| /* |
| * UniCore-F64 simulation helpers for QEMU. |
| * |
| * Copyright (C) 2010-2012 Guan Xuetao |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation, or any later version. |
| * See the COPYING file in the top-level directory. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "fpu/softfloat.h" |
| |
| /* |
| * The convention used for UniCore-F64 instructions: |
| * Single precition routines have a "s" suffix |
| * Double precision routines have a "d" suffix. |
| */ |
| |
| /* Convert host exception flags to f64 form. */ |
| static inline int ucf64_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) { |
| target_bits |= UCF64_FPSCR_FLAG_INVALID; |
| } |
| if (host_bits & float_flag_divbyzero) { |
| target_bits |= UCF64_FPSCR_FLAG_DIVZERO; |
| } |
| if (host_bits & float_flag_overflow) { |
| target_bits |= UCF64_FPSCR_FLAG_OVERFLOW; |
| } |
| if (host_bits & float_flag_underflow) { |
| target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW; |
| } |
| if (host_bits & float_flag_inexact) { |
| target_bits |= UCF64_FPSCR_FLAG_INEXACT; |
| } |
| return target_bits; |
| } |
| |
| uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK); |
| i = get_float_exception_flags(&env->ucf64.fp_status); |
| fpscr |= ucf64_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| /* Convert ucf64 exception flags to target form. */ |
| static inline int ucf64_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & UCF64_FPSCR_FLAG_INVALID) { |
| host_bits |= float_flag_invalid; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) { |
| host_bits |= float_flag_divbyzero; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) { |
| host_bits |= float_flag_overflow; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) { |
| host_bits |= float_flag_underflow; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_INEXACT) { |
| host_bits |= float_flag_inexact; |
| } |
| return host_bits; |
| } |
| |
| void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val) |
| { |
| UniCore32CPU *cpu = uc32_env_get_cpu(env); |
| int i; |
| uint32_t changed; |
| |
| changed = env->ucf64.xregs[UC32_UCF64_FPSCR]; |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK); |
| |
| changed ^= val; |
| if (changed & (UCF64_FPSCR_RND_MASK)) { |
| i = UCF64_FPSCR_RND(val); |
| switch (i) { |
| case 0: |
| i = float_round_nearest_even; |
| break; |
| case 1: |
| i = float_round_to_zero; |
| break; |
| case 2: |
| i = float_round_up; |
| break; |
| case 3: |
| i = float_round_down; |
| break; |
| default: /* 100 and 101 not implement */ |
| cpu_abort(CPU(cpu), "Unsupported UniCore-F64 round mode"); |
| } |
| set_float_rounding_mode(i, &env->ucf64.fp_status); |
| } |
| |
| i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val)); |
| set_float_exception_flags(i, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_add(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_add(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_sub(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_sub(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_mul(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_mul(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_div(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_div(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_negs)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 HELPER(ucf64_negd)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 HELPER(ucf64_abss)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 HELPER(ucf64_absd)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, |
| CPUUniCore32State *env) |
| { |
| int flag; |
| flag = float32_compare_quiet(a, b, &env->ucf64.fp_status); |
| env->CF = 0; |
| switch (c & 0x7) { |
| case 0: /* F */ |
| break; |
| case 1: /* UN */ |
| if (flag == 2) { |
| env->CF = 1; |
| } |
| break; |
| case 2: /* EQ */ |
| if (flag == 0) { |
| env->CF = 1; |
| } |
| break; |
| case 3: /* UEQ */ |
| if ((flag == 0) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 4: /* OLT */ |
| if (flag == -1) { |
| env->CF = 1; |
| } |
| break; |
| case 5: /* ULT */ |
| if ((flag == -1) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 6: /* OLE */ |
| if ((flag == -1) || (flag == 0)) { |
| env->CF = 1; |
| } |
| break; |
| case 7: /* ULE */ |
| if (flag != 1) { |
| env->CF = 1; |
| } |
| break; |
| } |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) |
| | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); |
| } |
| |
| void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, |
| CPUUniCore32State *env) |
| { |
| int flag; |
| flag = float64_compare_quiet(a, b, &env->ucf64.fp_status); |
| env->CF = 0; |
| switch (c & 0x7) { |
| case 0: /* F */ |
| break; |
| case 1: /* UN */ |
| if (flag == 2) { |
| env->CF = 1; |
| } |
| break; |
| case 2: /* EQ */ |
| if (flag == 0) { |
| env->CF = 1; |
| } |
| break; |
| case 3: /* UEQ */ |
| if ((flag == 0) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 4: /* OLT */ |
| if (flag == -1) { |
| env->CF = 1; |
| } |
| break; |
| case 5: /* ULT */ |
| if ((flag == -1) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 6: /* OLE */ |
| if ((flag == -1) || (flag == 0)) { |
| env->CF = 1; |
| } |
| break; |
| case 7: /* ULE */ |
| if (flag != 1) { |
| env->CF = 1; |
| } |
| break; |
| } |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) |
| | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); |
| } |
| |
| /* Helper routines to perform bitwise copies between float and int. */ |
| static inline float32 ucf64_itos(uint32_t i) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.i = i; |
| return v.s; |
| } |
| |
| static inline uint32_t ucf64_stoi(float32 s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.s = s; |
| return v.i; |
| } |
| |
| /* Integer to float conversion. */ |
| float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env) |
| { |
| return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env) |
| { |
| return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status); |
| } |
| |
| /* Float to integer conversion. */ |
| float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env) |
| { |
| return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status)); |
| } |
| |
| float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env) |
| { |
| return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status)); |
| } |
| |
| /* floating point conversion */ |
| float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env) |
| { |
| return float32_to_float64(x, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env) |
| { |
| return float64_to_float32(x, &env->ucf64.fp_status); |
| } |