blob: 5da1b0fc1d42723cd601ab8205bb63b5c5207e1e [file] [log] [blame]
/*
* ARM hflags
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "cpu-features.h"
#include "exec/helper-proto.h"
#include "cpregs.h"
static inline bool fgt_svc(CPUARMState *env, int el)
{
/*
* Assuming fine-grained-traps are active, return true if we
* should be trapping on SVC instructions. Only AArch64 can
* trap on an SVC at EL1, but we don't need to special-case this
* because if this is AArch32 EL1 then arm_fgt_active() is false.
* We also know el is 0 or 1.
*/
return el == 0 ?
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
}
/* Return true if memory alignment should be enforced. */
static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr)
{
#ifdef CONFIG_USER_ONLY
return false;
#else
/* Check the alignment enable bit. */
if (sctlr & SCTLR_A) {
return true;
}
/*
* If translation is disabled, then the default memory type is
* Device(-nGnRnE) instead of Normal, which requires that alignment
* be enforced. Since this affects all ram, it is most efficient
* to handle this during translation.
*/
if (sctlr & SCTLR_M) {
/* Translation enabled: memory type in PTE via MAIR_ELx. */
return false;
}
if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) {
/* Stage 2 translation enabled: memory type in PTE. */
return false;
}
return true;
#endif
}
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
if (arm_singlestep_active(env)) {
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
}
return flags;
}
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
bool sctlr_b = arm_sctlr_b(env);
if (sctlr_b) {
DP_TBFLAG_A32(flags, SCTLR__B, 1);
}
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_v7m_is_handler_mode(env)) {
DP_TBFLAG_M32(flags, HANDLER, 1);
}
/*
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
* is suppressing them because the requested execution priority
* is less than 0.
*/
if (arm_feature(env, ARM_FEATURE_V8) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
DP_TBFLAG_M32(flags, STACKCHECK, 1);
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
DP_TBFLAG_M32(flags, SECURE, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
static bool sme_fa64(CPUARMState *env, int el)
{
if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
return false;
}
if (el <= 1 && !el_is_in_host(env, el)) {
if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
return false;
}
}
if (el <= 2 && arm_is_el2_enabled(env)) {
if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
return false;
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
return false;
}
}
return true;
}
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
int el = arm_current_el(env);
uint64_t sctlr = arm_sctlr(env, el);
if (aprofile_require_alignment(env, el, sctlr)) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_el_is_aa64(env, 1)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (env->uncached_cpsr & CPSR_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
/*
* The SME exception we are testing for is raised via
* AArch64.CheckFPAdvSIMDEnabled(), as called from
* AArch32.CheckAdvSIMDOrFPEnabled().
*/
if (el == 0
&& FIELD_EX64(env->svcr, SVCR, SM)
&& (!arm_is_el2_enabled(env)
|| (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
&& arm_el_is_aa64(env, 1)
&& !sme_fa64(env, el)) {
DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
uint64_t tcr = regime_tcr(env, mmu_idx);
uint64_t hcr = arm_hcr_el2_eff(env);
uint64_t sctlr;
int tbii, tbid;
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
/* Get control bits for tagged addresses. */
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
DP_TBFLAG_A64(flags, TBII, tbii);
DP_TBFLAG_A64(flags, TBID, tbid);
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
int sve_el = sve_exception_el(env, el);
/*
* If either FP or SVE are disabled, translator does not need len.
* If SVE EL > FP EL, FP exception has precedence, and translator
* does not need SVE EL. Save potential re-translations by forcing
* the unneeded data to zero.
*/
if (fp_el != 0) {
if (sve_el > fp_el) {
sve_el = 0;
}
} else if (sve_el == 0) {
DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
}
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
}
if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
int sme_el = sme_exception_el(env, el);
bool sm = FIELD_EX64(env->svcr, SVCR, SM);
DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
if (sme_el == 0) {
/* Similarly, do not compute SVL if SME is disabled. */
int svl = sve_vqm1_for_el_sm(env, el, true);
DP_TBFLAG_A64(flags, SVL, svl);
if (sm) {
/* If SVE is disabled, we will not have set VL above. */
DP_TBFLAG_A64(flags, VL, svl);
}
}
if (sm) {
DP_TBFLAG_A64(flags, PSTATE_SM, 1);
DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
}
DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
}
sctlr = regime_sctlr(env, stage1);
if (aprofile_require_alignment(env, el, sctlr)) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
/*
* In order to save space in flags, we record only whether
* pauth is "inactive", meaning all insns are implemented as
* a nop, or "active" when some action must be performed.
* The decision of which action to take is left to a helper.
*/
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
}
}
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
DP_TBFLAG_A64(flags, BT, 1);
}
}
if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
if (sctlr & SCTLR_nAA) {
DP_TBFLAG_A64(flags, NAA, 1);
}
}
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
if (!(env->pstate & PSTATE_UAO)) {
switch (mmu_idx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
/* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
*/
if (env->cp15.hcr_el2 & HCR_TGE) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
default:
break;
}
}
if (env->pstate & PSTATE_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
}
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
/*
* ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
* of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
*/
if (el == 1 && (hcr & HCR_NV)) {
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
DP_TBFLAG_A64(flags, NV, 1);
if (hcr & HCR_NV1) {
DP_TBFLAG_A64(flags, NV1, 1);
}
if (hcr & HCR_NV2) {
DP_TBFLAG_A64(flags, NV2, 1);
if (hcr & HCR_E2H) {
DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
}
if (env->cp15.sctlr_el[2] & SCTLR_EE) {
DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
}
}
}
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
/*
* Set MTE_ACTIVE if any access may be Checked, and leave clear
* if all accesses must be Unchecked:
* 1) If no TBI, then there are no tags in the address to check,
* 2) If Tag Check Override, then all accesses are Unchecked,
* 3) If Tag Check Fail == 0, then Checked access have no effect,
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
*/
if (allocation_tag_access_enabled(env, el, sctlr)) {
DP_TBFLAG_A64(flags, ATA, 1);
if (tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
if (!EX_TBFLAG_A64(flags, UNPRIV)) {
/*
* In non-unpriv contexts (eg EL0), unpriv load/stores
* act like normal ones; duplicate the MTE info to
* avoid translate-a64.c having to check UNPRIV to see
* whether it is OK to index into MTE_ACTIVE[].
*/
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
}
}
/* And again for unprivileged accesses, if required. */
if (EX_TBFLAG_A64(flags, UNPRIV)
&& tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & SCTLR_TCF0)
&& allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
/*
* For unpriv tag-setting accesses we also need ATA0. Again, in
* contexts where unpriv and normal insns are the same we
* duplicate the ATA bit to save effort for translate-a64.c.
*/
if (EX_TBFLAG_A64(flags, UNPRIV)) {
if (allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, ATA0, 1);
}
} else {
DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
}
/* Cache TCMA as well as TBI. */
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
}
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
if (is_a64(env)) {
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
} else if (arm_feature(env, ARM_FEATURE_M)) {
return rebuild_hflags_m32(env, fp_el, mmu_idx);
} else {
return rebuild_hflags_a32(env, fp_el, mmu_idx);
}
}
void arm_rebuild_hflags(CPUARMState *env)
{
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
CPUARMTBFlags c = env->hflags;
CPUARMTBFlags r = rebuild_hflags_internal(env);
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
fprintf(stderr, "TCG hflags mismatch "
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
c.flags, c.flags2, r.flags, r.flags2);
abort();
}
#endif
}