| /* |
| * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * Copyright (c) 2013 David Gibson, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/page-protection.h" |
| #include "qemu/error-report.h" |
| #include "qemu/qemu-print.h" |
| #include "sysemu/hw_accel.h" |
| #include "kvm_ppc.h" |
| #include "mmu-hash64.h" |
| #include "exec/log.h" |
| #include "hw/hw.h" |
| #include "internal.h" |
| #include "mmu-book3s-v3.h" |
| #include "helper_regs.h" |
| |
| #ifdef CONFIG_TCG |
| #include "exec/helper-proto.h" |
| #endif |
| |
| /* #define DEBUG_SLB */ |
| |
| #ifdef DEBUG_SLB |
| # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) |
| #else |
| # define LOG_SLB(...) do { } while (0) |
| #endif |
| |
| /* |
| * SLB handling |
| */ |
| |
| static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) |
| { |
| CPUPPCState *env = &cpu->env; |
| uint64_t esid_256M, esid_1T; |
| int n; |
| |
| LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); |
| |
| esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; |
| esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; |
| |
| for (n = 0; n < cpu->hash64_opts->slb_size; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| LOG_SLB("%s: slot %d %016" PRIx64 " %016" |
| PRIx64 "\n", __func__, n, slb->esid, slb->vsid); |
| /* |
| * We check for 1T matches on all MMUs here - if the MMU |
| * doesn't have 1T segment support, we will have prevented 1T |
| * entries from being inserted in the slbmte code. |
| */ |
| if (((slb->esid == esid_256M) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) |
| || ((slb->esid == esid_1T) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { |
| return slb; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void dump_slb(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| uint64_t slbe, slbv; |
| |
| cpu_synchronize_state(CPU(cpu)); |
| |
| qemu_printf("SLB\tESID\t\t\tVSID\n"); |
| for (i = 0; i < cpu->hash64_opts->slb_size; i++) { |
| slbe = env->slb[i].esid; |
| slbv = env->slb[i].vsid; |
| if (slbe == 0 && slbv == 0) { |
| continue; |
| } |
| qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", |
| i, slbe, slbv); |
| } |
| } |
| |
| #ifdef CONFIG_TCG |
| void helper_SLBIA(CPUPPCState *env, uint32_t ih) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| int starting_entry; |
| int n; |
| |
| /* |
| * slbia must always flush all TLB (which is equivalent to ERAT in ppc |
| * architecture). Matching on SLB_ESID_V is not good enough, because slbmte |
| * can overwrite a valid SLB without flushing its lookaside information. |
| * |
| * It would be possible to keep the TLB in synch with the SLB by flushing |
| * when a valid entry is overwritten by slbmte, and therefore slbia would |
| * not have to flush unless it evicts a valid SLB entry. However it is |
| * expected that slbmte is more common than slbia, and slbia is usually |
| * going to evict valid SLB entries, so that tradeoff is unlikely to be a |
| * good one. |
| * |
| * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate |
| * the same SLB entries (everything but entry 0), but differ in what |
| * "lookaside information" is invalidated. TCG can ignore this and flush |
| * everything. |
| * |
| * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are |
| * invalidated. |
| */ |
| |
| env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; |
| |
| starting_entry = 1; /* default for IH=0,1,2,6 */ |
| |
| if (env->mmu_model == POWERPC_MMU_3_00) { |
| switch (ih) { |
| case 0x7: |
| /* invalidate no SLBs, but all lookaside information */ |
| return; |
| |
| case 0x3: |
| case 0x4: |
| /* also considers SLB entry 0 */ |
| starting_entry = 0; |
| break; |
| |
| case 0x5: |
| /* treat undefined values as ih==0, and warn */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "slbia undefined IH field %u.\n", ih); |
| break; |
| |
| default: |
| /* 0,1,2,6 */ |
| break; |
| } |
| } |
| |
| for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| if (!(slb->esid & SLB_ESID_V)) { |
| continue; |
| } |
| if (env->mmu_model == POWERPC_MMU_3_00) { |
| if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) { |
| /* preserves entries with a class value of 0 */ |
| continue; |
| } |
| } |
| |
| slb->esid &= ~SLB_ESID_V; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void helper_SLBIAG(CPUPPCState *env, target_ulong rs, uint32_t l) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| int n; |
| |
| /* |
| * slbiag must always flush all TLB (which is equivalent to ERAT in ppc |
| * architecture). Matching on SLB_ESID_V is not good enough, because slbmte |
| * can overwrite a valid SLB without flushing its lookaside information. |
| * |
| * It would be possible to keep the TLB in synch with the SLB by flushing |
| * when a valid entry is overwritten by slbmte, and therefore slbiag would |
| * not have to flush unless it evicts a valid SLB entry. However it is |
| * expected that slbmte is more common than slbiag, and slbiag is usually |
| * going to evict valid SLB entries, so that tradeoff is unlikely to be a |
| * good one. |
| */ |
| env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; |
| |
| for (n = 0; n < cpu->hash64_opts->slb_size; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| slb->esid &= ~SLB_ESID_V; |
| } |
| } |
| #endif |
| |
| static void __helper_slbie(CPUPPCState *env, target_ulong addr, |
| target_ulong global) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| ppc_slb_t *slb; |
| |
| slb = slb_lookup(cpu, addr); |
| if (!slb) { |
| return; |
| } |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| |
| /* |
| * XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| env->tlb_need_flush |= |
| (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH); |
| } |
| } |
| |
| void helper_SLBIE(CPUPPCState *env, target_ulong addr) |
| { |
| __helper_slbie(env, addr, false); |
| } |
| |
| void helper_SLBIEG(CPUPPCState *env, target_ulong addr) |
| { |
| __helper_slbie(env, addr, true); |
| } |
| #endif |
| |
| int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, |
| target_ulong esid, target_ulong vsid) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb = &env->slb[slot]; |
| const PPCHash64SegmentPageSizes *sps = NULL; |
| int i; |
| |
| if (slot >= cpu->hash64_opts->slb_size) { |
| return -1; /* Bad slot number */ |
| } |
| if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { |
| return -1; /* Reserved bits set */ |
| } |
| if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { |
| return -1; /* Bad segment size */ |
| } |
| if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) { |
| return -1; /* 1T segment on MMU that doesn't support it */ |
| } |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i]; |
| |
| if (!sps1->page_shift) { |
| break; |
| } |
| |
| if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { |
| sps = sps1; |
| break; |
| } |
| } |
| |
| if (!sps) { |
| error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu |
| " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, |
| slot, esid, vsid); |
| return -1; |
| } |
| |
| slb->esid = esid; |
| slb->vsid = vsid; |
| slb->sps = sps; |
| |
| LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx |
| " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid, |
| slb->esid, slb->vsid); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_TCG |
| static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= cpu->hash64_opts->slb_size) { |
| return -1; |
| } |
| |
| *rt = slb->esid; |
| return 0; |
| } |
| |
| static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= cpu->hash64_opts->slb_size) { |
| return -1; |
| } |
| |
| *rt = slb->vsid; |
| return 0; |
| } |
| |
| static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb; |
| |
| if (!msr_is_64bit(env, env->msr)) { |
| rb &= 0xffffffff; |
| } |
| slb = slb_lookup(cpu, rb); |
| if (slb == NULL) { |
| *rt = (target_ulong)-1ul; |
| } else { |
| *rt = slb->vsid; |
| } |
| return 0; |
| } |
| |
| void helper_SLBMTE(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| |
| if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| } |
| |
| target_ulong helper_SLBMFEE(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_SLBFEE(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_SLBMFEV(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| #endif |
| |
| /* Check No-Execute or Guarded Storage */ |
| static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu, |
| ppc_hash_pte64_t pte) |
| { |
| /* Exec permissions CANNOT take away read or write permissions */ |
| return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ? |
| PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } |
| |
| /* Check Basic Storage Protection */ |
| static int ppc_hash64_pte_prot(int mmu_idx, |
| ppc_slb_t *slb, ppc_hash_pte64_t pte) |
| { |
| unsigned pp, key; |
| /* |
| * Some pp bit combinations have undefined behaviour, so default |
| * to no access in those cases |
| */ |
| int prot = 0; |
| |
| key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP) |
| : (slb->vsid & SLB_VSID_KS)); |
| pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); |
| |
| if (key == 0) { |
| switch (pp) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| break; |
| |
| case 0x3: |
| case 0x6: |
| prot = PAGE_READ | PAGE_EXEC; |
| break; |
| } |
| } else { |
| switch (pp) { |
| case 0x0: |
| case 0x6: |
| break; |
| |
| case 0x1: |
| case 0x3: |
| prot = PAGE_READ | PAGE_EXEC; |
| break; |
| |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| break; |
| } |
| } |
| |
| return prot; |
| } |
| |
| /* Check the instruction access permissions specified in the IAMR */ |
| static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key) |
| { |
| CPUPPCState *env = &cpu->env; |
| int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3; |
| |
| /* |
| * An instruction fetch is permitted if the IAMR bit is 0. |
| * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit |
| * can only take away EXEC permissions not READ or WRITE permissions. |
| * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since |
| * EXEC permissions are allowed. |
| */ |
| return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE : |
| PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } |
| |
| static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) |
| { |
| CPUPPCState *env = &cpu->env; |
| int key, amrbits; |
| int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| |
| /* Only recent MMUs implement Virtual Page Class Key Protection */ |
| if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) { |
| return prot; |
| } |
| |
| key = HPTE64_R_KEY(pte.pte1); |
| amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3; |
| |
| /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ |
| /* env->spr[SPR_AMR]); */ |
| |
| /* |
| * A store is permitted if the AMR bit is 0. Remove write |
| * protection if it is set. |
| */ |
| if (amrbits & 0x2) { |
| prot &= ~PAGE_WRITE; |
| } |
| /* |
| * A load is permitted if the AMR bit is 0. Remove read |
| * protection if it is set. |
| */ |
| if (amrbits & 0x1) { |
| prot &= ~PAGE_READ; |
| } |
| |
| switch (env->mmu_model) { |
| /* |
| * MMU version 2.07 and later support IAMR |
| * Check if the IAMR allows the instruction access - it will return |
| * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0 |
| * if it does (and prot will be unchanged indicating execution support). |
| */ |
| case POWERPC_MMU_2_07: |
| case POWERPC_MMU_3_00: |
| prot &= ppc_hash64_iamr_prot(cpu, key); |
| break; |
| default: |
| break; |
| } |
| |
| return prot; |
| } |
| |
| const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu, |
| hwaddr ptex, int n) |
| { |
| hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; |
| hwaddr base; |
| hwaddr plen = n * HASH_PTE_SIZE_64; |
| const ppc_hash_pte64_t *hptes; |
| |
| if (cpu->vhyp) { |
| return cpu->vhyp_class->map_hptes(cpu->vhyp, ptex, n); |
| } |
| base = ppc_hash64_hpt_base(cpu); |
| |
| if (!base) { |
| return NULL; |
| } |
| |
| hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false, |
| MEMTXATTRS_UNSPECIFIED); |
| if (plen < (n * HASH_PTE_SIZE_64)) { |
| hw_error("%s: Unable to map all requested HPTEs\n", __func__); |
| } |
| return hptes; |
| } |
| |
| void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes, |
| hwaddr ptex, int n) |
| { |
| if (cpu->vhyp) { |
| cpu->vhyp_class->unmap_hptes(cpu->vhyp, hptes, ptex, n); |
| return; |
| } |
| |
| address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64, |
| false, n * HASH_PTE_SIZE_64); |
| } |
| |
| static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps, |
| uint64_t pte0, uint64_t pte1) |
| { |
| int i; |
| |
| if (!(pte0 & HPTE64_V_LARGE)) { |
| if (sps->page_shift != 12) { |
| /* 4kiB page in a non 4kiB segment */ |
| return 0; |
| } |
| /* Normal 4kiB page */ |
| return 12; |
| } |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const PPCHash64PageSize *ps = &sps->enc[i]; |
| uint64_t mask; |
| |
| if (!ps->page_shift) { |
| break; |
| } |
| |
| if (ps->page_shift == 12) { |
| /* L bit is set so this can't be a 4kiB page */ |
| continue; |
| } |
| |
| mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; |
| |
| if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { |
| return ps->page_shift; |
| } |
| } |
| |
| return 0; /* Bad page size encoding */ |
| } |
| |
| static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1) |
| { |
| /* Insert B into pte0 */ |
| *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) | |
| ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) << |
| (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT)); |
| |
| /* Remove B from pte1 */ |
| *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK; |
| } |
| |
| |
| static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, |
| const PPCHash64SegmentPageSizes *sps, |
| target_ulong ptem, |
| ppc_hash_pte64_t *pte, unsigned *pshift) |
| { |
| int i; |
| const ppc_hash_pte64_t *pteg; |
| target_ulong pte0, pte1; |
| target_ulong ptex; |
| |
| ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP; |
| pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); |
| if (!pteg) { |
| return -1; |
| } |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| pte0 = ppc_hash64_hpte0(cpu, pteg, i); |
| /* |
| * pte0 contains the valid bit and must be read before pte1, |
| * otherwise we might see an old pte1 with a new valid bit and |
| * thus an inconsistent hpte value |
| */ |
| smp_rmb(); |
| pte1 = ppc_hash64_hpte1(cpu, pteg, i); |
| |
| /* Convert format if necessary */ |
| if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) { |
| ppc64_v3_new_to_old_hpte(&pte0, &pte1); |
| } |
| |
| /* This compares V, B, H (secondary) and the AVPN */ |
| if (HPTE64_V_COMPARE(pte0, ptem)) { |
| *pshift = hpte_page_shift(sps, pte0, pte1); |
| /* |
| * If there is no match, ignore the PTE, it could simply |
| * be for a different segment size encoding and the |
| * architecture specifies we should not match. Linux will |
| * potentially leave behind PTEs for the wrong base page |
| * size when demoting segments. |
| */ |
| if (*pshift == 0) { |
| continue; |
| } |
| /* |
| * We don't do anything with pshift yet as qemu TLB only |
| * deals with 4K pages anyway |
| */ |
| pte->pte0 = pte0; |
| pte->pte1 = pte1; |
| ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP); |
| return ptex + i; |
| } |
| } |
| ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP); |
| /* |
| * We didn't find a valid entry. |
| */ |
| return -1; |
| } |
| |
| static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, |
| ppc_slb_t *slb, target_ulong eaddr, |
| ppc_hash_pte64_t *pte, unsigned *pshift) |
| { |
| CPUPPCState *env = &cpu->env; |
| hwaddr hash, ptex; |
| uint64_t vsid, epnmask, epn, ptem; |
| const PPCHash64SegmentPageSizes *sps = slb->sps; |
| |
| /* |
| * The SLB store path should prevent any bad page size encodings |
| * getting in there, so: |
| */ |
| assert(sps); |
| |
| /* If ISL is set in LPCR we need to clamp the page size to 4K */ |
| if (env->spr[SPR_LPCR] & LPCR_ISL) { |
| /* We assume that when using TCG, 4k is first entry of SPS */ |
| sps = &cpu->hash64_opts->sps[0]; |
| assert(sps->page_shift == 12); |
| } |
| |
| epnmask = ~((1ULL << sps->page_shift) - 1); |
| |
| if (slb->vsid & SLB_VSID_B) { |
| /* 1TB segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; |
| epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; |
| hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); |
| } else { |
| /* 256M segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; |
| epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; |
| hash = vsid ^ (epn >> sps->page_shift); |
| } |
| ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); |
| ptem |= HPTE64_V_VALID; |
| |
| /* Page address translation */ |
| qemu_log_mask(CPU_LOG_MMU, |
| "htab_base " HWADDR_FMT_plx " htab_mask " HWADDR_FMT_plx |
| " hash " HWADDR_FMT_plx "\n", |
| ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash); |
| |
| /* Primary PTEG lookup */ |
| qemu_log_mask(CPU_LOG_MMU, |
| "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx |
| " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx |
| " hash=" HWADDR_FMT_plx "\n", |
| ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), |
| vsid, ptem, hash); |
| ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); |
| |
| if (ptex == -1) { |
| /* Secondary PTEG lookup */ |
| ptem |= HPTE64_V_SECONDARY; |
| qemu_log_mask(CPU_LOG_MMU, |
| "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx |
| " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx |
| " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu), |
| ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash); |
| |
| ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); |
| } |
| |
| return ptex; |
| } |
| |
| unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, |
| uint64_t pte0, uint64_t pte1) |
| { |
| int i; |
| |
| if (!(pte0 & HPTE64_V_LARGE)) { |
| return 12; |
| } |
| |
| /* |
| * The encodings in env->sps need to be carefully chosen so that |
| * this gives an unambiguous result. |
| */ |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i]; |
| unsigned shift; |
| |
| if (!sps->page_shift) { |
| break; |
| } |
| |
| shift = hpte_page_shift(sps, pte0, pte1); |
| if (shift) { |
| return shift; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool ppc_hash64_use_vrma(CPUPPCState *env) |
| { |
| switch (env->mmu_model) { |
| case POWERPC_MMU_3_00: |
| /* |
| * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR |
| * register no longer exist |
| */ |
| return true; |
| |
| default: |
| return !!(env->spr[SPR_LPCR] & LPCR_VPM0); |
| } |
| } |
| |
| static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t slb_vsid, |
| uint64_t error_code) |
| { |
| CPUPPCState *env = &POWERPC_CPU(cs)->env; |
| bool vpm; |
| |
| if (!mmuidx_real(mmu_idx)) { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); |
| } else { |
| vpm = ppc_hash64_use_vrma(env); |
| } |
| if (vpm && !mmuidx_hv(mmu_idx)) { |
| cs->exception_index = POWERPC_EXCP_HISI; |
| env->spr[SPR_ASDR] = slb_vsid; |
| } else { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| } |
| env->error_code = error_code; |
| } |
| |
| static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t slb_vsid, |
| uint64_t dar, uint64_t dsisr) |
| { |
| CPUPPCState *env = &POWERPC_CPU(cs)->env; |
| bool vpm; |
| |
| if (!mmuidx_real(mmu_idx)) { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); |
| } else { |
| vpm = ppc_hash64_use_vrma(env); |
| } |
| if (vpm && !mmuidx_hv(mmu_idx)) { |
| cs->exception_index = POWERPC_EXCP_HDSI; |
| env->spr[SPR_HDAR] = dar; |
| env->spr[SPR_HDSISR] = dsisr; |
| env->spr[SPR_ASDR] = slb_vsid; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->spr[SPR_DAR] = dar; |
| env->spr[SPR_DSISR] = dsisr; |
| } |
| env->error_code = 0; |
| } |
| |
| |
| static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1) |
| { |
| hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; |
| |
| if (cpu->vhyp) { |
| cpu->vhyp_class->hpte_set_r(cpu->vhyp, ptex, pte1); |
| return; |
| } |
| base = ppc_hash64_hpt_base(cpu); |
| |
| |
| /* The HW performs a non-atomic byte update */ |
| stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01); |
| } |
| |
| static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1) |
| { |
| hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; |
| |
| if (cpu->vhyp) { |
| cpu->vhyp_class->hpte_set_c(cpu->vhyp, ptex, pte1); |
| return; |
| } |
| base = ppc_hash64_hpt_base(cpu); |
| |
| /* The HW performs a non-atomic byte update */ |
| stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80); |
| } |
| |
| static target_ulong rmls_limit(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| /* |
| * In theory the meanings of RMLS values are implementation |
| * dependent. In practice, this seems to have been the set from |
| * POWER4+..POWER8, and RMLS is no longer supported in POWER9. |
| * |
| * Unsupported values mean the OS has shot itself in the |
| * foot. Return a 0-sized RMA in this case, which we expect |
| * to trigger an immediate DSI or ISI |
| */ |
| static const target_ulong rma_sizes[16] = { |
| [0] = 256 * GiB, |
| [1] = 16 * GiB, |
| [2] = 1 * GiB, |
| [3] = 64 * MiB, |
| [4] = 256 * MiB, |
| [7] = 128 * MiB, |
| [8] = 32 * MiB, |
| }; |
| target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT; |
| |
| return rma_sizes[rmls]; |
| } |
| |
| /* Return the LLP in SLB_VSID format */ |
| static uint64_t get_vrma_llp(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| uint64_t llp; |
| |
| if (env->mmu_model == POWERPC_MMU_3_00) { |
| ppc_v3_pate_t pate; |
| uint64_t ps, l, lp; |
| |
| /* |
| * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base |
| * page size (L||LP equivalent) in the PS field in the HPT partition |
| * table entry. |
| */ |
| if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) { |
| error_report("Bad VRMA with no partition table entry"); |
| return 0; |
| } |
| ps = PATE0_GET_PS(pate.dw0); |
| /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */ |
| l = (ps >> 2) & 0x1; |
| lp = ps & 0x3; |
| llp = (l << SLB_VSID_L_SHIFT) | (lp << SLB_VSID_LP_SHIFT); |
| |
| } else { |
| uint64_t lpcr = env->spr[SPR_LPCR]; |
| target_ulong vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; |
| |
| /* VRMASD LLP matches SLB format, just shift and mask it */ |
| llp = (vrmasd << SLB_VSID_LP_SHIFT) & SLB_VSID_LLP_MASK; |
| } |
| |
| return llp; |
| } |
| |
| static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb) |
| { |
| uint64_t llp = get_vrma_llp(cpu); |
| target_ulong vsid = SLB_VSID_VRMA | llp; |
| int i; |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i]; |
| |
| if (!sps->page_shift) { |
| break; |
| } |
| |
| if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) { |
| slb->esid = SLB_ESID_V; |
| slb->vsid = vsid; |
| slb->sps = sps; |
| return 0; |
| } |
| } |
| |
| error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx, llp); |
| |
| return -1; |
| } |
| |
| bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, |
| hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, |
| bool guest_visible) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t vrma_slbe; |
| ppc_slb_t *slb; |
| unsigned apshift; |
| hwaddr ptex; |
| ppc_hash_pte64_t pte; |
| int exec_prot, pp_prot, amr_prot, prot; |
| int need_prot; |
| hwaddr raddr; |
| |
| /* |
| * Note on LPCR usage: 970 uses HID4, but our special variant of |
| * store_spr copies relevant fields into env->spr[SPR_LPCR]. |
| * Similarly we filter unimplemented bits when storing into LPCR |
| * depending on the MMU version. This code can thus just use the |
| * LPCR "as-is". |
| */ |
| |
| /* 1. Handle real mode accesses */ |
| if (mmuidx_real(mmu_idx)) { |
| /* |
| * Translation is supposedly "off", but in real mode the top 4 |
| * effective address bits are (mostly) ignored |
| */ |
| raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; |
| |
| if (cpu->vhyp) { |
| /* |
| * In virtual hypervisor mode, there's nothing to do: |
| * EA == GPA == qemu guest address |
| */ |
| } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) { |
| /* In HV mode, add HRMOR if top EA bit is clear */ |
| if (!(eaddr >> 63)) { |
| raddr |= env->spr[SPR_HRMOR]; |
| } |
| } else if (ppc_hash64_use_vrma(env)) { |
| /* Emulated VRMA mode */ |
| slb = &vrma_slbe; |
| if (build_vrma_slbe(cpu, slb) != 0) { |
| /* Invalid VRMA setup, machine check */ |
| if (guest_visible) { |
| cs->exception_index = POWERPC_EXCP_MCHECK; |
| env->error_code = 0; |
| } |
| return false; |
| } |
| |
| goto skip_slb_search; |
| } else { |
| target_ulong limit = rmls_limit(cpu); |
| |
| /* Emulated old-style RMO mode, bounds check against RMLS */ |
| if (raddr >= limit) { |
| if (!guest_visible) { |
| return false; |
| } |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| ppc_hash64_set_isi(cs, mmu_idx, 0, SRR1_PROTFAULT); |
| break; |
| case MMU_DATA_LOAD: |
| ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT); |
| break; |
| case MMU_DATA_STORE: |
| ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, |
| DSISR_PROTFAULT | DSISR_ISSTORE); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return false; |
| } |
| |
| raddr |= env->spr[SPR_RMOR]; |
| } |
| |
| *raddrp = raddr; |
| *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *psizep = TARGET_PAGE_BITS; |
| return true; |
| } |
| |
| /* 2. Translation is on, so look up the SLB */ |
| slb = slb_lookup(cpu, eaddr); |
| if (!slb) { |
| /* No entry found, check if in-memory segment tables are in use */ |
| if (ppc64_use_proc_tbl(cpu)) { |
| /* TODO - Unsupported */ |
| error_report("Segment Table Support Unimplemented"); |
| exit(1); |
| } |
| /* Segment still not found, generate the appropriate interrupt */ |
| if (!guest_visible) { |
| return false; |
| } |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| cs->exception_index = POWERPC_EXCP_ISEG; |
| env->error_code = 0; |
| break; |
| case MMU_DATA_LOAD: |
| case MMU_DATA_STORE: |
| cs->exception_index = POWERPC_EXCP_DSEG; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return false; |
| } |
| |
| skip_slb_search: |
| |
| /* 3. Check for segment level no-execute violation */ |
| if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) { |
| if (guest_visible) { |
| ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOEXEC_GUARD); |
| } |
| return false; |
| } |
| |
| /* 4. Locate the PTE in the hash table */ |
| ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); |
| if (ptex == -1) { |
| if (!guest_visible) { |
| return false; |
| } |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOPTE); |
| break; |
| case MMU_DATA_LOAD: |
| ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE); |
| break; |
| case MMU_DATA_STORE: |
| ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, |
| DSISR_NOPTE | DSISR_ISSTORE); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return false; |
| } |
| qemu_log_mask(CPU_LOG_MMU, |
| "found PTE at index %08" HWADDR_PRIx "\n", ptex); |
| |
| /* 5. Check access permissions */ |
| |
| exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte); |
| pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte); |
| amr_prot = ppc_hash64_amr_prot(cpu, pte); |
| prot = exec_prot & pp_prot & amr_prot; |
| |
| need_prot = prot_for_access_type(access_type); |
| if (need_prot & ~prot) { |
| /* Access right violation */ |
| qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); |
| if (!guest_visible) { |
| return false; |
| } |
| if (access_type == MMU_INST_FETCH) { |
| int srr1 = 0; |
| if (PAGE_EXEC & ~exec_prot) { |
| srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */ |
| } else if (PAGE_EXEC & ~pp_prot) { |
| srr1 |= SRR1_PROTFAULT; /* Access violates access authority */ |
| } |
| if (PAGE_EXEC & ~amr_prot) { |
| srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */ |
| } |
| ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, srr1); |
| } else { |
| int dsisr = 0; |
| if (need_prot & ~pp_prot) { |
| dsisr |= DSISR_PROTFAULT; |
| } |
| if (access_type == MMU_DATA_STORE) { |
| dsisr |= DSISR_ISSTORE; |
| } |
| if (need_prot & ~amr_prot) { |
| dsisr |= DSISR_AMR; |
| } |
| ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, dsisr); |
| } |
| return false; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); |
| |
| /* 6. Update PTE referenced and changed bits if necessary */ |
| |
| if (!(pte.pte1 & HPTE64_R_R)) { |
| ppc_hash64_set_r(cpu, ptex, pte.pte1); |
| } |
| if (!(pte.pte1 & HPTE64_R_C)) { |
| if (access_type == MMU_DATA_STORE) { |
| ppc_hash64_set_c(cpu, ptex, pte.pte1); |
| } else { |
| /* |
| * Treat the page as read-only for now, so that a later write |
| * will pass through this function again to set the C bit |
| */ |
| prot &= ~PAGE_WRITE; |
| } |
| } |
| |
| /* 7. Determine the real address from the PTE */ |
| |
| *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); |
| *protp = prot; |
| *psizep = apshift; |
| return true; |
| } |
| |
| void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex, |
| target_ulong pte0, target_ulong pte1) |
| { |
| /* |
| * XXX: given the fact that there are too many segments to |
| * invalidate, and we still don't have a tlb_flush_mask(env, n, |
| * mask) in QEMU, we just invalidate all TLBs |
| */ |
| cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; |
| } |
| |
| #ifdef CONFIG_TCG |
| void helper_store_lpcr(CPUPPCState *env, target_ulong val) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| |
| ppc_store_lpcr(cpu, val); |
| } |
| #endif |
| |
| void ppc_hash64_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); |
| |
| if (!pcc->hash64_opts) { |
| assert(!mmu_is_64bit(env->mmu_model)); |
| return; |
| } |
| |
| cpu->hash64_opts = g_memdup2(pcc->hash64_opts, sizeof(*cpu->hash64_opts)); |
| } |
| |
| void ppc_hash64_finalize(PowerPCCPU *cpu) |
| { |
| g_free(cpu->hash64_opts); |
| } |
| |
| const PPCHash64Options ppc_hash64_opts_basic = { |
| .flags = 0, |
| .slb_size = 64, |
| .sps = { |
| { .page_shift = 12, /* 4K */ |
| .slb_enc = 0, |
| .enc = { { .page_shift = 12, .pte_enc = 0 } } |
| }, |
| { .page_shift = 24, /* 16M */ |
| .slb_enc = 0x100, |
| .enc = { { .page_shift = 24, .pte_enc = 0 } } |
| }, |
| }, |
| }; |
| |
| const PPCHash64Options ppc_hash64_opts_POWER7 = { |
| .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE, |
| .slb_size = 32, |
| .sps = { |
| { |
| .page_shift = 12, /* 4K */ |
| .slb_enc = 0, |
| .enc = { { .page_shift = 12, .pte_enc = 0 }, |
| { .page_shift = 16, .pte_enc = 0x7 }, |
| { .page_shift = 24, .pte_enc = 0x38 }, }, |
| }, |
| { |
| .page_shift = 16, /* 64K */ |
| .slb_enc = SLB_VSID_64K, |
| .enc = { { .page_shift = 16, .pte_enc = 0x1 }, |
| { .page_shift = 24, .pte_enc = 0x8 }, }, |
| }, |
| { |
| .page_shift = 24, /* 16M */ |
| .slb_enc = SLB_VSID_16M, |
| .enc = { { .page_shift = 24, .pte_enc = 0 }, }, |
| }, |
| { |
| .page_shift = 34, /* 16G */ |
| .slb_enc = SLB_VSID_16G, |
| .enc = { { .page_shift = 34, .pte_enc = 0x3 }, }, |
| }, |
| } |
| }; |
| |
| |