| /* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */ |
| static void disas_xscale_insn(DisasContext *s, uint32_t insn) |
| { |
| int cpnum = (insn >> 8) & 0xf; |
| |
| if (extract32(s->c15_cpar, cpnum, 1) == 0) { |
| unallocated_encoding(s); |
| } else if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { |
| if (disas_iwmmxt_insn(s, insn)) { |
| unallocated_encoding(s); |
| } |
| } else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { |
| if (disas_dsp_insn(s, insn)) { |
| unallocated_encoding(s); |
| } |
| } |
| } |
| |
| /* Store a 64-bit value to a register pair. Clobbers val. */ |
| static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) |
| { |
| TCGv_i32 tmp; |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, val); |
| store_reg(s, rlow, tmp); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrh_i64_i32(tmp, val); |
| store_reg(s, rhigh, tmp); |
| } |
| |
| /* load and add a 64-bit value from a register pair. */ |
| static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) |
| { |
| TCGv_i64 tmp; |
| TCGv_i32 tmpl; |
| TCGv_i32 tmph; |
| |
| /* Load 64-bit value rd:rn. */ |
| tmpl = load_reg(s, rlow); |
| tmph = load_reg(s, rhigh); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_concat_i32_i64(tmp, tmpl, tmph); |
| tcg_gen_add_i64(val, val, tmp); |
| } |
| |
| /* Set N and Z flags from hi|lo. */ |
| static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi) |
| { |
| tcg_gen_mov_i32(cpu_NF, hi); |
| tcg_gen_or_i32(cpu_ZF, lo, hi); |
| } |
| |
| /* Load/Store exclusive instructions are implemented by remembering |
| the value/address loaded, and seeing if these are the same |
| when the store is performed. This should be sufficient to implement |
| the architecturally mandated semantics, and avoids having to monitor |
| regular stores. The compare vs the remembered value is done during |
| the cmpxchg operation, but we must compare the addresses manually. */ |
| static void gen_load_exclusive(DisasContext *s, int rt, int rt2, |
| TCGv_i32 addr, int size) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| MemOp opc = size | MO_ALIGN | s->be_data; |
| |
| s->is_ldex = true; |
| |
| if (size == 3) { |
| TCGv_i32 tmp2 = tcg_temp_new_i32(); |
| TCGv_i64 t64 = tcg_temp_new_i64(); |
| |
| /* |
| * For AArch32, architecturally the 32-bit word at the lowest |
| * address is always Rt and the one at addr+4 is Rt2, even if |
| * the CPU is big-endian. That means we don't want to do a |
| * gen_aa32_ld_i64(), which checks SCTLR_B as if for an |
| * architecturally 64-bit access, but instead do a 64-bit access |
| * using MO_BE if appropriate and then split the two halves. |
| */ |
| TCGv taddr = gen_aa32_addr(s, addr, opc); |
| |
| tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc); |
| tcg_gen_mov_i64(cpu_exclusive_val, t64); |
| if (s->be_data == MO_BE) { |
| tcg_gen_extr_i64_i32(tmp2, tmp, t64); |
| } else { |
| tcg_gen_extr_i64_i32(tmp, tmp2, t64); |
| } |
| store_reg(s, rt2, tmp2); |
| } else { |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc); |
| tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp); |
| } |
| |
| store_reg(s, rt, tmp); |
| tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr); |
| } |
| |
| static void gen_clrex(DisasContext *s) |
| { |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, |
| TCGv_i32 addr, int size) |
| { |
| TCGv_i32 t0, t1, t2; |
| TCGv_i64 extaddr; |
| TCGv taddr; |
| TCGLabel *done_label; |
| TCGLabel *fail_label; |
| MemOp opc = size | MO_ALIGN | s->be_data; |
| |
| /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { |
| [addr] = {Rt}; |
| {Rd} = 0; |
| } else { |
| {Rd} = 1; |
| } */ |
| fail_label = gen_new_label(); |
| done_label = gen_new_label(); |
| extaddr = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(extaddr, addr); |
| tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label); |
| |
| taddr = gen_aa32_addr(s, addr, opc); |
| t0 = tcg_temp_new_i32(); |
| t1 = load_reg(s, rt); |
| if (size == 3) { |
| TCGv_i64 o64 = tcg_temp_new_i64(); |
| TCGv_i64 n64 = tcg_temp_new_i64(); |
| |
| t2 = load_reg(s, rt2); |
| |
| /* |
| * For AArch32, architecturally the 32-bit word at the lowest |
| * address is always Rt and the one at addr+4 is Rt2, even if |
| * the CPU is big-endian. Since we're going to treat this as a |
| * single 64-bit BE store, we need to put the two halves in the |
| * opposite order for BE to LE, so that they end up in the right |
| * places. We don't want gen_aa32_st_i64, because that checks |
| * SCTLR_B as if for an architectural 64-bit access. |
| */ |
| if (s->be_data == MO_BE) { |
| tcg_gen_concat_i32_i64(n64, t2, t1); |
| } else { |
| tcg_gen_concat_i32_i64(n64, t1, t2); |
| } |
| |
| tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64, |
| get_mem_index(s), opc); |
| |
| tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val); |
| tcg_gen_extrl_i64_i32(t0, o64); |
| } else { |
| t2 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val); |
| tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc); |
| tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2); |
| } |
| tcg_gen_mov_i32(cpu_R[rd], t0); |
| tcg_gen_br(done_label); |
| |
| gen_set_label(fail_label); |
| tcg_gen_movi_i32(cpu_R[rd], 1); |
| gen_set_label(done_label); |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| /* gen_srs: |
| * @env: CPUARMState |
| * @s: DisasContext |
| * @mode: mode field from insn (which stack to store to) |
| * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn |
| * @writeback: true if writeback bit set |
| * |
| * Generate code for the SRS (Store Return State) insn. |
| */ |
| static void gen_srs(DisasContext *s, |
| uint32_t mode, uint32_t amode, bool writeback) |
| { |
| int32_t offset; |
| TCGv_i32 addr, tmp; |
| bool undef = false; |
| |
| /* SRS is: |
| * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1 |
| * and specified mode is monitor mode |
| * - UNDEFINED in Hyp mode |
| * - UNPREDICTABLE in User or System mode |
| * - UNPREDICTABLE if the specified mode is: |
| * -- not implemented |
| * -- not a valid mode number |
| * -- a mode that's at a higher exception level |
| * -- Monitor, if we are Non-secure |
| * For the UNPREDICTABLE cases we choose to UNDEF. |
| */ |
| if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syn_uncategorized(), 3); |
| return; |
| } |
| |
| if (s->current_el == 0 || s->current_el == 2) { |
| undef = true; |
| } |
| |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_FIQ: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_SYS: |
| break; |
| case ARM_CPU_MODE_HYP: |
| if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| undef = true; |
| } |
| break; |
| case ARM_CPU_MODE_MON: |
| /* No need to check specifically for "are we non-secure" because |
| * we've already made EL0 UNDEF and handled the trap for S-EL1; |
| * so if this isn't EL3 then we must be non-secure. |
| */ |
| if (s->current_el != 3) { |
| undef = true; |
| } |
| break; |
| default: |
| undef = true; |
| } |
| |
| if (undef) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| addr = tcg_temp_new_i32(); |
| /* get_r13_banked() will raise an exception if called from System mode */ |
| gen_set_condexec(s); |
| gen_update_pc(s, 0); |
| gen_helper_get_r13_banked(addr, tcg_env, tcg_constant_i32(mode)); |
| switch (amode) { |
| case 0: /* DA */ |
| offset = -4; |
| break; |
| case 1: /* IA */ |
| offset = 0; |
| break; |
| case 2: /* DB */ |
| offset = -8; |
| break; |
| case 3: /* IB */ |
| offset = 4; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| tmp = load_reg(s, 14); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| tmp = load_cpu_field(spsr); |
| tcg_gen_addi_i32(addr, addr, 4); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| if (writeback) { |
| switch (amode) { |
| case 0: |
| offset = -8; |
| break; |
| case 1: |
| offset = 4; |
| break; |
| case 2: |
| offset = -4; |
| break; |
| case 3: |
| offset = 0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| gen_helper_set_r13_banked(tcg_env, tcg_constant_i32(mode), addr); |
| } |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| } |
| |
| /* Skip this instruction if the ARM condition is false */ |
| static void arm_skip_unless(DisasContext *s, uint32_t cond) |
| { |
| arm_gen_condlabel(s); |
| arm_gen_test_cc(cond ^ 1, s->condlabel.label); |
| } |
| |
| |
| /* |
| * Constant expanders used by T16/T32 decode |
| */ |
| |
| /* Return only the rotation part of T32ExpandImm. */ |
| static int t32_expandimm_rot(DisasContext *s, int x) |
| { |
| return x & 0xc00 ? extract32(x, 7, 5) : 0; |
| } |
| |
| /* Return the unrotated immediate from T32ExpandImm. */ |
| static int t32_expandimm_imm(DisasContext *s, int x) |
| { |
| int imm = extract32(x, 0, 8); |
| |
| switch (extract32(x, 8, 4)) { |
| case 0: /* XY */ |
| /* Nothing to do. */ |
| break; |
| case 1: /* 00XY00XY */ |
| imm *= 0x00010001; |
| break; |
| case 2: /* XY00XY00 */ |
| imm *= 0x01000100; |
| break; |
| case 3: /* XYXYXYXY */ |
| imm *= 0x01010101; |
| break; |
| default: |
| /* Rotated constant. */ |
| imm |= 0x80; |
| break; |
| } |
| return imm; |
| } |
| |
| static int t32_branch24(DisasContext *s, int x) |
| { |
| /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */ |
| x ^= !(x < 0) * (3 << 21); |
| /* Append the final zero. */ |
| return x << 1; |
| } |
| |
| static int t16_setflags(DisasContext *s) |
| { |
| return s->condexec_mask == 0; |
| } |
| |
| static int t16_push_list(DisasContext *s, int x) |
| { |
| return (x & 0xff) | (x & 0x100) << (14 - 8); |
| } |
| |
| static int t16_pop_list(DisasContext *s, int x) |
| { |
| return (x & 0xff) | (x & 0x100) << (15 - 8); |
| } |
| |
| /* |
| * Include the generated decoders. |
| */ |
| |
| #include "decode-a32.c.inc" |
| #include "decode-a32-uncond.c.inc" |
| #include "decode-t32.c.inc" |
| #include "decode-t16.c.inc" |
| |
| static bool valid_cp(DisasContext *s, int cp) |
| { |
| /* |
| * Return true if this coprocessor field indicates something |
| * that's really a possible coprocessor. |
| * For v7 and earlier, coprocessors 8..15 were reserved for Arm use, |
| * and of those only cp14 and cp15 were used for registers. |
| * cp10 and cp11 were used for VFP and Neon, whose decode is |
| * dealt with elsewhere. With the advent of fp16, cp9 is also |
| * now part of VFP. |
| * For v8A and later, the encoding has been tightened so that |
| * only cp14 and cp15 are valid, and other values aren't considered |
| * to be in the coprocessor-instruction space at all. v8M still |
| * permits coprocessors 0..7. |
| * For XScale, we must not decode the XScale cp0, cp1 space as |
| * a standard coprocessor insn, because we want to fall through to |
| * the legacy disas_xscale_insn() decoder after decodetree is done. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cp == 0 || cp == 1)) { |
| return false; |
| } |
| |
| if (arm_dc_feature(s, ARM_FEATURE_V8) && |
| !arm_dc_feature(s, ARM_FEATURE_M)) { |
| return cp >= 14; |
| } |
| return cp < 8 || cp >= 14; |
| } |
| |
| static bool trans_MCR(DisasContext *s, arg_MCR *a) |
| { |
| if (!valid_cp(s, a->cp)) { |
| return false; |
| } |
| do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, |
| false, a->rt, 0); |
| return true; |
| } |
| |
| static bool trans_MRC(DisasContext *s, arg_MRC *a) |
| { |
| if (!valid_cp(s, a->cp)) { |
| return false; |
| } |
| do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, |
| true, a->rt, 0); |
| return true; |
| } |
| |
| static bool trans_MCRR(DisasContext *s, arg_MCRR *a) |
| { |
| if (!valid_cp(s, a->cp)) { |
| return false; |
| } |
| do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, |
| false, a->rt, a->rt2); |
| return true; |
| } |
| |
| static bool trans_MRRC(DisasContext *s, arg_MRRC *a) |
| { |
| if (!valid_cp(s, a->cp)) { |
| return false; |
| } |
| do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, |
| true, a->rt, a->rt2); |
| return true; |
| } |
| |
| /* Helpers to swap operands for reverse-subtract. */ |
| static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_sub_i32(dst, b, a); |
| } |
| |
| static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sub_CC(dst, b, a); |
| } |
| |
| static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sub_carry(dest, b, a); |
| } |
| |
| static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sbc_CC(dest, b, a); |
| } |
| |
| /* |
| * Helpers for the data processing routines. |
| * |
| * After the computation store the results back. |
| * This may be suppressed altogether (STREG_NONE), require a runtime |
| * check against the stack limits (STREG_SP_CHECK), or generate an |
| * exception return. Oh, or store into a register. |
| * |
| * Always return true, indicating success for a trans_* function. |
| */ |
| typedef enum { |
| STREG_NONE, |
| STREG_NORMAL, |
| STREG_SP_CHECK, |
| STREG_EXC_RET, |
| } StoreRegKind; |
| |
| static bool store_reg_kind(DisasContext *s, int rd, |
| TCGv_i32 val, StoreRegKind kind) |
| { |
| switch (kind) { |
| case STREG_NONE: |
| return true; |
| case STREG_NORMAL: |
| /* See ALUWritePC: Interworking only from a32 mode. */ |
| if (s->thumb) { |
| store_reg(s, rd, val); |
| } else { |
| store_reg_bx(s, rd, val); |
| } |
| return true; |
| case STREG_SP_CHECK: |
| store_sp_checked(s, val); |
| return true; |
| case STREG_EXC_RET: |
| gen_exception_return(s, val); |
| return true; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Data Processing (register) |
| * |
| * Operate, with set flags, one register source, |
| * one immediate shifted register source, and a destination. |
| */ |
| static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc); |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tmp2); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp; |
| |
| tmp = load_reg(s, a->rm); |
| gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc); |
| |
| gen(tmp, tmp); |
| if (logic_cc) { |
| gen_logic_CC(tmp); |
| } |
| return store_reg_kind(s, a->rd, tmp, kind); |
| } |
| |
| /* |
| * Data-processing (register-shifted register) |
| * |
| * Operate, with set flags, one register source, |
| * one register shifted register source, and a destination. |
| */ |
| static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp1 = load_reg(s, a->rs); |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tmp2); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp1 = load_reg(s, a->rs); |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); |
| |
| gen(tmp2, tmp2); |
| if (logic_cc) { |
| gen_logic_CC(tmp2); |
| } |
| return store_reg_kind(s, a->rd, tmp2, kind); |
| } |
| |
| /* |
| * Data-processing (immediate) |
| * |
| * Operate, with set flags, one register source, |
| * one rotated immediate, and a destination. |
| * |
| * Note that logic_cc && a->rot setting CF based on the msb of the |
| * immediate is the reason why we must pass in the unrotated form |
| * of the immediate. |
| */ |
| static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1; |
| uint32_t imm; |
| |
| imm = ror32(a->imm, a->rot); |
| if (logic_cc && a->rot) { |
| tcg_gen_movi_i32(cpu_CF, imm >> 31); |
| } |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tcg_constant_i32(imm)); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp; |
| uint32_t imm; |
| |
| imm = ror32(a->imm, a->rot); |
| if (logic_cc && a->rot) { |
| tcg_gen_movi_i32(cpu_CF, imm >> 31); |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| gen(tmp, tcg_constant_i32(imm)); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp); |
| } |
| return store_reg_kind(s, a->rd, tmp, kind); |
| } |
| |
| #define DO_ANY3(NAME, OP, L, K) \ |
| static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \ |
| { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); } |
| |
| #define DO_ANY2(NAME, OP, L, K) \ |
| static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \ |
| { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); } |
| |
| #define DO_CMP2(NAME, OP, L) \ |
| static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \ |
| static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \ |
| static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \ |
| { return op_s_rri_rot(s, a, OP, L, STREG_NONE); } |
| |
| DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL) |
| DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL) |
| DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL) |
| DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL) |
| |
| DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL) |
| DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL) |
| DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL) |
| DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL) |
| |
| DO_CMP2(TST, tcg_gen_and_i32, true) |
| DO_CMP2(TEQ, tcg_gen_xor_i32, true) |
| DO_CMP2(CMN, gen_add_CC, false) |
| DO_CMP2(CMP, gen_sub_CC, false) |
| |
| DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false, |
| a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL) |
| |
| /* |
| * Note for the computation of StoreRegKind we return out of the |
| * middle of the functions that are expanded by DO_ANY3, and that |
| * we modify a->s via that parameter before it is used by OP. |
| */ |
| DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false, |
| ({ |
| StoreRegKind ret = STREG_NORMAL; |
| if (a->rd == 15 && a->s) { |
| /* |
| * See ALUExceptionReturn: |
| * In User mode, UNPREDICTABLE; we choose UNDEF. |
| * In Hyp mode, UNDEFINED. |
| */ |
| if (IS_USER(s) || s->current_el == 2) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* There is no writeback of nzcv to PSTATE. */ |
| a->s = 0; |
| ret = STREG_EXC_RET; |
| } else if (a->rd == 13 && a->rn == 13) { |
| ret = STREG_SP_CHECK; |
| } |
| ret; |
| })) |
| |
| DO_ANY2(MOV, tcg_gen_mov_i32, a->s, |
| ({ |
| StoreRegKind ret = STREG_NORMAL; |
| if (a->rd == 15 && a->s) { |
| /* |
| * See ALUExceptionReturn: |
| * In User mode, UNPREDICTABLE; we choose UNDEF. |
| * In Hyp mode, UNDEFINED. |
| */ |
| if (IS_USER(s) || s->current_el == 2) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* There is no writeback of nzcv to PSTATE. */ |
| a->s = 0; |
| ret = STREG_EXC_RET; |
| } else if (a->rd == 13) { |
| ret = STREG_SP_CHECK; |
| } |
| ret; |
| })) |
| |
| DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL) |
| |
| /* |
| * ORN is only available with T32, so there is no register-shifted-register |
| * form of the insn. Using the DO_ANY3 macro would create an unused function. |
| */ |
| static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a) |
| { |
| return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); |
| } |
| |
| static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a) |
| { |
| return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); |
| } |
| |
| #undef DO_ANY3 |
| #undef DO_ANY2 |
| #undef DO_CMP2 |
| |
| static bool trans_ADR(DisasContext *s, arg_ri *a) |
| { |
| store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm)); |
| return true; |
| } |
| |
| static bool trans_MOVW(DisasContext *s, arg_MOVW *a) |
| { |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| |
| store_reg(s, a->rd, tcg_constant_i32(a->imm)); |
| return true; |
| } |
| |
| static bool trans_MOVT(DisasContext *s, arg_MOVW *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rd); |
| tcg_gen_ext16u_i32(tmp, tmp); |
| tcg_gen_ori_i32(tmp, tmp, a->imm << 16); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| /* |
| * v8.1M MVE wide-shifts |
| */ |
| static bool do_mve_shl_ri(DisasContext *s, arg_mve_shl_ri *a, |
| WideShiftImmFn *fn) |
| { |
| TCGv_i64 rda; |
| TCGv_i32 rdalo, rdahi; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { |
| /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ |
| return false; |
| } |
| if (a->rdahi == 15) { |
| /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ |
| return false; |
| } |
| if (!dc_isar_feature(aa32_mve, s) || |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || |
| a->rdahi == 13) { |
| /* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| if (a->shim == 0) { |
| a->shim = 32; |
| } |
| |
| rda = tcg_temp_new_i64(); |
| rdalo = load_reg(s, a->rdalo); |
| rdahi = load_reg(s, a->rdahi); |
| tcg_gen_concat_i32_i64(rda, rdalo, rdahi); |
| |
| fn(rda, rda, a->shim); |
| |
| tcg_gen_extrl_i64_i32(rdalo, rda); |
| tcg_gen_extrh_i64_i32(rdahi, rda); |
| store_reg(s, a->rdalo, rdalo); |
| store_reg(s, a->rdahi, rdahi); |
| |
| return true; |
| } |
| |
| static bool trans_ASRL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, tcg_gen_sari_i64); |
| } |
| |
| static bool trans_LSLL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, tcg_gen_shli_i64); |
| } |
| |
| static bool trans_LSRL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, tcg_gen_shri_i64); |
| } |
| |
| static void gen_mve_sqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) |
| { |
| gen_helper_mve_sqshll(r, tcg_env, n, tcg_constant_i32(shift)); |
| } |
| |
| static bool trans_SQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, gen_mve_sqshll); |
| } |
| |
| static void gen_mve_uqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) |
| { |
| gen_helper_mve_uqshll(r, tcg_env, n, tcg_constant_i32(shift)); |
| } |
| |
| static bool trans_UQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, gen_mve_uqshll); |
| } |
| |
| static bool trans_SRSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, gen_srshr64_i64); |
| } |
| |
| static bool trans_URSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) |
| { |
| return do_mve_shl_ri(s, a, gen_urshr64_i64); |
| } |
| |
| static bool do_mve_shl_rr(DisasContext *s, arg_mve_shl_rr *a, WideShiftFn *fn) |
| { |
| TCGv_i64 rda; |
| TCGv_i32 rdalo, rdahi; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { |
| /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ |
| return false; |
| } |
| if (a->rdahi == 15) { |
| /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ |
| return false; |
| } |
| if (!dc_isar_feature(aa32_mve, s) || |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || |
| a->rdahi == 13 || a->rm == 13 || a->rm == 15 || |
| a->rm == a->rdahi || a->rm == a->rdalo) { |
| /* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| rda = tcg_temp_new_i64(); |
| rdalo = load_reg(s, a->rdalo); |
| rdahi = load_reg(s, a->rdahi); |
| tcg_gen_concat_i32_i64(rda, rdalo, rdahi); |
| |
| /* The helper takes care of the sign-extension of the low 8 bits of Rm */ |
| fn(rda, tcg_env, rda, cpu_R[a->rm]); |
| |
| tcg_gen_extrl_i64_i32(rdalo, rda); |
| tcg_gen_extrh_i64_i32(rdahi, rda); |
| store_reg(s, a->rdalo, rdalo); |
| store_reg(s, a->rdahi, rdahi); |
| |
| return true; |
| } |
| |
| static bool trans_LSLL_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_ushll); |
| } |
| |
| static bool trans_ASRL_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_sshrl); |
| } |
| |
| static bool trans_UQRSHLL64_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll); |
| } |
| |
| static bool trans_SQRSHRL64_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl); |
| } |
| |
| static bool trans_UQRSHLL48_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll48); |
| } |
| |
| static bool trans_SQRSHRL48_rr(DisasContext *s, arg_mve_shl_rr *a) |
| { |
| return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl48); |
| } |
| |
| static bool do_mve_sh_ri(DisasContext *s, arg_mve_sh_ri *a, ShiftImmFn *fn) |
| { |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { |
| /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ |
| return false; |
| } |
| if (!dc_isar_feature(aa32_mve, s) || |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || |
| a->rda == 13 || a->rda == 15) { |
| /* These rda cases are UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| if (a->shim == 0) { |
| a->shim = 32; |
| } |
| fn(cpu_R[a->rda], cpu_R[a->rda], a->shim); |
| |
| return true; |
| } |
| |
| static bool trans_URSHR_ri(DisasContext *s, arg_mve_sh_ri *a) |
| { |
| return do_mve_sh_ri(s, a, gen_urshr32_i32); |
| } |
| |
| static bool trans_SRSHR_ri(DisasContext *s, arg_mve_sh_ri *a) |
| { |
| return do_mve_sh_ri(s, a, gen_srshr32_i32); |
| } |
| |
| static void gen_mve_sqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) |
| { |
| gen_helper_mve_sqshl(r, tcg_env, n, tcg_constant_i32(shift)); |
| } |
| |
| static bool trans_SQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) |
| { |
| return do_mve_sh_ri(s, a, gen_mve_sqshl); |
| } |
| |
| static void gen_mve_uqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) |
| { |
| gen_helper_mve_uqshl(r, tcg_env, n, tcg_constant_i32(shift)); |
| } |
| |
| static bool trans_UQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) |
| { |
| return do_mve_sh_ri(s, a, gen_mve_uqshl); |
| } |
| |
| static bool do_mve_sh_rr(DisasContext *s, arg_mve_sh_rr *a, ShiftFn *fn) |
| { |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { |
| /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ |
| return false; |
| } |
| if (!dc_isar_feature(aa32_mve, s) || |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || |
| a->rda == 13 || a->rda == 15 || a->rm == 13 || a->rm == 15 || |
| a->rm == a->rda) { |
| /* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| /* The helper takes care of the sign-extension of the low 8 bits of Rm */ |
| fn(cpu_R[a->rda], tcg_env, cpu_R[a->rda], cpu_R[a->rm]); |
| return true; |
| } |
| |
| static bool trans_SQRSHR_rr(DisasContext *s, arg_mve_sh_rr *a) |
| { |
| return do_mve_sh_rr(s, a, gen_helper_mve_sqrshr); |
| } |
| |
| static bool trans_UQRSHL_rr(DisasContext *s, arg_mve_sh_rr *a) |
| { |
| return do_mve_sh_rr(s, a, gen_helper_mve_uqrshl); |
| } |
| |
| /* |
| * Multiply and multiply accumulate |
| */ |
| |
| static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add) |
| { |
| TCGv_i32 t1, t2; |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_mul_i32(t1, t1, t2); |
| if (add) { |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add_i32(t1, t1, t2); |
| } |
| if (a->s) { |
| gen_logic_CC(t1); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_MUL(DisasContext *s, arg_MUL *a) |
| { |
| return op_mla(s, a, false); |
| } |
| |
| static bool trans_MLA(DisasContext *s, arg_MLA *a) |
| { |
| return op_mla(s, a, true); |
| } |
| |
| static bool trans_MLS(DisasContext *s, arg_MLS *a) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_mul_i32(t1, t1, t2); |
| t2 = load_reg(s, a->ra); |
| tcg_gen_sub_i32(t1, t2, t1); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add) |
| { |
| TCGv_i32 t0, t1, t2, t3; |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| if (uns) { |
| tcg_gen_mulu2_i32(t0, t1, t0, t1); |
| } else { |
| tcg_gen_muls2_i32(t0, t1, t0, t1); |
| } |
| if (add) { |
| t2 = load_reg(s, a->ra); |
| t3 = load_reg(s, a->rd); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3); |
| } |
| if (a->s) { |
| gen_logicq_cc(t0, t1); |
| } |
| store_reg(s, a->ra, t0); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_UMULL(DisasContext *s, arg_UMULL *a) |
| { |
| return op_mlal(s, a, true, false); |
| } |
| |
| static bool trans_SMULL(DisasContext *s, arg_SMULL *a) |
| { |
| return op_mlal(s, a, false, false); |
| } |
| |
| static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a) |
| { |
| return op_mlal(s, a, true, true); |
| } |
| |
| static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a) |
| { |
| return op_mlal(s, a, false, true); |
| } |
| |
| static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a) |
| { |
| TCGv_i32 t0, t1, t2, zero; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| tcg_gen_mulu2_i32(t0, t1, t0, t1); |
| zero = tcg_constant_i32(0); |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); |
| t2 = load_reg(s, a->rd); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); |
| store_reg(s, a->ra, t0); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| /* |
| * Saturating addition and subtraction |
| */ |
| |
| static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| if (doub) { |
| gen_helper_add_saturate(t1, tcg_env, t1, t1); |
| } |
| if (add) { |
| gen_helper_add_saturate(t0, tcg_env, t0, t1); |
| } else { |
| gen_helper_sub_saturate(t0, tcg_env, t0, t1); |
| } |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| #define DO_QADDSUB(NAME, ADD, DOUB) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_qaddsub(s, a, ADD, DOUB); \ |
| } |
| |
| DO_QADDSUB(QADD, true, false) |
| DO_QADDSUB(QSUB, false, false) |
| DO_QADDSUB(QDADD, true, true) |
| DO_QADDSUB(QDSUB, false, true) |
| |
| #undef DO_QADDSUB |
| |
| /* |
| * Halfword multiply and multiply accumulate |
| */ |
| |
| static bool op_smlaxxx(DisasContext *s, arg_rrrr *a, |
| int add_long, bool nt, bool mt) |
| { |
| TCGv_i32 t0, t1, tl, th; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| gen_mulxy(t0, t1, nt, mt); |
| |
| switch (add_long) { |
| case 0: |
| store_reg(s, a->rd, t0); |
| break; |
| case 1: |
| t1 = load_reg(s, a->ra); |
| gen_helper_add_setq(t0, tcg_env, t0, t1); |
| store_reg(s, a->rd, t0); |
| break; |
| case 2: |
| tl = load_reg(s, a->ra); |
| th = load_reg(s, a->rd); |
| /* Sign-extend the 32-bit product to 64 bits. */ |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_sari_i32(t1, t0, 31); |
| tcg_gen_add2_i32(tl, th, tl, th, t0, t1); |
| store_reg(s, a->ra, tl); |
| store_reg(s, a->rd, th); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| #define DO_SMLAX(NAME, add, nt, mt) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ |
| { \ |
| return op_smlaxxx(s, a, add, nt, mt); \ |
| } |
| |
| DO_SMLAX(SMULBB, 0, 0, 0) |
| DO_SMLAX(SMULBT, 0, 0, 1) |
| DO_SMLAX(SMULTB, 0, 1, 0) |
| DO_SMLAX(SMULTT, 0, 1, 1) |
| |
| DO_SMLAX(SMLABB, 1, 0, 0) |
| DO_SMLAX(SMLABT, 1, 0, 1) |
| DO_SMLAX(SMLATB, 1, 1, 0) |
| DO_SMLAX(SMLATT, 1, 1, 1) |
| |
| DO_SMLAX(SMLALBB, 2, 0, 0) |
| DO_SMLAX(SMLALBT, 2, 0, 1) |
| DO_SMLAX(SMLALTB, 2, 1, 0) |
| DO_SMLAX(SMLALTT, 2, 1, 1) |
| |
| #undef DO_SMLAX |
| |
| static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| /* |
| * Since the nominal result is product<47:16>, shift the 16-bit |
| * input up by 16 bits, so that the result is at product<63:32>. |
| */ |
| if (mt) { |
| tcg_gen_andi_i32(t1, t1, 0xffff0000); |
| } else { |
| tcg_gen_shli_i32(t1, t1, 16); |
| } |
| tcg_gen_muls2_i32(t0, t1, t0, t1); |
| if (add) { |
| t0 = load_reg(s, a->ra); |
| gen_helper_add_setq(t1, tcg_env, t1, t0); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| #define DO_SMLAWX(NAME, add, mt) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ |
| { \ |
| return op_smlawx(s, a, add, mt); \ |
| } |
| |
| DO_SMLAWX(SMULWB, 0, 0) |
| DO_SMLAWX(SMULWT, 0, 1) |
| DO_SMLAWX(SMLAWB, 1, 0) |
| DO_SMLAWX(SMLAWT, 1, 1) |
| |
| #undef DO_SMLAWX |
| |
| /* |
| * MSR (immediate) and hints |
| */ |
| |
| static bool trans_YIELD(DisasContext *s, arg_YIELD *a) |
| { |
| /* |
| * When running single-threaded TCG code, use the helper to ensure that |
| * the next round-robin scheduled vCPU gets a crack. When running in |
| * MTTCG we don't generate jumps to the helper as it won't affect the |
| * scheduling of other vCPUs. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_YIELD; |
| } |
| return true; |
| } |
| |
| static bool trans_WFE(DisasContext *s, arg_WFE *a) |
| { |
| /* |
| * When running single-threaded TCG code, use the helper to ensure that |
| * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we |
| * just skip this instruction. Currently the SEV/SEVL instructions, |
| * which are *one* of many ways to wake the CPU from WFE, are not |
| * implemented so we can't sleep like WFI does. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_WFE; |
| } |
| return true; |
| } |
| |
| static bool trans_WFI(DisasContext *s, arg_WFI *a) |
| { |
| /* For WFI, halt the vCPU until an IRQ. */ |
| gen_update_pc(s, curr_insn_len(s)); |
| s->base.is_jmp = DISAS_WFI; |
| return true; |
| } |
| |
| static bool trans_ESB(DisasContext *s, arg_ESB *a) |
| { |
| /* |
| * For M-profile, minimal-RAS ESB can be a NOP. |
| * Without RAS, we must implement this as NOP. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_M) && dc_isar_feature(aa32_ras, s)) { |
| /* |
| * QEMU does not have a source of physical SErrors, |
| * so we are only concerned with virtual SErrors. |
| * The pseudocode in the ARM for this case is |
| * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then |
| * AArch32.vESBOperation(); |
| * Most of the condition can be evaluated at translation time. |
| * Test for EL2 present, and defer test for SEL2 to runtime. |
| */ |
| if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| gen_helper_vesb(tcg_env); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_NOP(DisasContext *s, arg_NOP *a) |
| { |
| return true; |
| } |
| |
| static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a) |
| { |
| uint32_t val = ror32(a->imm, a->rot * 2); |
| uint32_t mask = msr_mask(s, a->mask, a->r); |
| |
| if (gen_set_psr_im(s, mask, a->r, val)) { |
| unallocated_encoding(s); |
| } |
| return true; |
| } |
| |
| /* |
| * Cyclic Redundancy Check |
| */ |
| |
| static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz) |
| { |
| TCGv_i32 t1, t2, t3; |
| |
| if (!dc_isar_feature(aa32_crc32, s)) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| switch (sz) { |
| case MO_8: |
| gen_uxtb(t2); |
| break; |
| case MO_16: |
| gen_uxth(t2); |
| break; |
| case MO_32: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| t3 = tcg_constant_i32(1 << sz); |
| if (c) { |
| gen_helper_crc32c(t1, t1, t2, t3); |
| } else { |
| gen_helper_crc32(t1, t1, t2, t3); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| #define DO_CRC32(NAME, c, sz) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { return op_crc32(s, a, c, sz); } |
| |
| DO_CRC32(CRC32B, false, MO_8) |
| DO_CRC32(CRC32H, false, MO_16) |
| DO_CRC32(CRC32W, false, MO_32) |
| DO_CRC32(CRC32CB, true, MO_8) |
| DO_CRC32(CRC32CH, true, MO_16) |
| DO_CRC32(CRC32CW, true, MO_32) |
| |
| #undef DO_CRC32 |
| |
| /* |
| * Miscellaneous instructions |
| */ |
| |
| static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a) |
| { |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_mrs_banked(s, a->r, a->sysm, a->rd); |
| return true; |
| } |
| |
| static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a) |
| { |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_msr_banked(s, a->r, a->sysm, a->rn); |
| return true; |
| } |
| |
| static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (a->r) { |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| tmp = load_cpu_field(spsr); |
| } else { |
| tmp = tcg_temp_new_i32(); |
| gen_helper_cpsr_read(tmp, tcg_env); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a) |
| { |
| TCGv_i32 tmp; |
| uint32_t mask = msr_mask(s, a->mask, a->r); |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tmp = load_reg(s, a->rn); |
| if (gen_set_psr(s, mask, a->r, tmp)) { |
| unallocated_encoding(s); |
| } |
| return true; |
| } |
| |
| static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tmp = tcg_temp_new_i32(); |
| gen_helper_v7m_mrs(tmp, tcg_env, tcg_constant_i32(a->sysm)); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a) |
| { |
| TCGv_i32 addr, reg; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| addr = tcg_constant_i32((a->mask << 10) | a->sysm); |
| reg = load_reg(s, a->rn); |
| gen_helper_v7m_msr(tcg_env, addr, reg); |
| /* If we wrote to CONTROL, the EL might have changed */ |
| gen_rebuild_hflags(s, true); |
| gen_lookup_tb(s); |
| return true; |
| } |
| |
| static bool trans_BX(DisasContext *s, arg_BX *a) |
| { |
| if (!ENABLE_ARCH_4T) { |
| return false; |
| } |
| gen_bx_excret(s, load_reg(s, a->rm)); |
| return true; |
| } |
| |
| static bool trans_BXJ(DisasContext *s, arg_BXJ *a) |
| { |
| if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| /* |
| * v7A allows BXJ to be trapped via HSTR.TJDBX. We don't waste a |
| * TBFLAGS bit on a basically-never-happens case, so call a helper |
| * function to check for the trap and raise the exception if needed |
| * (passing it the register number for the syndrome value). |
| * v8A doesn't have this HSTR bit. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_V8) && |
| arm_dc_feature(s, ARM_FEATURE_EL2) && |
| s->current_el < 2 && s->ns) { |
| gen_helper_check_bxj_trap(tcg_env, tcg_constant_i32(a->rm)); |
| } |
| /* Trivial implementation equivalent to bx. */ |
| gen_bx(s, load_reg(s, a->rm)); |
| return true; |
| } |
| |
| static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = load_reg(s, a->rm); |
| gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| /* |
| * BXNS/BLXNS: only exist for v8M with the security extensions, |
| * and always UNDEF if NonSecure. We don't implement these in |
| * the user-only mode either (in theory you can use them from |
| * Secure User mode but they are too tied in to system emulation). |
| */ |
| static bool trans_BXNS(DisasContext *s, arg_BXNS *a) |
| { |
| if (!s->v8m_secure || IS_USER_ONLY) { |
| unallocated_encoding(s); |
| } else { |
| gen_bxns(s, a->rm); |
| } |
| return true; |
| } |
| |
| static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a) |
| { |
| if (!s->v8m_secure || IS_USER_ONLY) { |
| unallocated_encoding(s); |
| } else { |
| gen_blxns(s, a->rm); |
| } |
| return true; |
| } |
| |
| static bool trans_CLZ(DisasContext *s, arg_CLZ *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = load_reg(s, a->rm); |
| tcg_gen_clzi_i32(tmp, tmp, 32); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_ERET(DisasContext *s, arg_ERET *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| if (s->current_el == 2) { |
| /* ERET from Hyp uses ELR_Hyp, not LR */ |
| tmp = load_cpu_field_low32(elr_el[2]); |
| } else { |
| tmp = load_reg(s, 14); |
| } |
| gen_exception_return(s, tmp); |
| return true; |
| } |
| |
| static bool trans_HLT(DisasContext *s, arg_HLT *a) |
| { |
| gen_hlt(s, a->imm); |
| return true; |
| } |
| |
| static bool trans_BKPT(DisasContext *s, arg_BKPT *a) |
| { |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| /* BKPT is OK with ECI set and leaves it untouched */ |
| s->eci_handled = true; |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| semihosting_enabled(s->current_el == 0) && |
| (a->imm == 0xab)) { |
| gen_exception_internal_insn(s, EXCP_SEMIHOST); |
| } else { |
| gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false)); |
| } |
| return true; |
| } |
| |
| static bool trans_HVC(DisasContext *s, arg_HVC *a) |
| { |
| if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| } else { |
| gen_hvc(s, a->imm); |
| } |
| return true; |
| } |
| |
| static bool trans_SMC(DisasContext *s, arg_SMC *a) |
| { |
| if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| } else { |
| gen_smc(s); |
| } |
| return true; |
| } |
| |
| static bool trans_SG(DisasContext *s, arg_SG *a) |
| { |
| if (!arm_dc_feature(s, ARM_FEATURE_M) || |
| !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return false; |
| } |
| /* |
| * SG (v8M only) |
| * The bulk of the behaviour for this instruction is implemented |
| * in v7m_handle_execute_nsc(), which deals with the insn when |
| * it is executed by a CPU in non-secure state from memory |
| * which is Secure & NonSecure-Callable. |
| * Here we only need to handle the remaining cases: |
| * * in NS memory (including the "security extension not |
| * implemented" case) : NOP |
| * * in S memory but CPU already secure (clear IT bits) |
| * We know that the attribute for the memory this insn is |
| * in must match the current CPU state, because otherwise |
| * get_phys_addr_pmsav8 would have generated an exception. |
| */ |
| if (s->v8m_secure) { |
| /* Like the IT insn, we don't need to generate any code */ |
| s->condexec_cond = 0; |
| s->condexec_mask = 0; |
| } |
| return true; |
| } |
| |
| static bool trans_TT(DisasContext *s, arg_TT *a) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M) || |
| !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return false; |
| } |
| if (a->rd == 13 || a->rd == 15 || a->rn == 15) { |
| /* We UNDEF for these UNPREDICTABLE cases */ |
| unallocated_encoding(s); |
| return true; |
| } |
| if (a->A && !s->v8m_secure) { |
| /* This case is UNDEFINED. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = tcg_temp_new_i32(); |
| gen_helper_v7m_tt(tmp, tcg_env, addr, tcg_constant_i32((a->A << 1) | a->T)); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| /* |
| * Load/store register index |
| */ |
| |
| static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w) |
| { |
| ISSInfo ret; |
| |
| /* ISS not valid if writeback */ |
| if (p && !w) { |
| ret = rd; |
| if (curr_insn_len(s) == 2) { |
| ret |= ISSIs16Bit; |
| } |
| } else { |
| ret = ISSInvalid; |
| } |
| return ret; |
| } |
| |
| static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a) |
| { |
| TCGv_i32 addr = load_reg(s, a->rn); |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| gen_helper_v8m_stackcheck(tcg_env, addr); |
| } |
| |
| if (a->p) { |
| TCGv_i32 ofs = load_reg(s, a->rm); |
| gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); |
| if (a->u) { |
| tcg_gen_add_i32(addr, addr, ofs); |
| } else { |
| tcg_gen_sub_i32(addr, addr, ofs); |
| } |
| } |
| return addr; |
| } |
| |
| static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a, |
| TCGv_i32 addr, int address_offset) |
| { |
| if (!a->p) { |
| TCGv_i32 ofs = load_reg(s, a->rm); |
| gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); |
| if (a->u) { |
| tcg_gen_add_i32(addr, addr, ofs); |
| } else { |
| tcg_gen_sub_i32(addr, addr, ofs); |
| } |
| } else if (!a->w) { |
| return; |
| } |
| tcg_gen_addi_i32(addr, addr, address_offset); |
| store_reg(s, a->rn, addr); |
| } |
| |
| static bool op_load_rr(DisasContext *s, arg_ldst_rr *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| /* |
| * Perform base writeback before the loaded value to |
| * ensure correct behavior with overlapping index registers. |
| */ |
| op_addr_rr_post(s, a, addr, 0); |
| store_reg_from_load(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool op_store_rr(DisasContext *s, arg_ldst_rr *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; |
| TCGv_i32 addr, tmp; |
| |
| /* |
| * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it |
| * is either UNPREDICTABLE or has defined behaviour |
| */ |
| if (s->thumb && a->rn == 15) { |
| return false; |
| } |
| |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| op_addr_rr_post(s, a, addr, 0); |
| return true; |
| } |
| |
| static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| store_reg(s, a->rt, tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| store_reg(s, a->rt + 1, tmp); |
| |
| /* LDRD w/ base writeback is undefined if the registers overlap. */ |
| op_addr_rr_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = load_reg(s, a->rt + 1); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| |
| op_addr_rr_post(s, a, addr, -4); |
| return true; |
| } |
| |
| /* |
| * Load/store immediate index |
| */ |
| |
| static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a) |
| { |
| int ofs = a->imm; |
| |
| if (!a->u) { |
| ofs = -ofs; |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * Stackcheck. Here we know 'addr' is the current SP; |
| * U is set if we're moving SP up, else down. It is |
| * UNKNOWN whether the limit check triggers when SP starts |
| * below the limit and ends up above it; we chose to do so. |
| */ |
| if (!a->u) { |
| TCGv_i32 newsp = tcg_temp_new_i32(); |
| tcg_gen_addi_i32(newsp, cpu_R[13], ofs); |
| gen_helper_v8m_stackcheck(tcg_env, newsp); |
| } else { |
| gen_helper_v8m_stackcheck(tcg_env, cpu_R[13]); |
| } |
| } |
| |
| return add_reg_for_lit(s, a->rn, a->p ? ofs : 0); |
| } |
| |
| static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a, |
| TCGv_i32 addr, int address_offset) |
| { |
| if (!a->p) { |
| if (a->u) { |
| address_offset += a->imm; |
| } else { |
| address_offset -= a->imm; |
| } |
| } else if (!a->w) { |
| return; |
| } |
| tcg_gen_addi_i32(addr, addr, address_offset); |
| store_reg(s, a->rn, addr); |
| } |
| |
| static bool op_load_ri(DisasContext *s, arg_ldst_ri *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| /* |
| * Perform base writeback before the loaded value to |
| * ensure correct behavior with overlapping index registers. |
| */ |
| op_addr_ri_post(s, a, addr, 0); |
| store_reg_from_load(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; |
| TCGv_i32 addr, tmp; |
| |
| /* |
| * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it |
| * is either UNPREDICTABLE or has defined behaviour |
| */ |
| if (s->thumb && a->rn == 15) { |
| return false; |
| } |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| op_addr_ri_post(s, a, addr, 0); |
| return true; |
| } |
| |
| static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| store_reg(s, a->rt, tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| store_reg(s, rt2, tmp); |
| |
| /* LDRD w/ base writeback is undefined if the registers overlap. */ |
| op_addr_ri_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a) |
| { |
| if (!ENABLE_ARCH_5TE || (a->rt & 1)) { |
| return false; |
| } |
| return op_ldrd_ri(s, a, a->rt + 1); |
| } |
| |
| static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) |
| { |
| arg_ldst_ri b = { |
| .u = a->u, .w = a->w, .p = a->p, |
| .rn = a->rn, .rt = a->rt, .imm = a->imm |
| }; |
| return op_ldrd_ri(s, &b, a->rt2); |
| } |
| |
| static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = load_reg(s, rt2); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| |
| op_addr_ri_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a) |
| { |
| if (!ENABLE_ARCH_5TE || (a->rt & 1)) { |
| return false; |
| } |
| return op_strd_ri(s, a, a->rt + 1); |
| } |
| |
| static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) |
| { |
| arg_ldst_ri b = { |
| .u = a->u, .w = a->w, .p = a->p, |
| .rn = a->rn, .rt = a->rt, .imm = a->imm |
| }; |
| return op_strd_ri(s, &b, a->rt2); |
| } |
| |
| #define DO_LDST(NAME, WHICH, MEMOP) \ |
| static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \ |
| { \ |
| return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \ |
| { \ |
| return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \ |
| { \ |
| return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \ |
| { \ |
| return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \ |
| } |
| |
| DO_LDST(LDR, load, MO_UL) |
| DO_LDST(LDRB, load, MO_UB) |
| DO_LDST(LDRH, load, MO_UW) |
| DO_LDST(LDRSB, load, MO_SB) |
| DO_LDST(LDRSH, load, MO_SW) |
| |
| DO_LDST(STR, store, MO_UL) |
| DO_LDST(STRB, store, MO_UB) |
| DO_LDST(STRH, store, MO_UW) |
| |
| #undef DO_LDST |
| |
| /* |
| * Synchronization primitives |
| */ |
| |
| static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc) |
| { |
| TCGv_i32 addr, tmp; |
| TCGv taddr; |
| |
| opc |= s->be_data; |
| addr = load_reg(s, a->rn); |
| taddr = gen_aa32_addr(s, addr, opc); |
| |
| tmp = load_reg(s, a->rt2); |
| tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc); |
| |
| store_reg(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool trans_SWP(DisasContext *s, arg_SWP *a) |
| { |
| return op_swp(s, a, MO_UL | MO_ALIGN); |
| } |
| |
| static bool trans_SWPB(DisasContext *s, arg_SWP *a) |
| { |
| return op_swp(s, a, MO_UB); |
| } |
| |
| /* |
| * Load/Store Exclusive and Load-Acquire/Store-Release |
| */ |
| |
| static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel) |
| { |
| TCGv_i32 addr; |
| /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ |
| bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); |
| |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rd == 15 || a->rn == 15 || a->rt == 15 |
| || a->rd == a->rn || a->rd == a->rt |
| || (!v8a && s->thumb && (a->rd == 13 || a->rt == 13)) |
| || (mop == MO_64 |
| && (a->rt2 == 15 |
| || a->rd == a->rt2 |
| || (!v8a && s->thumb && a->rt2 == 13)))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| if (rel) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| |
| addr = tcg_temp_new_i32(); |
| load_reg_var(s, addr, a->rn); |
| tcg_gen_addi_i32(addr, addr, a->imm); |
| |
| gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop); |
| return true; |
| } |
| |
| static bool trans_STREX(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_strex(s, a, MO_32, false); |
| } |
| |
| static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_6K) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_strex(s, a, MO_64, false); |
| } |
| |
| static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a) |
| { |
| return op_strex(s, a, MO_64, false); |
| } |
| |
| static bool trans_STREXB(DisasContext *s, arg_STREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_strex(s, a, MO_8, false); |
| } |
| |
| static bool trans_STREXH(DisasContext *s, arg_STREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_strex(s, a, MO_16, false); |
| } |
| |
| static bool trans_STLEX(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_32, true); |
| } |
| |
| static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_strex(s, a, MO_64, true); |
| } |
| |
| static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_64, true); |
| } |
| |
| static bool trans_STLEXB(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_8, true); |
| } |
| |
| static bool trans_STLEXH(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_16, true); |
| } |
| |
| static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = load_reg(s, a->rt); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); |
| disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite); |
| |
| return true; |
| } |
| |
| static bool trans_STL(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UL); |
| } |
| |
| static bool trans_STLB(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UB); |
| } |
| |
| static bool trans_STLH(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UW); |
| } |
| |
| static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq) |
| { |
| TCGv_i32 addr; |
| /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ |
| bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); |
| |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15 |
| || (!v8a && s->thumb && a->rt == 13) |
| || (mop == MO_64 |
| && (a->rt2 == 15 || a->rt == a->rt2 |
| || (!v8a && s->thumb && a->rt2 == 13)))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = tcg_temp_new_i32(); |
| load_reg_var(s, addr, a->rn); |
| tcg_gen_addi_i32(addr, addr, a->imm); |
| |
| gen_load_exclusive(s, a->rt, a->rt2, addr, mop); |
| |
| if (acq) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return true; |
| } |
| |
| static bool trans_LDREX(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_32, false); |
| } |
| |
| static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_6K) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_ldrex(s, a, MO_64, false); |
| } |
| |
| static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a) |
| { |
| return op_ldrex(s, a, MO_64, false); |
| } |
| |
| static bool trans_LDREXB(DisasContext *s, arg_LDREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_8, false); |
| } |
| |
| static bool trans_LDREXH(DisasContext *s, arg_LDREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_16, false); |
| } |
| |
| static bool trans_LDAEX(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_32, true); |
| } |
| |
| static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_ldrex(s, a, MO_64, true); |
| } |
| |
| static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_64, true); |
| } |
| |
| static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_8, true); |
| } |
| |
| static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_16, true); |
| } |
| |
| static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); |
| disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel); |
| |
| store_reg(s, a->rt, tmp); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| return true; |
| } |
| |
| static bool trans_LDA(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UL); |
| } |
| |
| static bool trans_LDAB(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UB); |
| } |
| |
| static bool trans_LDAH(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UW); |
| } |
| |
| /* |
| * Media instructions |
| */ |
| |
| static bool trans_USADA8(DisasContext *s, arg_USADA8 *a) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| gen_helper_usad8(t1, t1, t2); |
| if (a->ra != 15) { |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add_i32(t1, t1, t2); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u) |
| { |
| TCGv_i32 tmp; |
| int width = a->widthm1 + 1; |
| int shift = a->lsb; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| if (shift + width > 32) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| tmp = load_reg(s, a->rn); |
| if (u) { |
| tcg_gen_extract_i32(tmp, tmp, shift, width); |
| } else { |
| tcg_gen_sextract_i32(tmp, tmp, shift, width); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SBFX(DisasContext *s, arg_SBFX *a) |
| { |
| return op_bfx(s, a, false); |
| } |
| |
| static bool trans_UBFX(DisasContext *s, arg_UBFX *a) |
| { |
| return op_bfx(s, a, true); |
| } |
| |
| static bool trans_BFCI(DisasContext *s, arg_BFCI *a) |
| { |
| int msb = a->msb, lsb = a->lsb; |
| TCGv_i32 t_in, t_rd; |
| int width; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| if (msb < lsb) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| width = msb + 1 - lsb; |
| if (a->rn == 15) { |
| /* BFC */ |
| t_in = tcg_constant_i32(0); |
| } else { |
| /* BFI */ |
| t_in = load_reg(s, a->rn); |
| } |
| t_rd = load_reg(s, a->rd); |
| tcg_gen_deposit_i32(t_rd, t_rd, t_in, lsb, width); |
| store_reg(s, a->rd, t_rd); |
| return true; |
| } |
| |
| static bool trans_UDF(DisasContext *s, arg_UDF *a) |
| { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| /* |
| * Parallel addition and subtraction |
| */ |
| |
| static bool op_par_addsub(DisasContext *s, arg_rrr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| |
| gen(t0, t0, t1); |
| |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, |
| TCGv_i32, TCGv_ptr)) |
| { |
| TCGv_i32 t0, t1; |
| TCGv_ptr ge; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| |
| ge = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(ge, tcg_env, offsetof(CPUARMState, GE)); |
| gen(t0, t0, t1, ge); |
| |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| #define DO_PAR_ADDSUB(NAME, helper) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_par_addsub(s, a, helper); \ |
| } |
| |
| #define DO_PAR_ADDSUB_GE(NAME, helper) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_par_addsub_ge(s, a, helper); \ |
| } |
| |
| DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16) |
| DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx) |
| DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx) |
| DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16) |
| DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8) |
| DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8) |
| |
| DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16) |
| DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx) |
| DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx) |
| DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16) |
| DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8) |
| DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8) |
| |
| DO_PAR_ADDSUB(QADD16, gen_helper_qadd16) |
| DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx) |
| DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx) |
| DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16) |
| DO_PAR_ADDSUB(QADD8, gen_helper_qadd8) |
| DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8) |
| |
| DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16) |
| DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx) |
| DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx) |
| DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16) |
| DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8) |
| DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8) |
| |
| DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16) |
| DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx) |
| DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx) |
| DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16) |
| DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8) |
| DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8) |
| |
| DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16) |
| DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx) |
| DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx) |
| DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16) |
| DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8) |
| DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8) |
| |
| #undef DO_PAR_ADDSUB |
| #undef DO_PAR_ADDSUB_GE |
| |
| /* |
| * Packing, unpacking, saturation, and reversal |
| */ |
| |
| static bool trans_PKH(DisasContext *s, arg_PKH *a) |
| { |
| TCGv_i32 tn, tm; |
| int shift = a->imm; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tn = load_reg(s, a->rn); |
| tm = load_reg(s, a->rm); |
| if (a->tb) { |
| /* PKHTB */ |
| if (shift == 0) { |
| shift = 31; |
| } |
| tcg_gen_sari_i32(tm, tm, shift); |
| tcg_gen_deposit_i32(tn, tn, tm, 0, 16); |
| } else { |
| /* PKHBT */ |
| tcg_gen_shli_i32(tm, tm, shift); |
| tcg_gen_deposit_i32(tn, tm, tn, 0, 16); |
| } |
| store_reg(s, a->rd, tn); |
| return true; |
| } |
| |
| static bool op_sat(DisasContext *s, arg_sat *a, |
| void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp; |
| int shift = a->imm; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rn); |
| if (a->sh) { |
| tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31); |
| } else { |
| tcg_gen_shli_i32(tmp, tmp, shift); |
| } |
| |
| gen(tmp, tcg_env, tmp, tcg_constant_i32(a->satimm)); |
| |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SSAT(DisasContext *s, arg_sat *a) |
| { |
| return op_sat(s, a, gen_helper_ssat); |
| } |
| |
| static bool trans_USAT(DisasContext *s, arg_sat *a) |
| { |
| return op_sat(s, a, gen_helper_usat); |
| } |
| |
| static bool trans_SSAT16(DisasContext *s, arg_sat *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_sat(s, a, gen_helper_ssat16); |
| } |
| |
| static bool trans_USAT16(DisasContext *s, arg_sat *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_sat(s, a, gen_helper_usat16); |
| } |
| |
| static bool op_xta(DisasContext *s, arg_rrr_rot *a, |
| void (*gen_extract)(TCGv_i32, TCGv_i32), |
| void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rm); |
| /* |
| * TODO: In many cases we could do a shift instead of a rotate. |
| * Combined with a simple extend, that becomes an extract. |
| */ |
| tcg_gen_rotri_i32(tmp, tmp, a->rot * 8); |
| gen_extract(tmp, tmp); |
| |
| if (a->rn != 15) { |
| TCGv_i32 tmp2 = load_reg(s, a->rn); |
| gen_add(tmp, tmp, tmp2); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_xta(s, a, gen_helper_sxtb16, gen_add16); |
| } |
| |
| static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_xta(s, a, gen_helper_uxtb16, gen_add16); |
| } |
| |
| static bool trans_SEL(DisasContext *s, arg_rrr *a) |
| { |
| TCGv_i32 t1, t2, t3; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| t3 = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(t3, tcg_env, offsetof(CPUARMState, GE)); |
| gen_helper_sel_flags(t1, t3, t1, t2); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_rr(DisasContext *s, arg_rr *a, |
| void (*gen)(TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp; |
| |
| tmp = load_reg(s, a->rm); |
| gen(tmp, tmp); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_REV(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, tcg_gen_bswap32_i32); |
| } |
| |
| static bool trans_REV16(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, gen_rev16); |
| } |
| |
| static bool trans_REVSH(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, gen_revsh); |
| } |
| |
| static bool trans_RBIT(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| return op_rr(s, a, gen_helper_rbit); |
| } |
| |
| /* |
| * Signed multiply, signed and unsigned divide |
| */ |
| |
| static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (m_swap) { |
| gen_swap_half(t2, t2); |
| } |
| gen_smul_dual(t1, t2); |
| |
| if (sub) { |
| /* |
| * This subtraction cannot overflow, so we can do a simple |
| * 32-bit subtraction and then a possible 32-bit saturating |
| * addition of Ra. |
| */ |
| tcg_gen_sub_i32(t1, t1, t2); |
| |
| if (a->ra != 15) { |
| t2 = load_reg(s, a->ra); |
| gen_helper_add_setq(t1, tcg_env, t1, t2); |
| } |
| } else if (a->ra == 15) { |
| /* Single saturation-checking addition */ |
| gen_helper_add_setq(t1, tcg_env, t1, t2); |
| } else { |
| /* |
| * We need to add the products and Ra together and then |
| * determine whether the final result overflowed. Doing |
| * this as two separate add-and-check-overflow steps incorrectly |
| * sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1. |
| * Do all the arithmetic at 64-bits and then check for overflow. |
| */ |
| TCGv_i64 p64, q64; |
| TCGv_i32 t3, qf, one; |
| |
| p64 = tcg_temp_new_i64(); |
| q64 = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(p64, t1); |
| tcg_gen_ext_i32_i64(q64, t2); |
| tcg_gen_add_i64(p64, p64, q64); |
| load_reg_var(s, t2, a->ra); |
| tcg_gen_ext_i32_i64(q64, t2); |
| tcg_gen_add_i64(p64, p64, q64); |
| |
| tcg_gen_extr_i64_i32(t1, t2, p64); |
| /* |
| * t1 is the low half of the result which goes into Rd. |
| * We have overflow and must set Q if the high half (t2) |
| * is different from the sign-extension of t1. |
| */ |
| t3 = tcg_temp_new_i32(); |
| tcg_gen_sari_i32(t3, t1, 31); |
| qf = load_cpu_field(QF); |
| one = tcg_constant_i32(1); |
| tcg_gen_movcond_i32(TCG_COND_NE, qf, t2, t3, one, qf); |
| store_cpu_field(qf, QF); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SMLAD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, false, false); |
| } |
| |
| static bool trans_SMLADX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, true, false); |
| } |
| |
| static bool trans_SMLSD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, false, true); |
| } |
| |
| static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, true, true); |
| } |
| |
| static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| TCGv_i64 l1, l2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (m_swap) { |
| gen_swap_half(t2, t2); |
| } |
| gen_smul_dual(t1, t2); |
| |
| l1 = tcg_temp_new_i64(); |
| l2 = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(l1, t1); |
| tcg_gen_ext_i32_i64(l2, t2); |
| |
| if (sub) { |
| tcg_gen_sub_i64(l1, l1, l2); |
| } else { |
| tcg_gen_add_i64(l1, l1, l2); |
| } |
| |
| gen_addq(s, l1, a->ra, a->rd); |
| gen_storeq_reg(s, a->ra, a->rd, l1); |
| return true; |
| } |
| |
| static bool trans_SMLALD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, false, false); |
| } |
| |
| static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, true, false); |
| } |
| |
| static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, false, true); |
| } |
| |
| static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, true, true); |
| } |
| |
| static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_muls2_i32(t2, t1, t1, t2); |
| |
| if (a->ra != 15) { |
| TCGv_i32 t3 = load_reg(s, a->ra); |
| if (sub) { |
| /* |
| * For SMMLS, we need a 64-bit subtract. Borrow caused by |
| * a non-zero multiplicand lowpart, and the correct result |
| * lowpart for rounding. |
| */ |
| tcg_gen_sub2_i32(t2, t1, tcg_constant_i32(0), t3, t2, t1); |
| } else { |
| tcg_gen_add_i32(t1, t1, t3); |
| } |
| } |
| if (round) { |
| /* |
| * Adding 0x80000000 to the 64-bit quantity means that we have |
| * carry in to the high word when the low word has the msb set. |
| */ |
| tcg_gen_shri_i32(t2, t2, 31); |
| tcg_gen_add_i32(t1, t1, t2); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SMMLA(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, false, false); |
| } |
| |
| static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, true, false); |
| } |
| |
| static bool trans_SMMLS(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, false, true); |
| } |
| |
| static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, true, true); |
| } |
| |
| static bool op_div(DisasContext *s, arg_rrr *a, bool u) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (s->thumb |
| ? !dc_isar_feature(aa32_thumb_div, s) |
| : !dc_isar_feature(aa32_arm_div, s)) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (u) { |
| gen_helper_udiv(t1, tcg_env, t1, t2); |
| } else { |
| gen_helper_sdiv(t1, tcg_env, t1, t2); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SDIV(DisasContext *s, arg_rrr *a) |
| { |
| return op_div(s, a, false); |
| } |
| |
| static bool trans_UDIV(DisasContext *s, arg_rrr *a) |
| { |
| return op_div(s, a, true); |
| } |
| |
| /* |
| * Block data transfer |
| */ |
| |
| static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n) |
| { |
| TCGv_i32 addr = load_reg(s, a->rn); |
| |
| if (a->b) { |
| if (a->i) { |
| /* pre increment */ |
| tcg_gen_addi_i32(addr, addr, 4); |
| } else { |
| /* pre decrement */ |
| tcg_gen_addi_i32(addr, addr, -(n * 4)); |
| } |
| } else if (!a->i && n != 1) { |
| /* post decrement */ |
| tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * If the writeback is incrementing SP rather than |
| * decrementing it, and the initial SP is below the |
| * stack limit but the final written-back SP would |
| * be above, then we must not perform any memory |
| * accesses, but it is IMPDEF whether we generate |
| * an exception. We choose to do so in this case. |
| * At this point 'addr' is the lowest address, so |
| * either the original SP (if incrementing) or our |
| * final SP (if decrementing), so that's what we check. |
| */ |
| gen_helper_v8m_stackcheck(tcg_env, addr); |
| } |
| |
| return addr; |
| } |
| |
| static void op_addr_block_post(DisasContext *s, arg_ldst_block *a, |
| TCGv_i32 addr, int n) |
| { |
| if (a->w) { |
| /* write back */ |
| if (!a->b) { |
| if (a->i) { |
| /* post increment */ |
| tcg_gen_addi_i32(addr, addr, 4); |
| } else { |
| /* post decrement */ |
| tcg_gen_addi_i32(addr, addr, -(n * 4)); |
| } |
| } else if (!a->i && n != 1) { |
| /* pre decrement */ |
| tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); |
| } |
| store_reg(s, a->rn, addr); |
| } |
| } |
| |
| static bool op_stm(DisasContext *s, arg_ldst_block *a) |
| { |
| int i, j, n, list, mem_idx; |
| bool user = a->u; |
| TCGv_i32 addr, tmp; |
| |
| if (user) { |
| /* STM (user) */ |
| if (IS_USER(s)) { |
| /* Only usable in supervisor mode. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| } |
| |
| list = a->list; |
| n = ctpop16(list); |
| /* |
| * This is UNPREDICTABLE for n < 1 in all encodings, and we choose |
| * to UNDEF. In the T32 STM encoding n == 1 is also UNPREDICTABLE, |
| * but hardware treats it like the A32 version and implements the |
| * single-register-store, and some in-the-wild (buggy) software |
| * assumes that, so we don't UNDEF on that case. |
| */ |
| if (n < 1 || a->rn == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| s->eci_handled = true; |
| |
| addr = op_addr_block_pre(s, a, n); |
| mem_idx = get_mem_index(s); |
| |
| for (i = j = 0; i < 16; i++) { |
| if (!(list & (1 << i))) { |
| continue; |
| } |
| |
| if (user && i != 15) { |
| tmp = tcg_temp_new_i32(); |
| gen_helper_get_user_reg(tmp, tcg_env, tcg_constant_i32(i)); |
| } else { |
| tmp = load_reg(s, i); |
| } |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| |
| /* No need to add after the last transfer. */ |
| if (++j != n) { |
| tcg_gen_addi_i32(addr, addr, 4); |
| } |
| } |
| |
| op_addr_block_post(s, a, addr, n); |
| clear_eci_state(s); |
| return true; |
| } |
| |
| static bool trans_STM(DisasContext *s, arg_ldst_block *a) |
| { |
| return op_stm(s, a); |
| } |
| |
| static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback register in register list is UNPREDICTABLE for T32. */ |
| if (a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| return op_stm(s, a); |
| } |
| |
| static bool do_ldm(DisasContext *s, arg_ldst_block *a) |
| { |
| int i, j, n, list, mem_idx; |
| bool loaded_base; |
| bool user = a->u; |
| bool exc_return = false; |
| TCGv_i32 addr, tmp, loaded_var; |
| |
| if (user) { |
| /* LDM (user), LDM (exception return) */ |
| if (IS_USER(s)) { |
| /* Only usable in supervisor mode. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| if (extract32(a->list, 15, 1)) { |
| exc_return = true; |
| user = false; |
| } else { |
| /* LDM (user) does not allow writeback. */ |
| if (a->w) { |
| unallocated_encoding(s); |
| return true; |
| } |
| } |
| } |
| |
| list = a->list; |
| n = ctpop16(list); |
| /* |
| * This is UNPREDICTABLE for n < 1 in all encodings, and we choose |
| * to UNDEF. In the T32 LDM encoding n == 1 is also UNPREDICTABLE, |
| * but hardware treats it like the A32 version and implements the |
| * single-register-load, and some in-the-wild (buggy) software |
| * assumes that, so we don't UNDEF on that case. |
| */ |
| if (n < 1 || a->rn == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| s->eci_handled = true; |
| |
| addr = op_addr_block_pre(s, a, n); |
| mem_idx = get_mem_index(s); |
| loaded_base = false; |
| loaded_var = NULL; |
| |
| for (i = j = 0; i < 16; i++) { |
| if (!(list & (1 << i))) { |
| continue; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); |
| if (user) { |
| gen_helper_set_user_reg(tcg_env, tcg_constant_i32(i), tmp); |
| } else if (i == a->rn) { |
| loaded_var = tmp; |
| loaded_base = true; |
| } else if (i == 15 && exc_return) { |
| store_pc_exc_ret(s, tmp); |
| } else { |
| store_reg_from_load(s, i, tmp); |
| } |
| |
| /* No need to add after the last transfer. */ |
| if (++j != n) { |
| tcg_gen_addi_i32(addr, addr, 4); |
| } |
| } |
| |
| op_addr_block_post(s, a, addr, n); |
| |
| if (loaded_base) { |
| /* Note that we reject base == pc above. */ |
| store_reg(s, a->rn, loaded_var); |
| } |
| |
| if (exc_return) { |
| /* Restore CPSR from SPSR. */ |
| tmp = load_cpu_field(spsr); |
| translator_io_start(&s->base); |
| gen_helper_cpsr_write_eret(tcg_env, tmp); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| clear_eci_state(s); |
| return true; |
| } |
| |
| static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* |
| * Writeback register in register list is UNPREDICTABLE |
| * for ArchVersion() >= 7. Prior to v7, A32 would write |
| * an UNKNOWN value to the base register. |
| */ |
| if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| return do_ldm(s, a); |
| } |
| |
| static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback register in register list is UNPREDICTABLE for T32. */ |
| if (a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| return do_ldm(s, a); |
| } |
| |
| static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback is conditional on the base register not being loaded. */ |
| a->w = !(a->list & (1 << a->rn)); |
| return do_ldm(s, a); |
| } |
| |
| static bool trans_CLRM(DisasContext *s, arg_CLRM *a) |
| { |
| int i; |
| TCGv_i32 zero; |
| |
| if (!dc_isar_feature(aa32_m_sec_state, s)) { |
| return false; |
| } |
| |
| if (extract32(a->list, 13, 1)) { |
| return false; |
| } |
| |
| if (!a->list) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| return false; |
| } |
| |
| s->eci_handled = true; |
| |
| zero = tcg_constant_i32(0); |
| for (i = 0; i < 15; i++) { |
| if (extract32(a->list, i, 1)) { |
| /* Clear R[i] */ |
| tcg_gen_mov_i32(cpu_R[i], zero); |
| } |
| } |
| if (extract32(a->list, 15, 1)) { |
| /* |
| * Clear APSR (by calling the MSR helper with the same argument |
| * as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0) |
| */ |
| gen_helper_v7m_msr(tcg_env, tcg_constant_i32(0xc00), zero); |
| } |
| clear_eci_state(s); |
| return true; |
| } |
| |
| /* |
| * Branch, branch with link |
| */ |
| |
| static bool trans_B(DisasContext *s, arg_i *a) |
| { |
| gen_jmp(s, jmp_diff(s, a->imm)); |
| return true; |
| } |
| |
| static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a) |
| { |
| /* This has cond from encoding, required to be outside IT block. */ |
| if (a->cond >= 0xe) { |
| return false; |
| } |
| if (s->condexec_mask) { |
| unallocated_encoding(s); |
| return true; |
| } |
| arm_skip_unless(s, a->cond); |
| gen_jmp(s, jmp_diff(s, a->imm)); |
| return true; |
| } |
| |
| static bool trans_BL(DisasContext *s, arg_i *a) |
| { |
| gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); |
| gen_jmp(s, jmp_diff(s, a->imm)); |
| return true; |
| } |
| |
| static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a) |
| { |
| /* |
| * BLX <imm> would be useless on M-profile; the encoding space |
| * is used for other insns from v8.1M onward, and UNDEFs before that. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| |
| /* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */ |
| if (s->thumb && (a->imm & 2)) { |
| return false; |
| } |
| gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); |
| store_cpu_field_constant(!s->thumb, thumb); |
| /* This jump is computed from an aligned PC: subtract off the low bits. */ |
| gen_jmp(s, jmp_diff(s, a->imm - (s->pc_curr & 3))); |
| return true; |
| } |
| |
| static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a) |
| { |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| gen_pc_plus_diff(s, cpu_R[14], jmp_diff(s, a->imm << 12)); |
| return true; |
| } |
| |
| static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1); |
| gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a) |
| { |
| TCGv_i32 tmp; |
| |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1); |
| tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); |
| gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| static bool trans_BF(DisasContext *s, arg_BF *a) |
| { |
| /* |
| * M-profile branch future insns. The architecture permits an |
| * implementation to implement these as NOPs (equivalent to |
| * discarding the LO_BRANCH_INFO cache immediately), and we |
| * take that IMPDEF option because for QEMU a "real" implementation |
| * would be complicated and wouldn't execute any faster. |
| */ |
| if (!dc_isar_feature(aa32_lob, s)) { |
| return false; |
| } |
| if (a->boff == 0) { |
| /* SEE "Related encodings" (loop insns) */ |
| return false; |
| } |
| /* Handle as NOP */ |
| return true; |
| } |
| |
| static bool trans_DLS(DisasContext *s, arg_DLS *a) |
| { |
| /* M-profile low-overhead loop start */ |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_lob, s)) { |
| return false; |
| } |
| if (a->rn == 13 || a->rn == 15) { |
| /* |
| * For DLSTP rn == 15 is a related encoding (LCTP); the |
| * other cases caught by this condition are all |
| * CONSTRAINED UNPREDICTABLE: we choose to UNDEF |
| */ |
| return false; |
| } |
| |
| if (a->size != 4) { |
| /* DLSTP */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| } |
| |
| /* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */ |
| tmp = load_reg(s, a->rn); |
| store_reg(s, 14, tmp); |
| if (a->size != 4) { |
| /* DLSTP: set FPSCR.LTPSIZE */ |
| store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| } |
| return true; |
| } |
| |
| static bool trans_WLS(DisasContext *s, arg_WLS *a) |
| { |
| /* M-profile low-overhead while-loop start */ |
| TCGv_i32 tmp; |
| DisasLabel nextlabel; |
| |
| if (!dc_isar_feature(aa32_lob, s)) { |
| return false; |
| } |
| if (a->rn == 13 || a->rn == 15) { |
| /* |
| * For WLSTP rn == 15 is a related encoding (LE); the |
| * other cases caught by this condition are all |
| * CONSTRAINED UNPREDICTABLE: we choose to UNDEF |
| */ |
| return false; |
| } |
| if (s->condexec_mask) { |
| /* |
| * WLS in an IT block is CONSTRAINED UNPREDICTABLE; |
| * we choose to UNDEF, because otherwise our use of |
| * gen_goto_tb(1) would clash with the use of TB exit 1 |
| * in the dc->condjmp condition-failed codepath in |
| * arm_tr_tb_stop() and we'd get an assertion. |
| */ |
| return false; |
| } |
| if (a->size != 4) { |
| /* WLSTP */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| /* |
| * We need to check that the FPU is enabled here, but mustn't |
| * call vfp_access_check() to do that because we don't want to |
| * do the lazy state preservation in the "loop count is zero" case. |
| * Do the check-and-raise-exception by hand. |
| */ |
| if (s->fp_excp_el) { |
| gen_exception_insn_el(s, 0, EXCP_NOCP, |
| syn_uncategorized(), s->fp_excp_el); |
| return true; |
| } |
| } |
| |
| nextlabel = gen_disas_label(s); |
| tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_R[a->rn], 0, nextlabel.label); |
| tmp = load_reg(s, a->rn); |
| store_reg(s, 14, tmp); |
| if (a->size != 4) { |
| /* |
| * WLSTP: set FPSCR.LTPSIZE. This requires that we do the |
| * lazy state preservation, new FP context creation, etc, |
| * that vfp_access_check() does. We know that the actual |
| * access check will succeed (ie it won't generate code that |
| * throws an exception) because we did that check by hand earlier. |
| */ |
| bool ok = vfp_access_check(s); |
| assert(ok); |
| store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); |
| /* |
| * LTPSIZE updated, but MVE_NO_PRED will always be the same thing (0) |
| * when we take this upcoming exit from this TB, so gen_jmp_tb() is OK. |
| */ |
| } |
| gen_jmp_tb(s, curr_insn_len(s), 1); |
| |
| set_disas_label(s, nextlabel); |
| gen_jmp(s, jmp_diff(s, a->imm)); |
| return true; |
| } |
| |
| static bool trans_LE(DisasContext *s, arg_LE *a) |
| { |
| /* |
| * M-profile low-overhead loop end. The architecture permits an |
| * implementation to discard the LO_BRANCH_INFO cache at any time, |
| * and we take the IMPDEF option to never set it in the first place |
| * (equivalent to always discarding it immediately), because for QEMU |
| * a "real" implementation would be complicated and wouldn't execute |
| * any faster. |
| */ |
| TCGv_i32 tmp; |
| DisasLabel loopend; |
| bool fpu_active; |
| |
| if (!dc_isar_feature(aa32_lob, s)) { |
| return false; |
| } |
| if (a->f && a->tp) { |
| return false; |
| } |
| if (s->condexec_mask) { |
| /* |
| * LE in an IT block is CONSTRAINED UNPREDICTABLE; |
| * we choose to UNDEF, because otherwise our use of |
| * gen_goto_tb(1) would clash with the use of TB exit 1 |
| * in the dc->condjmp condition-failed codepath in |
| * arm_tr_tb_stop() and we'd get an assertion. |
| */ |
| return false; |
| } |
| if (a->tp) { |
| /* LETP */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| if (!vfp_access_check(s)) { |
| s->eci_handled = true; |
| return true; |
| } |
| } |
| |
| /* LE/LETP is OK with ECI set and leaves it untouched */ |
| s->eci_handled = true; |
| |
| /* |
| * With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE |
| * UsageFault exception for the LE insn in that case. Note that we |
| * are not directly checking FPSCR.LTPSIZE but instead check the |
| * pseudocode LTPSIZE() function, which returns 4 if the FPU is |
| * not currently active (ie ActiveFPState() returns false). We |
| * can identify not-active purely from our TB state flags, as the |
| * FPU is active only if: |
| * the FPU is enabled |
| * AND lazy state preservation is not active |
| * AND we do not need a new fp context (this is the ASPEN/FPCA check) |
| * |
| * Usually we don't need to care about this distinction between |
| * LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check() |
| * will either take an exception or clear the conditions that make |
| * the FPU not active. But LE is an unusual case of a non-FP insn |
| * that looks at LTPSIZE. |
| */ |
| fpu_active = !s->fp_excp_el && !s->v7m_lspact && !s->v7m_new_fp_ctxt_needed; |
| |
| if (!a->tp && dc_isar_feature(aa32_mve, s) && fpu_active) { |
| /* Need to do a runtime check for LTPSIZE != 4 */ |
| DisasLabel skipexc = gen_disas_label(s); |
| tmp = load_cpu_field(v7m.ltpsize); |
| tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 4, skipexc.label); |
| gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); |
| set_disas_label(s, skipexc); |
| } |
| |
| if (a->f) { |
| /* Loop-forever: just jump back to the loop start */ |
| gen_jmp(s, jmp_diff(s, -a->imm)); |
| return true; |
| } |
| |
| /* |
| * Not loop-forever. If LR <= loop-decrement-value this is the last loop. |
| * For LE, we know at this point that LTPSIZE must be 4 and the |
| * loop decrement value is 1. For LETP we need to calculate the decrement |
| * value from LTPSIZE. |
| */ |
| loopend = gen_disas_label(s); |
| if (!a->tp) { |
| tcg_gen_brcondi_i32(TCG_COND_LEU, cpu_R[14], 1, loopend.label); |
| tcg_gen_addi_i32(cpu_R[14], cpu_R[14], -1); |
| } else { |
| /* |
| * Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local |
| * so that decr stays live after the brcondi. |
| */ |
| TCGv_i32 decr = tcg_temp_new_i32(); |
| TCGv_i32 ltpsize = load_cpu_field(v7m.ltpsize); |
| tcg_gen_sub_i32(decr, tcg_constant_i32(4), ltpsize); |
| tcg_gen_shl_i32(decr, tcg_constant_i32(1), decr); |
| |
| tcg_gen_brcond_i32(TCG_COND_LEU, cpu_R[14], decr, loopend.label); |
| |
| tcg_gen_sub_i32(cpu_R[14], cpu_R[14], decr); |
| } |
| /* Jump back to the loop start */ |
| gen_jmp(s, jmp_diff(s, -a->imm)); |
| |
| set_disas_label(s, loopend); |
| if (a->tp) { |
| /* Exits from tail-pred loops must reset LTPSIZE to 4 */ |
| store_cpu_field(tcg_constant_i32(4), v7m.ltpsize); |
| } |
| /* End TB, continuing to following insn */ |
| gen_jmp_tb(s, curr_insn_len(s), 1); |
| return true; |
| } |
| |
| static bool trans_LCTP(DisasContext *s, arg_LCTP *a) |
| { |
| /* |
| * M-profile Loop Clear with Tail Predication. Since our implementation |
| * doesn't cache branch information, all we need to do is reset |
| * FPSCR.LTPSIZE to 4. |
| */ |
| |
| if (!dc_isar_feature(aa32_lob, s) || |
| !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| store_cpu_field_constant(4, v7m.ltpsize); |
| return true; |
| } |
| |
| static bool trans_VCTP(DisasContext *s, arg_VCTP *a) |
| { |
| /* |
| * M-profile Create Vector Tail Predicate. This insn is itself |
| * predicated and is subject to beatwise execution. |
| */ |
| TCGv_i32 rn_shifted, masklen; |
| |
| if (!dc_isar_feature(aa32_mve, s) || a->rn == 13 || a->rn == 15) { |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* |
| * We pre-calculate the mask length here to avoid having |
| * to have multiple helpers specialized for size. |
| * We pass the helper "rn <= (1 << (4 - size)) ? (rn << size) : 16". |
| */ |
| rn_shifted = tcg_temp_new_i32(); |
| masklen = load_reg(s, a->rn); |
| tcg_gen_shli_i32(rn_shifted, masklen, a->size); |
| tcg_gen_movcond_i32(TCG_COND_LEU, masklen, |
| masklen, tcg_constant_i32(1 << (4 - a->size)), |
| rn_shifted, tcg_constant_i32(16)); |
| gen_helper_mve_vctp(tcg_env, masklen); |
| /* This insn updates predication bits */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half) |
| { |
| TCGv_i32 addr, tmp; |
| |
| tmp = load_reg(s, a->rm); |
| if (half) { |
| tcg_gen_add_i32(tmp, tmp, tmp); |
| } |
| addr = load_reg(s, a->rn); |
| tcg_gen_add_i32(addr, addr, tmp); |
| |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), half ? MO_UW : MO_UB); |
| |
| tcg_gen_add_i32(tmp, tmp, tmp); |
| gen_pc_plus_diff(s, addr, jmp_diff(s, 0)); |
| tcg_gen_add_i32(tmp, tmp, addr); |
| store_reg(s, 15, tmp); |
| return true; |
| } |
| |
| static bool trans_TBB(DisasContext *s, arg_tbranch *a) |
| { |
| return op_tbranch(s, a, false); |
| } |
| |
| static bool trans_TBH(DisasContext *s, arg_tbranch *a) |
| { |
| return op_tbranch(s, a, true); |
| } |
| |
| static bool trans_CBZ(DisasContext *s, arg_CBZ *a) |
| { |
| TCGv_i32 tmp = load_reg(s, a->rn); |
| |
| arm_gen_condlabel(s); |
| tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE, |
| tmp, 0, s->condlabel.label); |
| gen_jmp(s, jmp_diff(s, a->imm)); |
| return true; |
| } |
| |
| /* |
| * Supervisor call - both T32 & A32 come here so we need to check |
| * which mode we are in when checking for semihosting. |
| */ |
| |
| static bool trans_SVC(DisasContext *s, arg_SVC *a) |
| { |
| const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M) && |
| semihosting_enabled(s->current_el == 0) && |
| (a->imm == semihost_imm)) { |
| gen_exception_internal_insn(s, EXCP_SEMIHOST); |
| } else { |
| if (s->fgt_svc) { |
| uint32_t syndrome = syn_aa32_svc(a->imm, s->thumb); |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); |
| } else { |
| gen_update_pc(s, curr_insn_len(s)); |
| s->svc_imm = a->imm; |
| s->base.is_jmp = DISAS_SWI; |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * Unconditional system instructions |
| */ |
| |
| static bool trans_RFE(DisasContext *s, arg_RFE *a) |
| { |
| static const int8_t pre_offset[4] = { |
| /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4 |
| }; |
| static const int8_t post_offset[4] = { |
| /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0 |
| }; |
| TCGv_i32 addr, t1, t2; |
| |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]); |
| |
| /* Load PC into tmp and CPSR into tmp2. */ |
| t1 = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, t1, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| tcg_gen_addi_i32(addr, addr, 4); |
| t2 = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, t2, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| |
| if (a->w) { |
| /* Base writeback. */ |
| tcg_gen_addi_i32(addr, addr, post_offset[a->pu]); |
| store_reg(s, a->rn, addr); |
| } |
| gen_rfe(s, t1, t2); |
| return true; |
| } |
| |
| static bool trans_SRS(DisasContext *s, arg_SRS *a) |
| { |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_srs(s, a->mode, a->pu, a->w); |
| return true; |
| } |
| |
| static bool trans_CPS(DisasContext *s, arg_CPS *a) |
| { |
| uint32_t mask, val; |
| |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| /* Implemented as NOP in user mode. */ |
| return true; |
| } |
| /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */ |
| |
| mask = val = 0; |
| if (a->imod & 2) { |
| if (a->A) { |
| mask |= CPSR_A; |
| } |
| if (a->I) { |
| mask |= CPSR_I; |
| } |
| if (a->F) { |
| mask |= CPSR_F; |
| } |
| if (a->imod & 1) { |
| val |= mask; |
| } |
| } |
| if (a->M) { |
| mask |= CPSR_M; |
| val |= a->mode; |
| } |
| if (mask) { |
| gen_set_psr_im(s, mask, 0, val); |
| } |
| return true; |
| } |
| |
| static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a) |
| { |
| TCGv_i32 tmp, addr; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| /* Implemented as NOP in user mode. */ |
| return true; |
| } |
| |
| tmp = tcg_constant_i32(a->im); |
| /* FAULTMASK */ |
| if (a->F) { |
| addr = tcg_constant_i32(19); |
| gen_helper_v7m_msr(tcg_env, addr, tmp); |
| } |
| /* PRIMASK */ |
| if (a->I) { |
| addr = tcg_constant_i32(16); |
| gen_helper_v7m_msr(tcg_env, addr, tmp); |
| } |
| gen_rebuild_hflags(s, false); |
| gen_lookup_tb(s); |
| return true; |
| } |
| |
| /* |
| * Clear-Exclusive, Barriers |
| */ |
| |
| static bool trans_CLREX(DisasContext *s, arg_CLREX *a) |
| { |
| if (s->thumb |
| ? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M) |
| : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| gen_clrex(s); |
| return true; |
| } |
| |
| static bool trans_DSB(DisasContext *s, arg_DSB *a) |
| { |
| if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| return true; |
| } |
| |
| static bool trans_DMB(DisasContext *s, arg_DMB *a) |
| { |
| return trans_DSB(s, NULL); |
| } |
| |
| static bool trans_ISB(DisasContext *s, arg_ISB *a) |
| { |
| if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| /* |
| * We need to break the TB after this insn to execute |
| * self-modifying code correctly and also to take |
| * any pending interrupts immediately. |
| */ |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_SB(DisasContext *s, arg_SB *a) |
| { |
| if (!dc_isar_feature(aa32_sb, s)) { |
| return false; |
| } |
| /* |
| * TODO: There is no speculation barrier opcode |
| * for TCG; MB and end the TB instead. |
| */ |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_SETEND(DisasContext *s, arg_SETEND *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| if (a->E != (s->be_data == MO_BE)) { |
| gen_helper_setend(tcg_env); |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| } |
| return true; |
| } |
| |
| /* |
| * Preload instructions |
| * All are nops, contingent on the appropriate arch level. |
| */ |
| |
| static bool trans_PLD(DisasContext *s, arg_PLD *a) |
| { |
| return ENABLE_ARCH_5TE; |
| } |
| |
| static bool trans_PLDW(DisasContext *s, arg_PLD *a) |
| { |
| return arm_dc_feature(s, ARM_FEATURE_V7MP); |
| } |
| |
| static bool trans_PLI(DisasContext *s, arg_PLD *a) |
| { |
| return ENABLE_ARCH_7; |
| } |
| |
| /* |
| * If-then |
| */ |
| |
| static bool trans_IT(DisasContext *s, arg_IT *a) |
| { |
| int cond_mask = a->cond_mask; |
| |
| /* |
| * No actual code generated for this insn, just setup state. |
| * |
| * Combinations of firstcond and mask which set up an 0b1111 |
| * condition are UNPREDICTABLE; we take the CONSTRAINED |
| * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110, |
| * i.e. both meaning "execute always". |
| */ |
| s->condexec_cond = (cond_mask >> 4) & 0xe; |
| s->condexec_mask = cond_mask & 0x1f; |
| return true; |
| } |
| |
| /* v8.1M CSEL/CSINC/CSNEG/CSINV */ |
| static bool trans_CSEL(DisasContext *s, arg_CSEL *a) |
| { |
| TCGv_i32 rn, rm; |
| DisasCompare c; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { |
| return false; |
| } |
| |
| if (a->rm == 13) { |
| /* SEE "Related encodings" (MVE shifts) */ |
| return false; |
| } |
| |
| if (a->rd == 13 || a->rd == 15 || a->rn == 13 || a->fcond >= 14) { |
| /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ |
| return false; |
| } |
| |
| /* In this insn input reg fields of 0b1111 mean "zero", not "PC" */ |
| rn = tcg_temp_new_i32(); |
| rm = tcg_temp_new_i32(); |
| if (a->rn == 15) { |
| tcg_gen_movi_i32(rn, 0); |
| } else { |
| load_reg_var(s, rn, a->rn); |
| } |
| if (a->rm == 15) { |
| tcg_gen_movi_i32(rm, 0); |
| } else { |
| load_reg_var(s, rm, a->rm); |
| } |
| |
| switch (a->op) { |
| case 0: /* CSEL */ |
| break; |
| case 1: /* CSINC */ |
| tcg_gen_addi_i32(rm, rm, 1); |
| break; |
| case 2: /* CSINV */ |
| tcg_gen_not_i32(rm, rm); |
| break; |
| case 3: /* CSNEG */ |
| tcg_gen_neg_i32(rm, rm); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| arm_test_cc(&c, a->fcond); |
| tcg_gen_movcond_i32(c.cond, rn, c.value, tcg_constant_i32(0), rn, rm); |
| |
| store_reg(s, a->rd, rn); |
| return true; |
| } |
| |
| /* |
| * Legacy decoder. |
| */ |
| |
| static void disas_arm_insn(DisasContext *s, unsigned int insn) |
| { |
| unsigned int cond = insn >> 28; |
| |
| /* M variants do not implement ARM mode; this must raise the INVSTATE |
| * UsageFault exception. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); |
| return; |
| } |
| |
| if (s->pstate_il) { |
| /* |
| * Illegal execution state. This has priority over BTI |
| * exceptions, but comes after instruction abort exceptions. |
| */ |
| gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); |
| return; |
| } |
| |
| if (cond == 0xf) { |
| /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we |
| * choose to UNDEF. In ARMv5 and above the space is used |
| * for miscellaneous unconditional instructions. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_V5)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Unconditional instructions. */ |
| /* TODO: Perhaps merge these into one decodetree output file. */ |
| if (disas_a32_uncond(s, insn) || |
| disas_vfp_uncond(s, insn) || |
| disas_neon_dp(s, insn) || |
| disas_neon_ls(s, insn) || |
| disas_neon_shared(s, insn)) { |
| return; |
| } |
| /* fall back to legacy decoder */ |
| |
| if ((insn & 0x0e000f00) == 0x0c000100) { |
| if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { |
| /* iWMMXt register transfer. */ |
| if (extract32(s->c15_cpar, 1, 1)) { |
| if (!disas_iwmmxt_insn(s, insn)) { |
| return; |
| } |
| } |
| } |
| } |
| goto illegal_op; |
| } |
| if (cond != 0xe) { |
| /* if not always execute, we generate a conditional jump to |
| next instruction */ |
| arm_skip_unless(s, cond); |
| } |
| |
| /* TODO: Perhaps merge these into one decodetree output file. */ |
| if (disas_a32(s, insn) || |
| disas_vfp(s, insn)) { |
| return; |
| } |
| /* fall back to legacy decoder */ |
| /* TODO: convert xscale/iwmmxt decoder to decodetree ?? */ |
| if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { |
| if (((insn & 0x0c000e00) == 0x0c000000) |
| && ((insn & 0x03000000) != 0x03000000)) { |
| /* Coprocessor insn, coprocessor 0 or 1 */ |
| disas_xscale_insn(s, insn); |
| return; |
| } |
| } |
| |
| illegal_op: |
| unallocated_encoding(s); |
| } |
| |
| static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn) |
| { |
| /* |
| * Return true if this is a 16 bit instruction. We must be precise |
| * about this (matching the decode). |
| */ |
| if ((insn >> 11) < 0x1d) { |
| /* Definitely a 16-bit instruction */ |
| return true; |
| } |
| |
| /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the |
| * first half of a 32-bit Thumb insn. Thumb-1 cores might |
| * end up actually treating this as two 16-bit insns, though, |
| * if it's half of a bl/blx pair that might span a page boundary. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_THUMB2) || |
| arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* Thumb2 cores (including all M profile ones) always treat |
| * 32-bit insns as 32-bit. |
| */ |
| return false; |
| } |
| |
| if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) { |
| /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix |
| * is not on the next page; we merge this into a 32-bit |
| * insn. |
| */ |
| return false; |
| } |
| /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF); |
| * 0b1111_1xxx_xxxx_xxxx : BL suffix; |
| * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page |
| * -- handle as single 16 bit insn |
| */ |
| return true; |
| } |
| |
| /* Translate a 32-bit thumb instruction. */ |
| static void disas_thumb2_insn(DisasContext *s, uint32_t insn) |
| { |
| /* |
| * ARMv6-M supports a limited subset of Thumb2 instructions. |
| * Other Thumb1 architectures allow only 32-bit |
| * combined BL/BLX prefix and suffix. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| !arm_dc_feature(s, ARM_FEATURE_V7)) { |
| int i; |
| bool found = false; |
| static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */, |
| 0xf3b08040 /* dsb */, |
| 0xf3b08050 /* dmb */, |
| 0xf3b08060 /* isb */, |
| 0xf3e08000 /* mrs */, |
| 0xf000d000 /* bl */}; |
| static const uint32_t armv6m_mask[] = {0xffe0d000, |
| 0xfff0d0f0, |
| 0xfff0d0f0, |
| 0xfff0d0f0, |
| 0xffe0d000, |
| 0xf800d000}; |
| |
| for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) { |
| if ((insn & armv6m_mask[i]) == armv6m_insn[i]) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| goto illegal_op; |
| } |
| } else if ((insn & 0xf800e800) != 0xf000e800) { |
| if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* |
| * NOCP takes precedence over any UNDEF for (almost) the |
| * entire wide range of coprocessor-space encodings, so check |
| * for it first before proceeding to actually decode eg VFP |
| * insns. This decode also handles the few insns which are |
| * in copro space but do not have NOCP checks (eg VLLDM, VLSTM). |
| */ |
| if (disas_m_nocp(s, insn)) { |
| return; |
| } |
| } |
| |
| if ((insn & 0xef000000) == 0xef000000) { |
| /* |
| * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq |
| * transform into |
| * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq |
| */ |
| uint32_t a32_insn = (insn & 0xe2ffffff) | |
| ((insn & (1 << 28)) >> 4) | (1 << 28); |
| |
| if (disas_neon_dp(s, a32_insn)) { |
| return; |
| } |
| } |
| |
| if ((insn & 0xff100000) == 0xf9000000) { |
| /* |
| * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq |
| * transform into |
| * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq |
| */ |
| uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000; |
| |
| if (disas_neon_ls(s, a32_insn)) { |
| return; |
| } |
| } |
| |
| /* |
| * TODO: Perhaps merge these into one decodetree output file. |
| * Note disas_vfp is written for a32 with cond field in the |
| * top nibble. The t32 encoding requires 0xe in the top nibble. |
| */ |
| if (disas_t32(s, insn) || |
| disas_vfp_uncond(s, insn) || |
| disas_neon_shared(s, insn) || |
| disas_mve(s, insn) || |
| ((insn >> 28) == 0xe && disas_vfp(s, insn))) { |
| return; |
| } |
| |
| illegal_op: |
| unallocated_encoding(s); |
| } |
| |
| static void disas_thumb_insn(DisasContext *s, uint32_t insn) |
| { |
| if (!disas_t16(s, insn)) { |
| unallocated_encoding(s); |
| } |
| } |
| |
| static bool insn_crosses_page(CPUARMState *env, DisasContext *s) |
| { |
| /* Return true if the insn at dc->base.pc_next might cross a page boundary. |
| * (False positives are OK, false negatives are not.) |
| * We know this is a Thumb insn, and our caller ensures we are |
| * only called if dc->base.pc_next is less than 4 bytes from the page |
| * boundary, so we cross the page if the first 16 bits indicate |
| * that this is a 32 bit insn. |
| */ |
| uint16_t insn = arm_lduw_code(env, &s->base, s->base.pc_next, s->sctlr_b); |
| |
| return !thumb_insn_is_16bit(s, s->base.pc_next, insn); |
| } |
| |
| static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu_env(cs); |
| ARMCPU *cpu = env_archcpu(env); |
| CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); |
| uint32_t condexec, core_mmu_idx; |
| |
| dc->isar = &cpu->isar; |
| dc->condjmp = 0; |
| dc->pc_save = dc->base.pc_first; |
| dc->aarch64 = false; |
| dc->thumb = EX_TBFLAG_AM32(tb_flags, THUMB); |
| dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; |
| condexec = EX_TBFLAG_AM32(tb_flags, CONDEXEC); |
| /* |
| * the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this |
| * is always the IT bits. On M-profile, some of the reserved encodings |
| * of IT are used instead to indicate either ICI or ECI, which |
| * indicate partial progress of a restartable insn that was interrupted |
| * partway through by an exception: |
| * * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits |
| * * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits |
| * In all cases CONDEXEC == 0 means "not in IT block or restartable |
| * insn, behave normally". |
| */ |
| dc->eci = dc->condexec_mask = dc->condexec_cond = 0; |
| dc->eci_handled = false; |
| if (condexec & 0xf) { |
| dc->condexec_mask = (condexec & 0xf) << 1; |
| dc->condexec_cond = condexec >> 4; |
| } else { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| dc->eci = condexec >> 4; |
| } |
| } |
| |
| core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); |
| dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx); |
| dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); |
| #if !defined(CONFIG_USER_ONLY) |
| dc->user = (dc->current_el == 0); |
| #endif |
| dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); |
| dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); |
| dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); |
| dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); |
| dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| dc->vfp_enabled = 1; |
| dc->be_data = MO_TE; |
| dc->v7m_handler_mode = EX_TBFLAG_M32(tb_flags, HANDLER); |
| dc->v8m_secure = EX_TBFLAG_M32(tb_flags, SECURE); |
| dc->v8m_stackcheck = EX_TBFLAG_M32(tb_flags, STACKCHECK); |
| dc->v8m_fpccr_s_wrong = EX_TBFLAG_M32(tb_flags, FPCCR_S_WRONG); |
| dc->v7m_new_fp_ctxt_needed = |
| EX_TBFLAG_M32(tb_flags, NEW_FP_CTXT_NEEDED); |
| dc->v7m_lspact = EX_TBFLAG_M32(tb_flags, LSPACT); |
| dc->mve_no_pred = EX_TBFLAG_M32(tb_flags, MVE_NO_PRED); |
| } else { |
| dc->sctlr_b = EX_TBFLAG_A32(tb_flags, SCTLR__B); |
| dc->hstr_active = EX_TBFLAG_A32(tb_flags, HSTR_ACTIVE); |
| dc->ns = EX_TBFLAG_A32(tb_flags, NS); |
| dc->vfp_enabled = EX_TBFLAG_A32(tb_flags, VFPEN); |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| dc->c15_cpar = EX_TBFLAG_A32(tb_flags, XSCALE_CPAR); |
| } else { |
| dc->vec_len = EX_TBFLAG_A32(tb_flags, VECLEN); |
| dc->vec_stride = EX_TBFLAG_A32(tb_flags, VECSTRIDE); |
| } |
| dc->sme_trap_nonstreaming = |
| EX_TBFLAG_A32(tb_flags, SME_TRAP_NONSTREAMING); |
| } |
| dc->lse2 = false; /* applies only to aarch64 */ |
| dc->cp_regs = cpu->cp_regs; |
| dc->features = env->features; |
| |
| /* Single step state. The code-generation logic here is: |
| * SS_ACTIVE == 0: |
| * generate code with no special handling for single-stepping (except |
| * that anything that can make us go to SS_ACTIVE == 1 must end the TB; |
| * this happens anyway because those changes are all system register or |
| * PSTATE writes). |
| * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) |
| * emit code for one insn |
| * emit code to clear PSTATE.SS |
| * emit code to generate software step exception for completed step |
| * end TB (as usual for having generated an exception) |
| * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) |
| * emit code to generate a software step exception |
| * end the TB |
| */ |
| dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); |
| dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); |
| dc->is_ldex = false; |
| |
| dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK; |
| |
| /* If architectural single step active, limit to 1. */ |
| if (dc->ss_active) { |
| dc->base.max_insns = 1; |
| } |
| |
| /* ARM is a fixed-length ISA. Bound the number of insns to execute |
| to those left on the page. */ |
| if (!dc->thumb) { |
| int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; |
| dc->base.max_insns = MIN(dc->base.max_insns, bound); |
| } |
| |
| cpu_V0 = tcg_temp_new_i64(); |
| cpu_V1 = tcg_temp_new_i64(); |
| cpu_M0 = tcg_temp_new_i64(); |
| } |
| |
| static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| /* A note on handling of the condexec (IT) bits: |
| * |
| * We want to avoid the overhead of having to write the updated condexec |
| * bits back to the CPUARMState for every instruction in an IT block. So: |
| * (1) if the condexec bits are not already zero then we write |
| * zero back into the CPUARMState now. This avoids complications trying |
| * to do it at the end of the block. (For example if we don't do this |
| * it's hard to identify whether we can safely skip writing condexec |
| * at the end of the TB, which we definitely want to do for the case |
| * where a TB doesn't do anything with the IT state at all.) |
| * (2) if we are going to leave the TB then we call gen_set_condexec() |
| * which will write the correct value into CPUARMState if zero is wrong. |
| * This is done both for leaving the TB at the end, and for leaving |
| * it because of an exception we know will happen, which is done in |
| * gen_exception_insn(). The latter is necessary because we need to |
| * leave the TB with the PC/IT state just prior to execution of the |
| * instruction which caused the exception. |
| * (3) if we leave the TB unexpectedly (eg a data abort on a load) |
| * then the CPUARMState will be wrong and we need to reset it. |
| * This is handled in the same way as restoration of the |
| * PC in these situations; we save the value of the condexec bits |
| * for each PC via tcg_gen_insn_start(), and restore_state_to_opc() |
| * then uses this to restore them after an exception. |
| * |
| * Note that there are no instructions which can read the condexec |
| * bits, and none which can write non-static values to them, so |
| * we don't need to care about whether CPUARMState is correct in the |
| * middle of a TB. |
| */ |
| |
| /* Reset the conditional execution bits immediately. This avoids |
| complications trying to do it at the end of the block. */ |
| if (dc->condexec_mask || dc->condexec_cond) { |
| store_cpu_field_constant(0, condexec_bits); |
| } |
| } |
| |
| static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| /* |
| * The ECI/ICI bits share PSR bits with the IT bits, so we |
| * need to reconstitute the bits from the split-out DisasContext |
| * fields here. |
| */ |
| uint32_t condexec_bits; |
| target_ulong pc_arg = dc->base.pc_next; |
| |
| if (tb_cflags(dcbase->tb) & CF_PCREL) { |
| pc_arg &= ~TARGET_PAGE_MASK; |
| } |
| if (dc->eci) { |
| condexec_bits = dc->eci << 4; |
| } else { |
| condexec_bits = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1); |
| } |
| tcg_gen_insn_start(pc_arg, condexec_bits, 0); |
| dc->insn_start = tcg_last_op(); |
| } |
| |
| static bool arm_check_kernelpage(DisasContext *dc) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* Intercept jump to the magic kernel page. */ |
| if (dc->base.pc_next >= 0xffff0000) { |
| /* We always get here via a jump, so know we are not in a |
| conditional execution block. */ |
| gen_exception_internal(EXCP_KERNEL_TRAP); |
| dc->base.is_jmp = DISAS_NORETURN; |
| return true; |
| } |
| #endif |
| return false; |
| } |
| |
| static bool arm_check_ss_active(DisasContext *dc) |
| { |
| if (dc->ss_active && !dc->pstate_ss) { |
| /* Singlestep state is Active-pending. |
| * If we're in this state at the start of a TB then either |
| * a) we just took an exception to an EL which is being debugged |
| * and this is the first insn in the exception handler |
| * b) debug exceptions were masked and we just unmasked them |
| * without changing EL (eg by clearing PSTATE.D) |
| * In either case we're going to take a swstep exception in the |
| * "did not step an insn" case, and so the syndrome ISV and EX |
| * bits should be zero. |
| */ |
| assert(dc->base.num_insns == 1); |
| gen_swstep_exception(dc, 0, 0); |
| dc->base.is_jmp = DISAS_NORETURN; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void arm_post_translate_insn(DisasContext *dc) |
| { |
| if (dc->condjmp && dc->base.is_jmp == DISAS_NEXT) { |
| if (dc->pc_save != dc->condlabel.pc_save) { |
| gen_update_pc(dc, dc->condlabel.pc_save - dc->pc_save); |
| } |
| gen_set_label(dc->condlabel.label); |
| dc->condjmp = 0; |
| } |
| } |
| |
| static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu_env(cpu); |
| uint32_t pc = dc->base.pc_next; |
| unsigned int insn; |
| |
| /* Singlestep exceptions have the highest priority. */ |
| if (arm_check_ss_active(dc)) { |
| dc->base.pc_next = pc + 4; |
| return; |
| } |
| |
| if (pc & 3) { |
| /* |
| * PC alignment fault. This has priority over the instruction abort |
| * that we would receive from a translation fault via arm_ldl_code |
| * (or the execution of the kernelpage entrypoint). This should only |
| * be possible after an indirect branch, at the start of the TB. |
| */ |
| assert(dc->base.num_insns == 1); |
| gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); |
| dc->base.is_jmp = DISAS_NORETURN; |
| dc->base.pc_next = QEMU_ALIGN_UP(pc, 4); |
| return; |
| } |
| |
| if (arm_check_kernelpage(dc)) { |
| dc->base.pc_next = pc + 4; |
| return; |
| } |
| |
| dc->pc_curr = pc; |
| insn = arm_ldl_code(env, &dc->base, pc, dc->sctlr_b); |
| dc->insn = insn; |
| dc->base.pc_next = pc + 4; |
| disas_arm_insn(dc, insn); |
| |
| arm_post_translate_insn(dc); |
| |
| /* ARM is a fixed-length ISA. We performed the cross-page check |
| in init_disas_context by adjusting max_insns. */ |
| } |
| |
| static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn) |
| { |
| /* Return true if this Thumb insn is always unconditional, |
| * even inside an IT block. This is true of only a very few |
| * instructions: BKPT, HLT, and SG. |
| * |
| * A larger class of instructions are UNPREDICTABLE if used |
| * inside an IT block; we do not need to detect those here, because |
| * what we do by default (perform the cc check and update the IT |
| * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE |
| * choice for those situations. |
| * |
| * insn is either a 16-bit or a 32-bit instruction; the two are |
| * distinguishable because for the 16-bit case the top 16 bits |
| * are zeroes, and that isn't a valid 32-bit encoding. |
| */ |
| if ((insn & 0xffffff00) == 0xbe00) { |
| /* BKPT */ |
| return true; |
| } |
| |
| if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) && |
| !arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* HLT: v8A only. This is unconditional even when it is going to |
| * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3. |
| * For v7 cores this was a plain old undefined encoding and so |
| * honours its cc check. (We might be using the encoding as |
| * a semihosting trap, but we don't change the cc check behaviour |
| * on that account, because a debugger connected to a real v7A |
| * core and emulating semihosting traps by catching the UNDEF |
| * exception would also only see cases where the cc check passed. |
| * No guest code should be trying to do a HLT semihosting trap |
| * in an IT block anyway. |
| */ |
| return true; |
| } |
| |
| if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) && |
| arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* SG: v8M only */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu_env(cpu); |
| uint32_t pc = dc->base.pc_next; |
| uint32_t insn; |
| bool is_16bit; |
| /* TCG op to rewind to if this turns out to be an invalid ECI state */ |
| TCGOp *insn_eci_rewind = NULL; |
| target_ulong insn_eci_pc_save = -1; |
| |
| /* Misaligned thumb PC is architecturally impossible. */ |
| assert((dc->base.pc_next & 1) == 0); |
| |
| if (arm_check_ss_active(dc) || arm_check_kernelpage(dc)) { |
| dc->base.pc_next = pc + 2; |
| return; |
| } |
| |
| dc->pc_curr = pc; |
| insn = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); |
| is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn); |
| pc += 2; |
| if (!is_16bit) { |
| uint32_t insn2 = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); |
| insn = insn << 16 | insn2; |
| pc += 2; |
| } |
| dc->base.pc_next = pc; |
| dc->insn = insn; |
| |
| if (dc->pstate_il) { |
| /* |
| * Illegal execution state. This has priority over BTI |
| * exceptions, but comes after instruction abort exceptions. |
| */ |
| gen_exception_insn(dc, 0, EXCP_UDEF, syn_illegalstate()); |
| return; |
| } |
| |
| if (dc->eci) { |
| /* |
| * For M-profile continuable instructions, ECI/ICI handling |
| * falls into these cases: |
| * - interrupt-continuable instructions |
| * These are the various load/store multiple insns (both |
| * integer and fp). The ICI bits indicate the register |
| * where the load/store can resume. We make the IMPDEF |
| * choice to always do "instruction restart", ie ignore |
| * the ICI value and always execute the ldm/stm from the |
| * start. So all we need to do is zero PSR.ICI if the |
| * insn executes. |
| * - MVE instructions subject to beat-wise execution |
| * Here the ECI bits indicate which beats have already been |
| * executed, and we must honour this. Each insn of this |
| * type will handle it correctly. We will update PSR.ECI |
| * in the helper function for the insn (some ECI values |
| * mean that the following insn also has been partially |
| * executed). |
| * - Special cases which don't advance ECI |
| * The insns LE, LETP and BKPT leave the ECI/ICI state |
| * bits untouched. |
| * - all other insns (the common case) |
| * Non-zero ECI/ICI means an INVSTATE UsageFault. |
| * We place a rewind-marker here. Insns in the previous |
| * three categories will set a flag in the DisasContext. |
| * If the flag isn't set after we call disas_thumb_insn() |
| * or disas_thumb2_insn() then we know we have a "some other |
| * insn" case. We will rewind to the marker (ie throwing away |
| * all the generated code) and instead emit "take exception". |
| */ |
| insn_eci_rewind = tcg_last_op(); |
| insn_eci_pc_save = dc->pc_save; |
| } |
| |
| if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) { |
| uint32_t cond = dc->condexec_cond; |
| |
| /* |
| * Conditionally skip the insn. Note that both 0xe and 0xf mean |
| * "always"; 0xf is not "never". |
| */ |
| if (cond < 0x0e) { |
| arm_skip_unless(dc, cond); |
| } |
| } |
| |
| if (is_16bit) { |
| disas_thumb_insn(dc, insn); |
| } else { |
| disas_thumb2_insn(dc, insn); |
| } |
| |
| /* Advance the Thumb condexec condition. */ |
| if (dc->condexec_mask) { |
| dc->condexec_cond = ((dc->condexec_cond & 0xe) | |
| ((dc->condexec_mask >> 4) & 1)); |
| dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; |
| if (dc->condexec_mask == 0) { |
| dc->condexec_cond = 0; |
| } |
| } |
| |
| if (dc->eci && !dc->eci_handled) { |
| /* |
| * Insn wasn't valid for ECI/ICI at all: undo what we |
| * just generated and instead emit an exception |
| */ |
| tcg_remove_ops_after(insn_eci_rewind); |
| dc->pc_save = insn_eci_pc_save; |
| dc->condjmp = 0; |
| gen_exception_insn(dc, 0, EXCP_INVSTATE, syn_uncategorized()); |
| } |
| |
| arm_post_translate_insn(dc); |
| |
| /* Thumb is a variable-length ISA. Stop translation when the next insn |
| * will touch a new page. This ensures that prefetch aborts occur at |
| * the right place. |
| * |
| * We want to stop the TB if the next insn starts in a new page, |
| * or if it spans between this page and the next. This means that |
| * if we're looking at the last halfword in the page we need to |
| * see if it's a 16-bit Thumb insn (which will fit in this TB) |
| * or a 32-bit Thumb insn (which won't). |
| * This is to avoid generating a silly TB with a single 16-bit insn |
| * in it at the end of this page (which would execute correctly |
| * but isn't very efficient). |
| */ |
| if (dc->base.is_jmp == DISAS_NEXT |
| && (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE |
| || (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3 |
| && insn_crosses_page(env, dc)))) { |
| dc->base.is_jmp = DISAS_TOO_MANY; |
| } |
| } |
| |
| static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| /* At this stage dc->condjmp will only be set when the skipped |
| instruction was a conditional branch or trap, and the PC has |
| already been written. */ |
| gen_set_condexec(dc); |
| if (dc->base.is_jmp == DISAS_BX_EXCRET) { |
| /* Exception return branches need some special case code at the |
| * end of the TB, which is complex enough that it has to |
| * handle the single-step vs not and the condition-failed |
| * insn codepath itself. |
| */ |
| gen_bx_excret_final_code(dc); |
| } else if (unlikely(dc->ss_active)) { |
| /* Unconditional and "condition passed" instruction codepath. */ |
| switch (dc->base.is_jmp) { |
| case DISAS_SWI: |
| gen_ss_advance(dc); |
| gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); |
| break; |
| case DISAS_HVC: |
| gen_ss_advance(dc); |
| gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); |
| break; |
| case DISAS_SMC: |
| gen_ss_advance(dc); |
| gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); |
| break; |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| case DISAS_UPDATE_EXIT: |
| case DISAS_UPDATE_NOCHAIN: |
| gen_update_pc(dc, curr_insn_len(dc)); |
| /* fall through */ |
| default: |
| /* FIXME: Single stepping a WFI insn will not halt the CPU. */ |
| gen_singlestep_exception(dc); |
| break; |
| case DISAS_NORETURN: |
| break; |
| } |
| } else { |
| /* While branches must always occur at the end of an IT block, |
| there are a few other things that can cause us to terminate |
| the TB in the middle of an IT block: |
| - Exception generating instructions (bkpt, swi, undefined). |
| - Page boundaries. |
| - Hardware watchpoints. |
| Hardware breakpoints have already been handled and skip this code. |
| */ |
| switch (dc->base.is_jmp) { |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| gen_goto_tb(dc, 1, curr_insn_len(dc)); |
| break; |
| case DISAS_UPDATE_NOCHAIN: |
| gen_update_pc(dc, curr_insn_len(dc)); |
| /* fall through */ |
| case DISAS_JUMP: |
| gen_goto_ptr(); |
| break; |
| case DISAS_UPDATE_EXIT: |
| gen_update_pc(dc, curr_insn_len(dc)); |
| /* fall through */ |
| default: |
| /* indicate that the hash table must be used to find the next TB */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| case DISAS_NORETURN: |
| /* nothing more to generate */ |
| break; |
| case DISAS_WFI: |
| gen_helper_wfi(tcg_env, tcg_constant_i32(curr_insn_len(dc))); |
| /* |
| * The helper doesn't necessarily throw an exception, but we |
| * must go back to the main loop to check for interrupts anyway. |
| */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| case DISAS_WFE: |
| gen_helper_wfe(tcg_env); |
| break; |
| case DISAS_YIELD: |
| gen_helper_yield(tcg_env); |
| break; |
| case DISAS_SWI: |
| gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); |
| break; |
| case DISAS_HVC: |
| gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); |
| break; |
| case DISAS_SMC: |
| gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); |
| break; |
| } |
| } |
| |
| if (dc->condjmp) { |
| /* "Condition failed" instruction codepath for the branch/trap insn */ |
| set_disas_label(dc, dc->condlabel); |
| gen_set_condexec(dc); |
| if (unlikely(dc->ss_active)) { |
| gen_update_pc(dc, curr_insn_len(dc)); |
| gen_singlestep_exception(dc); |
| } else { |
| gen_goto_tb(dc, 1, curr_insn_len(dc)); |
| } |
| } |
| } |
| |
| static void arm_tr_disas_log(const DisasContextBase *dcbase, |
| CPUState *cpu, FILE *logfile) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); |
| target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); |
| } |
| |
| static const TranslatorOps arm_translator_ops = { |
| .init_disas_context = arm_tr_init_disas_context, |
| .tb_start = arm_tr_tb_start, |
| .insn_start = arm_tr_insn_start, |
| .translate_insn = arm_tr_translate_insn, |
| .tb_stop = arm_tr_tb_stop, |
| .disas_log = arm_tr_disas_log, |
| }; |
| |
| static const TranslatorOps thumb_translator_ops = { |
| .init_disas_context = arm_tr_init_disas_context, |
| .tb_start = arm_tr_tb_start, |
| .insn_start = arm_tr_insn_start, |
| .translate_insn = thumb_tr_translate_insn, |
| .tb_stop = arm_tr_tb_stop, |
| .disas_log = arm_tr_disas_log, |
| }; |
| |
| /* generate intermediate code for basic block 'tb'. */ |
| void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns, |
| vaddr pc, void *host_pc) |
| { |
| DisasContext dc = { }; |
| const TranslatorOps *ops = &arm_translator_ops; |
| CPUARMTBFlags tb_flags = arm_tbflags_from_tb(tb); |
| |
| if (EX_TBFLAG_AM32(tb_flags, THUMB)) { |
| ops = &thumb_translator_ops; |
| } |
| #ifdef TARGET_AARCH64 |
| if (EX_TBFLAG_ANY(tb_flags, AARCH64_STATE)) { |
| ops = &aarch64_translator_ops; |
| } |
| #endif |
| |
| translator_loop(cpu, tb, max_insns, pc, host_pc, ops, &dc.base); |
| } |