blob: 52a0a9ffc3596d00a5a0a87fafae9816cab1a380 [file] [log] [blame]
/*
* Block driver for the QCOW version 2 format
*
* Copyright (c) 2004-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "block/block_int.h"
#include "block/qcow2.h"
#include "qemu/range.h"
static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
int64_t offset, int64_t length, uint64_t addend,
bool decrease, enum qcow2_discard_type type);
static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
static void set_refcount_ro0(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro1(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro2(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro3(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro4(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro5(void *refcount_array, uint64_t index,
uint64_t value);
static void set_refcount_ro6(void *refcount_array, uint64_t index,
uint64_t value);
static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
&get_refcount_ro0,
&get_refcount_ro1,
&get_refcount_ro2,
&get_refcount_ro3,
&get_refcount_ro4,
&get_refcount_ro5,
&get_refcount_ro6
};
static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
&set_refcount_ro0,
&set_refcount_ro1,
&set_refcount_ro2,
&set_refcount_ro3,
&set_refcount_ro4,
&set_refcount_ro5,
&set_refcount_ro6
};
/*********************************************************/
/* refcount handling */
int qcow2_refcount_init(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
unsigned int refcount_table_size2, i;
int ret;
assert(s->refcount_order >= 0 && s->refcount_order <= 6);
s->get_refcount = get_refcount_funcs[s->refcount_order];
s->set_refcount = set_refcount_funcs[s->refcount_order];
assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
s->refcount_table = g_try_malloc(refcount_table_size2);
if (s->refcount_table_size > 0) {
if (s->refcount_table == NULL) {
ret = -ENOMEM;
goto fail;
}
BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
s->refcount_table, refcount_table_size2);
if (ret < 0) {
goto fail;
}
for(i = 0; i < s->refcount_table_size; i++)
be64_to_cpus(&s->refcount_table[i]);
}
return 0;
fail:
return ret;
}
void qcow2_refcount_close(BlockDriverState *bs)
{
BDRVQcow2State *s = bs->opaque;
g_free(s->refcount_table);
}
static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
{
return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
}
static void set_refcount_ro0(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 1));
((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
}
static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
{
return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
& 0x3;
}
static void set_refcount_ro1(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 2));
((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
}
static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
{
return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
& 0xf;
}
static void set_refcount_ro2(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 4));
((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
}
static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
{
return ((const uint8_t *)refcount_array)[index];
}
static void set_refcount_ro3(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 8));
((uint8_t *)refcount_array)[index] = value;
}
static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
{
return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
}
static void set_refcount_ro4(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 16));
((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
}
static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
{
return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
}
static void set_refcount_ro5(void *refcount_array, uint64_t index,
uint64_t value)
{
assert(!(value >> 32));
((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
}
static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
{
return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
}
static void set_refcount_ro6(void *refcount_array, uint64_t index,
uint64_t value)
{
((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
}
static int load_refcount_block(BlockDriverState *bs,
int64_t refcount_block_offset,
void **refcount_block)
{
BDRVQcow2State *s = bs->opaque;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
refcount_block);
return ret;
}
/*
* Retrieves the refcount of the cluster given by its index and stores it in
* *refcount. Returns 0 on success and -errno on failure.
*/
int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
uint64_t *refcount)
{
BDRVQcow2State *s = bs->opaque;
uint64_t refcount_table_index, block_index;
int64_t refcount_block_offset;
int ret;
void *refcount_block;
refcount_table_index = cluster_index >> s->refcount_block_bits;
if (refcount_table_index >= s->refcount_table_size) {
*refcount = 0;
return 0;
}
refcount_block_offset =
s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
if (!refcount_block_offset) {
*refcount = 0;
return 0;
}
if (offset_into_cluster(s, refcount_block_offset)) {
qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
" unaligned (reftable index: %#" PRIx64 ")",
refcount_block_offset, refcount_table_index);
return -EIO;
}
ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
&refcount_block);
if (ret < 0) {
return ret;
}
block_index = cluster_index & (s->refcount_block_size - 1);
*refcount = s->get_refcount(refcount_block, block_index);
qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
return 0;
}
/*
* Rounds the refcount table size up to avoid growing the table for each single
* refcount block that is allocated.
*/
static unsigned int next_refcount_table_size(BDRVQcow2State *s,
unsigned int min_size)
{
unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
unsigned int refcount_table_clusters =
MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
while (min_clusters > refcount_table_clusters) {
refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
}
return refcount_table_clusters << (s->cluster_bits - 3);
}
/* Checks if two offsets are described by the same refcount block */
static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
uint64_t offset_b)
{
uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
return (block_a == block_b);
}
/*
* Loads a refcount block. If it doesn't exist yet, it is allocated first
* (including growing the refcount table if needed).
*
* Returns 0 on success or -errno in error case
*/
static int alloc_refcount_block(BlockDriverState *bs,
int64_t cluster_index, void **refcount_block)
{
BDRVQcow2State *s = bs->opaque;
unsigned int refcount_table_index;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
/* Find the refcount block for the given cluster */
refcount_table_index = cluster_index >> s->refcount_block_bits;
if (refcount_table_index < s->refcount_table_size) {
uint64_t refcount_block_offset =
s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
/* If it's already there, we're done */
if (refcount_block_offset) {
if (offset_into_cluster(s, refcount_block_offset)) {
qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
PRIx64 " unaligned (reftable index: "
"%#x)", refcount_block_offset,
refcount_table_index);
return -EIO;
}
return load_refcount_block(bs, refcount_block_offset,
refcount_block);
}
}
/*
* If we came here, we need to allocate something. Something is at least
* a cluster for the new refcount block. It may also include a new refcount
* table if the old refcount table is too small.
*
* Note that allocating clusters here needs some special care:
*
* - We can't use the normal qcow2_alloc_clusters(), it would try to
* increase the refcount and very likely we would end up with an endless
* recursion. Instead we must place the refcount blocks in a way that
* they can describe them themselves.
*
* - We need to consider that at this point we are inside update_refcounts
* and potentially doing an initial refcount increase. This means that
* some clusters have already been allocated by the caller, but their
* refcount isn't accurate yet. If we allocate clusters for metadata, we
* need to return -EAGAIN to signal the caller that it needs to restart
* the search for free clusters.
*
* - alloc_clusters_noref and qcow2_free_clusters may load a different
* refcount block into the cache
*/
*refcount_block = NULL;
/* We write to the refcount table, so we might depend on L2 tables */
ret = qcow2_cache_flush(bs, s->l2_table_cache);
if (ret < 0) {
return ret;
}
/* Allocate the refcount block itself and mark it as used */
int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
if (new_block < 0) {
return new_block;
}
#ifdef DEBUG_ALLOC2
fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
" at %" PRIx64 "\n",
refcount_table_index, cluster_index << s->cluster_bits, new_block);
#endif
if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
/* Zero the new refcount block before updating it */
ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
refcount_block);
if (ret < 0) {
goto fail_block;
}
memset(*refcount_block, 0, s->cluster_size);
/* The block describes itself, need to update the cache */
int block_index = (new_block >> s->cluster_bits) &
(s->refcount_block_size - 1);
s->set_refcount(*refcount_block, block_index, 1);
} else {
/* Described somewhere else. This can recurse at most twice before we
* arrive at a block that describes itself. */
ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
QCOW2_DISCARD_NEVER);
if (ret < 0) {
goto fail_block;
}
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail_block;
}
/* Initialize the new refcount block only after updating its refcount,
* update_refcount uses the refcount cache itself */
ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
refcount_block);
if (ret < 0) {
goto fail_block;
}
memset(*refcount_block, 0, s->cluster_size);
}
/* Now the new refcount block needs to be written to disk */
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret < 0) {
goto fail_block;
}
/* If the refcount table is big enough, just hook the block up there */
if (refcount_table_index < s->refcount_table_size) {
uint64_t data64 = cpu_to_be64(new_block);
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
ret = bdrv_pwrite_sync(bs->file->bs,
s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
&data64, sizeof(data64));
if (ret < 0) {
goto fail_block;
}
s->refcount_table[refcount_table_index] = new_block;
/* The new refcount block may be where the caller intended to put its
* data, so let it restart the search. */
return -EAGAIN;
}
qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
/*
* If we come here, we need to grow the refcount table. Again, a new
* refcount table needs some space and we can't simply allocate to avoid
* endless recursion.
*
* Therefore let's grab new refcount blocks at the end of the image, which
* will describe themselves and the new refcount table. This way we can
* reference them only in the new table and do the switch to the new
* refcount table at once without producing an inconsistent state in
* between.
*/
BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
/* Calculate the number of refcount blocks needed so far; this will be the
* basis for calculating the index of the first cluster used for the
* self-describing refcount structures which we are about to create.
*
* Because we reached this point, there cannot be any refcount entries for
* cluster_index or higher indices yet. However, because new_block has been
* allocated to describe that cluster (and it will assume this role later
* on), we cannot use that index; also, new_block may actually have a higher
* cluster index than cluster_index, so it needs to be taken into account
* here (and 1 needs to be added to its value because that cluster is used).
*/
uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
(new_block >> s->cluster_bits) + 1),
s->refcount_block_size);
if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
return -EFBIG;
}
/* And now we need at least one block more for the new metadata */
uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
uint64_t last_table_size;
uint64_t blocks_clusters;
do {
uint64_t table_clusters =
size_to_clusters(s, table_size * sizeof(uint64_t));
blocks_clusters = 1 +
((table_clusters + s->refcount_block_size - 1)
/ s->refcount_block_size);
uint64_t meta_clusters = table_clusters + blocks_clusters;
last_table_size = table_size;
table_size = next_refcount_table_size(s, blocks_used +
((meta_clusters + s->refcount_block_size - 1)
/ s->refcount_block_size));
} while (last_table_size != table_size);
#ifdef DEBUG_ALLOC2
fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
s->refcount_table_size, table_size);
#endif
/* Create the new refcount table and blocks */
uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
s->cluster_size;
uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
uint64_t *new_table = g_try_new0(uint64_t, table_size);
void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
assert(table_size > 0 && blocks_clusters > 0);
if (new_table == NULL || new_blocks == NULL) {
ret = -ENOMEM;
goto fail_table;
}
/* Fill the new refcount table */
memcpy(new_table, s->refcount_table,
s->refcount_table_size * sizeof(uint64_t));
new_table[refcount_table_index] = new_block;
int i;
for (i = 0; i < blocks_clusters; i++) {
new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
}
/* Fill the refcount blocks */
uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
int block = 0;
for (i = 0; i < table_clusters + blocks_clusters; i++) {
s->set_refcount(new_blocks, block++, 1);
}
/* Write refcount blocks to disk */
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
blocks_clusters * s->cluster_size);
g_free(new_blocks);
new_blocks = NULL;
if (ret < 0) {
goto fail_table;
}
/* Write refcount table to disk */
for(i = 0; i < table_size; i++) {
cpu_to_be64s(&new_table[i]);
}
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
table_size * sizeof(uint64_t));
if (ret < 0) {
goto fail_table;
}
for(i = 0; i < table_size; i++) {
be64_to_cpus(&new_table[i]);
}
/* Hook up the new refcount table in the qcow2 header */
struct QEMU_PACKED {
uint64_t d64;
uint32_t d32;
} data;
cpu_to_be64w(&data.d64, table_offset);
cpu_to_be32w(&data.d32, table_clusters);
BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
ret = bdrv_pwrite_sync(bs->file->bs,
offsetof(QCowHeader, refcount_table_offset),
&data, sizeof(data));
if (ret < 0) {
goto fail_table;
}
/* And switch it in memory */
uint64_t old_table_offset = s->refcount_table_offset;
uint64_t old_table_size = s->refcount_table_size;
g_free(s->refcount_table);
s->refcount_table = new_table;
s->refcount_table_size = table_size;
s->refcount_table_offset = table_offset;
/* Free old table. */
qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
QCOW2_DISCARD_OTHER);
ret = load_refcount_block(bs, new_block, refcount_block);
if (ret < 0) {
return ret;
}
/* If we were trying to do the initial refcount update for some cluster
* allocation, we might have used the same clusters to store newly
* allocated metadata. Make the caller search some new space. */
return -EAGAIN;
fail_table:
g_free(new_blocks);
g_free(new_table);
fail_block:
if (*refcount_block != NULL) {
qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
}
return ret;
}
void qcow2_process_discards(BlockDriverState *bs, int ret)
{
BDRVQcow2State *s = bs->opaque;
Qcow2DiscardRegion *d, *next;
QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
QTAILQ_REMOVE(&s->discards, d, next);
/* Discard is optional, ignore the return value */
if (ret >= 0) {
bdrv_discard(bs->file->bs,
d->offset >> BDRV_SECTOR_BITS,
d->bytes >> BDRV_SECTOR_BITS);
}
g_free(d);
}
}
static void update_refcount_discard(BlockDriverState *bs,
uint64_t offset, uint64_t length)
{
BDRVQcow2State *s = bs->opaque;
Qcow2DiscardRegion *d, *p, *next;
QTAILQ_FOREACH(d, &s->discards, next) {
uint64_t new_start = MIN(offset, d->offset);
uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
if (new_end - new_start <= length + d->bytes) {
/* There can't be any overlap, areas ending up here have no
* references any more and therefore shouldn't get freed another
* time. */
assert(d->bytes + length == new_end - new_start);
d->offset = new_start;
d->bytes = new_end - new_start;
goto found;
}
}
d = g_malloc(sizeof(*d));
*d = (Qcow2DiscardRegion) {
.bs = bs,
.offset = offset,
.bytes = length,
};
QTAILQ_INSERT_TAIL(&s->discards, d, next);
found:
/* Merge discard requests if they are adjacent now */
QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
if (p == d
|| p->offset > d->offset + d->bytes
|| d->offset > p->offset + p->bytes)
{
continue;
}
/* Still no overlap possible */
assert(p->offset == d->offset + d->bytes
|| d->offset == p->offset + p->bytes);
QTAILQ_REMOVE(&s->discards, p, next);
d->offset = MIN(d->offset, p->offset);
d->bytes += p->bytes;
g_free(p);
}
}
/* XXX: cache several refcount block clusters ? */
/* @addend is the absolute value of the addend; if @decrease is set, @addend
* will be subtracted from the current refcount, otherwise it will be added */
static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
int64_t offset,
int64_t length,
uint64_t addend,
bool decrease,
enum qcow2_discard_type type)
{
BDRVQcow2State *s = bs->opaque;
int64_t start, last, cluster_offset;
void *refcount_block = NULL;
int64_t old_table_index = -1;
int ret;
#ifdef DEBUG_ALLOC2
fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
" addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
addend);
#endif
if (length < 0) {
return -EINVAL;
} else if (length == 0) {
return 0;
}
if (decrease) {
qcow2_cache_set_dependency(bs, s->refcount_block_cache,
s->l2_table_cache);
}
start = start_of_cluster(s, offset);
last = start_of_cluster(s, offset + length - 1);
for(cluster_offset = start; cluster_offset <= last;
cluster_offset += s->cluster_size)
{
int block_index;
uint64_t refcount;
int64_t cluster_index = cluster_offset >> s->cluster_bits;
int64_t table_index = cluster_index >> s->refcount_block_bits;
/* Load the refcount block and allocate it if needed */
if (table_index != old_table_index) {
if (refcount_block) {
qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
}
ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
if (ret < 0) {
goto fail;
}
}
old_table_index = table_index;
qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
refcount_block);
/* we can update the count and save it */
block_index = cluster_index & (s->refcount_block_size - 1);
refcount = s->get_refcount(refcount_block, block_index);
if (decrease ? (refcount - addend > refcount)
: (refcount + addend < refcount ||
refcount + addend > s->refcount_max))
{
ret = -EINVAL;
goto fail;
}
if (decrease) {
refcount -= addend;
} else {
refcount += addend;
}
if (refcount == 0 && cluster_index < s->free_cluster_index) {
s->free_cluster_index = cluster_index;
}
s->set_refcount(refcount_block, block_index, refcount);
if (refcount == 0 && s->discard_passthrough[type]) {
update_refcount_discard(bs, cluster_offset, s->cluster_size);
}
}
ret = 0;
fail:
if (!s->cache_discards) {
qcow2_process_discards(bs, ret);
}
/* Write last changed block to disk */
if (refcount_block) {
qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
}
/*
* Try do undo any updates if an error is returned (This may succeed in
* some cases like ENOSPC for allocating a new refcount block)
*/
if (ret < 0) {
int dummy;
dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
!decrease, QCOW2_DISCARD_NEVER);
(void)dummy;
}
return ret;
}
/*
* Increases or decreases the refcount of a given cluster.
*
* @addend is the absolute value of the addend; if @decrease is set, @addend
* will be subtracted from the current refcount, otherwise it will be added.
*
* On success 0 is returned; on failure -errno is returned.
*/
int qcow2_update_cluster_refcount(BlockDriverState *bs,
int64_t cluster_index,
uint64_t addend, bool decrease,
enum qcow2_discard_type type)
{
BDRVQcow2State *s = bs->opaque;
int ret;
ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
decrease, type);
if (ret < 0) {
return ret;
}
return 0;
}
/*********************************************************/
/* cluster allocation functions */
/* return < 0 if error */
static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
{
BDRVQcow2State *s = bs->opaque;
uint64_t i, nb_clusters, refcount;
int ret;
/* We can't allocate clusters if they may still be queued for discard. */
if (s->cache_discards) {
qcow2_process_discards(bs, 0);
}
nb_clusters = size_to_clusters(s, size);
retry:
for(i = 0; i < nb_clusters; i++) {
uint64_t next_cluster_index = s->free_cluster_index++;
ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
if (ret < 0) {
return ret;
} else if (refcount != 0) {
goto retry;
}
}
/* Make sure that all offsets in the "allocated" range are representable
* in an int64_t */
if (s->free_cluster_index > 0 &&
s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
{
return -EFBIG;
}
#ifdef DEBUG_ALLOC2
fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
size,
(s->free_cluster_index - nb_clusters) << s->cluster_bits);
#endif
return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
}
int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
{
int64_t offset;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
do {
offset = alloc_clusters_noref(bs, size);
if (offset < 0) {
return offset;
}
ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
} while (ret == -EAGAIN);
if (ret < 0) {
return ret;
}
return offset;
}
int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
int64_t nb_clusters)
{
BDRVQcow2State *s = bs->opaque;
uint64_t cluster_index, refcount;
uint64_t i;
int ret;
assert(nb_clusters >= 0);
if (nb_clusters == 0) {
return 0;
}
do {
/* Check how many clusters there are free */
cluster_index = offset >> s->cluster_bits;
for(i = 0; i < nb_clusters; i++) {
ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
if (ret < 0) {
return ret;
} else if (refcount != 0) {
break;
}
}
/* And then allocate them */
ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
QCOW2_DISCARD_NEVER);
} while (ret == -EAGAIN);
if (ret < 0) {
return ret;
}
return i;
}
/* only used to allocate compressed sectors. We try to allocate
contiguous sectors. size must be <= cluster_size */
int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
{
BDRVQcow2State *s = bs->opaque;
int64_t offset;
size_t free_in_cluster;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
assert(size > 0 && size <= s->cluster_size);
assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
offset = s->free_byte_offset;
if (offset) {
uint64_t refcount;
ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
if (ret < 0) {
return ret;
}
if (refcount == s->refcount_max) {
offset = 0;
}
}
free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
do {
if (!offset || free_in_cluster < size) {
int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
if (new_cluster < 0) {
return new_cluster;
}
if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
offset = new_cluster;
free_in_cluster = s->cluster_size;
} else {
free_in_cluster += s->cluster_size;
}
}
assert(offset);
ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
if (ret < 0) {
offset = 0;
}
} while (ret == -EAGAIN);
if (ret < 0) {
return ret;
}
/* The cluster refcount was incremented; refcount blocks must be flushed
* before the caller's L2 table updates. */
qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
s->free_byte_offset = offset + size;
if (!offset_into_cluster(s, s->free_byte_offset)) {
s->free_byte_offset = 0;
}
return offset;
}
void qcow2_free_clusters(BlockDriverState *bs,
int64_t offset, int64_t size,
enum qcow2_discard_type type)
{
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
ret = update_refcount(bs, offset, size, 1, true, type);
if (ret < 0) {
fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
/* TODO Remember the clusters to free them later and avoid leaking */
}
}
/*
* Free a cluster using its L2 entry (handles clusters of all types, e.g.
* normal cluster, compressed cluster, etc.)
*/
void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
int nb_clusters, enum qcow2_discard_type type)
{
BDRVQcow2State *s = bs->opaque;
switch (qcow2_get_cluster_type(l2_entry)) {
case QCOW2_CLUSTER_COMPRESSED:
{
int nb_csectors;
nb_csectors = ((l2_entry >> s->csize_shift) &
s->csize_mask) + 1;
qcow2_free_clusters(bs,
(l2_entry & s->cluster_offset_mask) & ~511,
nb_csectors * 512, type);
}
break;
case QCOW2_CLUSTER_NORMAL:
case QCOW2_CLUSTER_ZERO:
if (l2_entry & L2E_OFFSET_MASK) {
if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
qcow2_signal_corruption(bs, false, -1, -1,
"Cannot free unaligned cluster %#llx",
l2_entry & L2E_OFFSET_MASK);
} else {
qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
nb_clusters << s->cluster_bits, type);
}
}
break;
case QCOW2_CLUSTER_UNALLOCATED:
break;
default:
abort();
}
}
/*********************************************************/
/* snapshots and image creation */
/* update the refcounts of snapshots and the copied flag */
int qcow2_update_snapshot_refcount(BlockDriverState *bs,
int64_t l1_table_offset, int l1_size, int addend)
{
BDRVQcow2State *s = bs->opaque;
uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
bool l1_allocated = false;
int64_t old_offset, old_l2_offset;
int i, j, l1_modified = 0, nb_csectors;
int ret;
assert(addend >= -1 && addend <= 1);
l2_table = NULL;
l1_table = NULL;
l1_size2 = l1_size * sizeof(uint64_t);
s->cache_discards = true;
/* WARNING: qcow2_snapshot_goto relies on this function not using the
* l1_table_offset when it is the current s->l1_table_offset! Be careful
* when changing this! */
if (l1_table_offset != s->l1_table_offset) {
l1_table = g_try_malloc0(align_offset(l1_size2, 512));
if (l1_size2 && l1_table == NULL) {
ret = -ENOMEM;
goto fail;
}
l1_allocated = true;
ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
if (ret < 0) {
goto fail;
}
for(i = 0;i < l1_size; i++)
be64_to_cpus(&l1_table[i]);
} else {
assert(l1_size == s->l1_size);
l1_table = s->l1_table;
l1_allocated = false;
}
for(i = 0; i < l1_size; i++) {
l2_offset = l1_table[i];
if (l2_offset) {
old_l2_offset = l2_offset;
l2_offset &= L1E_OFFSET_MASK;
if (offset_into_cluster(s, l2_offset)) {
qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
PRIx64 " unaligned (L1 index: %#x)",
l2_offset, i);
ret = -EIO;
goto fail;
}
ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
(void**) &l2_table);
if (ret < 0) {
goto fail;
}
for(j = 0; j < s->l2_size; j++) {
uint64_t cluster_index;
offset = be64_to_cpu(l2_table[j]);
old_offset = offset;
offset &= ~QCOW_OFLAG_COPIED;
switch (qcow2_get_cluster_type(offset)) {
case QCOW2_CLUSTER_COMPRESSED:
nb_csectors = ((offset >> s->csize_shift) &
s->csize_mask) + 1;
if (addend != 0) {
ret = update_refcount(bs,
(offset & s->cluster_offset_mask) & ~511,
nb_csectors * 512, abs(addend), addend < 0,
QCOW2_DISCARD_SNAPSHOT);
if (ret < 0) {
goto fail;
}
}
/* compressed clusters are never modified */
refcount = 2;
break;
case QCOW2_CLUSTER_NORMAL:
case QCOW2_CLUSTER_ZERO:
if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
qcow2_signal_corruption(bs, true, -1, -1, "Data "
"cluster offset %#llx "
"unaligned (L2 offset: %#"
PRIx64 ", L2 index: %#x)",
offset & L2E_OFFSET_MASK,
l2_offset, j);
ret = -EIO;
goto fail;
}
cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
if (!cluster_index) {
/* unallocated */
refcount = 0;
break;
}
if (addend != 0) {
ret = qcow2_update_cluster_refcount(bs,
cluster_index, abs(addend), addend < 0,
QCOW2_DISCARD_SNAPSHOT);
if (ret < 0) {
goto fail;
}
}
ret = qcow2_get_refcount(bs, cluster_index, &refcount);
if (ret < 0) {
goto fail;
}
break;
case QCOW2_CLUSTER_UNALLOCATED:
refcount = 0;
break;
default:
abort();
}
if (refcount == 1) {
offset |= QCOW_OFLAG_COPIED;
}
if (offset != old_offset) {
if (addend > 0) {
qcow2_cache_set_dependency(bs, s->l2_table_cache,
s->refcount_block_cache);
}
l2_table[j] = cpu_to_be64(offset);
qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
l2_table);
}
}
qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
if (addend != 0) {
ret = qcow2_update_cluster_refcount(bs, l2_offset >>
s->cluster_bits,
abs(addend), addend < 0,
QCOW2_DISCARD_SNAPSHOT);
if (ret < 0) {
goto fail;
}
}
ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
&refcount);
if (ret < 0) {
goto fail;
} else if (refcount == 1) {
l2_offset |= QCOW_OFLAG_COPIED;
}
if (l2_offset != old_l2_offset) {
l1_table[i] = l2_offset;
l1_modified = 1;
}
}
}
ret = bdrv_flush(bs);
fail:
if (l2_table) {
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
}
s->cache_discards = false;
qcow2_process_discards(bs, ret);
/* Update L1 only if it isn't deleted anyway (addend = -1) */
if (ret == 0 && addend >= 0 && l1_modified) {
for (i = 0; i < l1_size; i++) {
cpu_to_be64s(&l1_table[i]);
}
ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
l1_table, l1_size2);
for (i = 0; i < l1_size; i++) {
be64_to_cpus(&l1_table[i]);
}
}
if (l1_allocated)
g_free(l1_table);
return ret;
}
/*********************************************************/
/* refcount checking functions */
static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
{
/* This assertion holds because there is no way we can address more than
* 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
* offsets have to be representable in bytes); due to every cluster
* corresponding to one refcount entry, we are well below that limit */
assert(entries < (UINT64_C(1) << (64 - 9)));
/* Thanks to the assertion this will not overflow, because
* s->refcount_order < 7.
* (note: x << s->refcount_order == x * s->refcount_bits) */
return DIV_ROUND_UP(entries << s->refcount_order, 8);
}
/**
* Reallocates *array so that it can hold new_size entries. *size must contain
* the current number of entries in *array. If the reallocation fails, *array
* and *size will not be modified and -errno will be returned. If the
* reallocation is successful, *array will be set to the new buffer, *size
* will be set to new_size and 0 will be returned. The size of the reallocated
* refcount array buffer will be aligned to a cluster boundary, and the newly
* allocated area will be zeroed.
*/
static int realloc_refcount_array(BDRVQcow2State *s, void **array,
int64_t *size, int64_t new_size)
{
int64_t old_byte_size, new_byte_size;
void *new_ptr;
/* Round to clusters so the array can be directly written to disk */
old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
* s->cluster_size;
new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
* s->cluster_size;
if (new_byte_size == old_byte_size) {
*size = new_size;
return 0;
}
assert(new_byte_size > 0);
if (new_byte_size > SIZE_MAX) {
return -ENOMEM;
}
new_ptr = g_try_realloc(*array, new_byte_size);
if (!new_ptr) {
return -ENOMEM;
}
if (new_byte_size > old_byte_size) {
memset((char *)new_ptr + old_byte_size, 0,
new_byte_size - old_byte_size);
}
*array = new_ptr;
*size = new_size;
return 0;
}
/*
* Increases the refcount for a range of clusters in a given refcount table.
* This is used to construct a temporary refcount table out of L1 and L2 tables
* which can be compared to the refcount table saved in the image.
*
* Modifies the number of errors in res.
*/
static int inc_refcounts(BlockDriverState *bs,
BdrvCheckResult *res,
void **refcount_table,
int64_t *refcount_table_size,
int64_t offset, int64_t size)
{
BDRVQcow2State *s = bs->opaque;
uint64_t start, last, cluster_offset, k, refcount;
int ret;
if (size <= 0) {
return 0;
}
start = start_of_cluster(s, offset);
last = start_of_cluster(s, offset + size - 1);
for(cluster_offset = start; cluster_offset <= last;
cluster_offset += s->cluster_size) {
k = cluster_offset >> s->cluster_bits;
if (k >= *refcount_table_size) {
ret = realloc_refcount_array(s, refcount_table,
refcount_table_size, k + 1);
if (ret < 0) {
res->check_errors++;
return ret;
}
}
refcount = s->get_refcount(*refcount_table, k);
if (refcount == s->refcount_max) {
fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
"\n", cluster_offset);
fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
"width or qemu-img convert to create a clean copy if the "
"image cannot be opened for writing\n");
res->corruptions++;
continue;
}
s->set_refcount(*refcount_table, k, refcount + 1);
}
return 0;
}
/* Flags for check_refcounts_l1() and check_refcounts_l2() */
enum {
CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
};
/*
* Increases the refcount in the given refcount table for the all clusters
* referenced in the L2 table. While doing so, performs some checks on L2
* entries.
*
* Returns the number of errors found by the checks or -errno if an internal
* error occurred.
*/
static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
void **refcount_table,
int64_t *refcount_table_size, int64_t l2_offset,
int flags)
{
BDRVQcow2State *s = bs->opaque;
uint64_t *l2_table, l2_entry;
uint64_t next_contiguous_offset = 0;
int i, l2_size, nb_csectors, ret;
/* Read L2 table from disk */
l2_size = s->l2_size * sizeof(uint64_t);
l2_table = g_malloc(l2_size);
ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
if (ret < 0) {
fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
res->check_errors++;
goto fail;
}
/* Do the actual checks */
for(i = 0; i < s->l2_size; i++) {
l2_entry = be64_to_cpu(l2_table[i]);
switch (qcow2_get_cluster_type(l2_entry)) {
case QCOW2_CLUSTER_COMPRESSED:
/* Compressed clusters don't have QCOW_OFLAG_COPIED */
if (l2_entry & QCOW_OFLAG_COPIED) {
fprintf(stderr, "ERROR: cluster %" PRId64 ": "
"copied flag must never be set for compressed "
"clusters\n", l2_entry >> s->cluster_bits);
l2_entry &= ~QCOW_OFLAG_COPIED;
res->corruptions++;
}
/* Mark cluster as used */
nb_csectors = ((l2_entry >> s->csize_shift) &
s->csize_mask) + 1;
l2_entry &= s->cluster_offset_mask;
ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
l2_entry & ~511, nb_csectors * 512);
if (ret < 0) {
goto fail;
}
if (flags & CHECK_FRAG_INFO) {
res->bfi.allocated_clusters++;
res->bfi.compressed_clusters++;
/* Compressed clusters are fragmented by nature. Since they
* take up sub-sector space but we only have sector granularity
* I/O we need to re-read the same sectors even for adjacent
* compressed clusters.
*/
res->bfi.fragmented_clusters++;
}
break;
case QCOW2_CLUSTER_ZERO:
if ((l2_entry & L2E_OFFSET_MASK) == 0) {
break;
}
/* fall through */
case QCOW2_CLUSTER_NORMAL:
{
uint64_t offset = l2_entry & L2E_OFFSET_MASK;
if (flags & CHECK_FRAG_INFO) {
res->bfi.allocated_clusters++;
if (next_contiguous_offset &&
offset != next_contiguous_offset) {
res->bfi.fragmented_clusters++;
}
next_contiguous_offset = offset + s->cluster_size;
}
/* Mark cluster as used */
ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
offset, s->cluster_size);
if (ret < 0) {
goto fail;
}
/* Correct offsets are cluster aligned */
if (offset_into_cluster(s, offset)) {
fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
"properly aligned; L2 entry corrupted.\n", offset);
res->corruptions++;
}
break;
}
case QCOW2_CLUSTER_UNALLOCATED:
break;
default:
abort();
}
}
g_free(l2_table);
return 0;
fail:
g_free(l2_table);
return ret;
}
/*
* Increases the refcount for the L1 table, its L2 tables and all referenced
* clusters in the given refcount table. While doing so, performs some checks
* on L1 and L2 entries.
*
* Returns the number of errors found by the checks or -errno if an internal
* error occurred.
*/
static int check_refcounts_l1(BlockDriverState *bs,
BdrvCheckResult *res,
void **refcount_table,
int64_t *refcount_table_size,
int64_t l1_table_offset, int l1_size,
int flags)
{
BDRVQcow2State *s = bs->opaque;
uint64_t *l1_table = NULL, l2_offset, l1_size2;
int i, ret;
l1_size2 = l1_size * sizeof(uint64_t);
/* Mark L1 table as used */
ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
l1_table_offset, l1_size2);
if (ret < 0) {
goto fail;
}
/* Read L1 table entries from disk */
if (l1_size2 > 0) {
l1_table = g_try_malloc(l1_size2);
if (l1_table == NULL) {
ret = -ENOMEM;
res->check_errors++;
goto fail;
}
ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
if (ret < 0) {
fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
res->check_errors++;
goto fail;
}
for(i = 0;i < l1_size; i++)
be64_to_cpus(&l1_table[i]);
}
/* Do the actual checks */
for(i = 0; i < l1_size; i++) {
l2_offset = l1_table[i];
if (l2_offset) {
/* Mark L2 table as used */
l2_offset &= L1E_OFFSET_MASK;
ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
l2_offset, s->cluster_size);
if (ret < 0) {
goto fail;
}
/* L2 tables are cluster aligned */
if (offset_into_cluster(s, l2_offset)) {
fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
"cluster aligned; L1 entry corrupted\n", l2_offset);
res->corruptions++;
}
/* Process and check L2 entries */
ret = check_refcounts_l2(bs, res, refcount_table,
refcount_table_size, l2_offset, flags);
if (ret < 0) {
goto fail;
}
}
}
g_free(l1_table);
return 0;
fail:
g_free(l1_table);
return ret;
}
/*
* Checks the OFLAG_COPIED flag for all L1 and L2 entries.
*
* This function does not print an error message nor does it increment
* check_errors if qcow2_get_refcount fails (this is because such an error will
* have been already detected and sufficiently signaled by the calling function
* (qcow2_check_refcounts) by the time this function is called).
*/
static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix)
{
BDRVQcow2State *s = bs->opaque;
uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
int ret;
uint64_t refcount;
int i, j;
for (i = 0; i < s->l1_size; i++) {
uint64_t l1_entry = s->l1_table[i];
uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
bool l2_dirty = false;
if (!l2_offset) {
continue;
}
ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
&refcount);
if (ret < 0) {
/* don't print message nor increment check_errors */
continue;
}
if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
"l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
fix & BDRV_FIX_ERRORS ? "Repairing" :
"ERROR",
i, l1_entry, refcount);
if (fix & BDRV_FIX_ERRORS) {
s->l1_table[i] = refcount == 1
? l1_entry | QCOW_OFLAG_COPIED
: l1_entry & ~QCOW_OFLAG_COPIED;
ret = qcow2_write_l1_entry(bs, i);
if (ret < 0) {
res->check_errors++;
goto fail;
}
res->corruptions_fixed++;
} else {
res->corruptions++;
}
}
ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
s->l2_size * sizeof(uint64_t));
if (ret < 0) {
fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
strerror(-ret));
res->check_errors++;
goto fail;
}
for (j = 0; j < s->l2_size; j++) {
uint64_t l2_entry = be64_to_cpu(l2_table[j]);
uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
int cluster_type = qcow2_get_cluster_type(l2_entry);
if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
ret = qcow2_get_refcount(bs,
data_offset >> s->cluster_bits,
&refcount);
if (ret < 0) {
/* don't print message nor increment check_errors */
continue;
}
if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
fprintf(stderr, "%s OFLAG_COPIED data cluster: "
"l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
fix & BDRV_FIX_ERRORS ? "Repairing" :
"ERROR",
l2_entry, refcount);
if (fix & BDRV_FIX_ERRORS) {
l2_table[j] = cpu_to_be64(refcount == 1
? l2_entry | QCOW_OFLAG_COPIED
: l2_entry & ~QCOW_OFLAG_COPIED);
l2_dirty = true;
res->corruptions_fixed++;
} else {
res->corruptions++;
}
}
}
}
if (l2_dirty) {
ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
l2_offset, s->cluster_size);
if (ret < 0) {
fprintf(stderr, "ERROR: Could not write L2 table; metadata "
"overlap check failed: %s\n", strerror(-ret));
res->check_errors++;
goto fail;
}
ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
s->cluster_size);
if (ret < 0) {
fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
strerror(-ret));
res->check_errors++;
goto fail;
}
}
}
ret = 0;
fail:
qemu_vfree(l2_table);
return ret;
}
/*
* Checks consistency of refblocks and accounts for each refblock in
* *refcount_table.
*/
static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix, bool *rebuild,
void **refcount_table, int64_t *nb_clusters)
{
BDRVQcow2State *s = bs->opaque;
int64_t i, size;
int ret;
for(i = 0; i < s->refcount_table_size; i++) {
uint64_t offset, cluster;
offset = s->refcount_table[i];
cluster = offset >> s->cluster_bits;
/* Refcount blocks are cluster aligned */
if (offset_into_cluster(s, offset)) {
fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
"cluster aligned; refcount table entry corrupted\n", i);
res->corruptions++;
*rebuild = true;
continue;
}
if (cluster >= *nb_clusters) {
fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
if (fix & BDRV_FIX_ERRORS) {
int64_t new_nb_clusters;
if (offset > INT64_MAX - s->cluster_size) {
ret = -EINVAL;
goto resize_fail;
}
ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
if (ret < 0) {
goto resize_fail;
}
size = bdrv_getlength(bs->file->bs);
if (size < 0) {
ret = size;
goto resize_fail;
}
new_nb_clusters = size_to_clusters(s, size);
assert(new_nb_clusters >= *nb_clusters);
ret = realloc_refcount_array(s, refcount_table,
nb_clusters, new_nb_clusters);
if (ret < 0) {
res->check_errors++;
return ret;
}
if (cluster >= *nb_clusters) {
ret = -EINVAL;
goto resize_fail;
}
res->corruptions_fixed++;
ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
offset, s->cluster_size);
if (ret < 0) {
return ret;
}
/* No need to check whether the refcount is now greater than 1:
* This area was just allocated and zeroed, so it can only be
* exactly 1 after inc_refcounts() */
continue;
resize_fail:
res->corruptions++;
*rebuild = true;
fprintf(stderr, "ERROR could not resize image: %s\n",
strerror(-ret));
} else {
res->corruptions++;
}
continue;
}
if (offset != 0) {
ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
offset, s->cluster_size);
if (ret < 0) {
return ret;
}
if (s->get_refcount(*refcount_table, cluster) != 1) {
fprintf(stderr, "ERROR refcount block %" PRId64
" refcount=%" PRIu64 "\n", i,
s->get_refcount(*refcount_table, cluster));
res->corruptions++;
*rebuild = true;
}
}
}
return 0;
}
/*
* Calculates an in-memory refcount table.
*/
static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix, bool *rebuild,
void **refcount_table, int64_t *nb_clusters)
{
BDRVQcow2State *s = bs->opaque;
int64_t i;
QCowSnapshot *sn;
int ret;
if (!*refcount_table) {
int64_t old_size = 0;
ret = realloc_refcount_array(s, refcount_table,
&old_size, *nb_clusters);
if (ret < 0) {
res->check_errors++;
return ret;
}
}
/* header */
ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
0, s->cluster_size);
if (ret < 0) {
return ret;
}
/* current L1 table */
ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
if (ret < 0) {
return ret;
}
/* snapshots */
for (i = 0; i < s->nb_snapshots; i++) {
sn = s->snapshots + i;
ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
sn->l1_table_offset, sn->l1_size, 0);
if (ret < 0) {
return ret;
}
}
ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
s->snapshots_offset, s->snapshots_size);
if (ret < 0) {
return ret;
}
/* refcount data */
ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
s->refcount_table_offset,
s->refcount_table_size * sizeof(uint64_t));
if (ret < 0) {
return ret;
}
return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
}
/*
* Compares the actual reference count for each cluster in the image against the
* refcount as reported by the refcount structures on-disk.
*/
static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix, bool *rebuild,
int64_t *highest_cluster,
void *refcount_table, int64_t nb_clusters)
{
BDRVQcow2State *s = bs->opaque;
int64_t i;
uint64_t refcount1, refcount2;
int ret;
for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
ret = qcow2_get_refcount(bs, i, &refcount1);
if (ret < 0) {
fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
i, strerror(-ret));
res->check_errors++;
continue;
}
refcount2 = s->get_refcount(refcount_table, i);
if (refcount1 > 0 || refcount2 > 0) {
*highest_cluster = i;
}
if (refcount1 != refcount2) {
/* Check if we're allowed to fix the mismatch */
int *num_fixed = NULL;
if (refcount1 == 0) {
*rebuild = true;
} else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
num_fixed = &res->leaks_fixed;
} else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
num_fixed = &res->corruptions_fixed;
}
fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
" reference=%" PRIu64 "\n",
num_fixed != NULL ? "Repairing" :
refcount1 < refcount2 ? "ERROR" :
"Leaked",
i, refcount1, refcount2);
if (num_fixed) {
ret = update_refcount(bs, i << s->cluster_bits, 1,
refcount_diff(refcount1, refcount2),
refcount1 > refcount2,
QCOW2_DISCARD_ALWAYS);
if (ret >= 0) {
(*num_fixed)++;
continue;
}
}
/* And if we couldn't, print an error */
if (refcount1 < refcount2) {
res->corruptions++;
} else {
res->leaks++;
}
}
}
}
/*
* Allocates clusters using an in-memory refcount table (IMRT) in contrast to
* the on-disk refcount structures.
*
* On input, *first_free_cluster tells where to start looking, and need not
* actually be a free cluster; the returned offset will not be before that
* cluster. On output, *first_free_cluster points to the first gap found, even
* if that gap was too small to be used as the returned offset.
*
* Note that *first_free_cluster is a cluster index whereas the return value is
* an offset.
*/
static int64_t alloc_clusters_imrt(BlockDriverState *bs,
int cluster_count,
void **refcount_table,
int64_t *imrt_nb_clusters,
int64_t *first_free_cluster)
{
BDRVQcow2State *s = bs->opaque;
int64_t cluster = *first_free_cluster, i;
bool first_gap = true;
int contiguous_free_clusters;
int ret;
/* Starting at *first_free_cluster, find a range of at least cluster_count
* continuously free clusters */
for (contiguous_free_clusters = 0;
cluster < *imrt_nb_clusters &&
contiguous_free_clusters < cluster_count;
cluster++)
{
if (!s->get_refcount(*refcount_table, cluster)) {
contiguous_free_clusters++;
if (first_gap) {
/* If this is the first free cluster found, update
* *first_free_cluster accordingly */
*first_free_cluster = cluster;
first_gap = false;
}
} else if (contiguous_free_clusters) {
contiguous_free_clusters = 0;
}
}
/* If contiguous_free_clusters is greater than zero, it contains the number
* of continuously free clusters until the current cluster; the first free
* cluster in the current "gap" is therefore
* cluster - contiguous_free_clusters */
/* If no such range could be found, grow the in-memory refcount table
* accordingly to append free clusters at the end of the image */
if (contiguous_free_clusters < cluster_count) {
/* contiguous_free_clusters clusters are already empty at the image end;
* we need cluster_count clusters; therefore, we have to allocate
* cluster_count - contiguous_free_clusters new clusters at the end of
* the image (which is the current value of cluster; note that cluster
* may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
* the image end) */
ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
cluster + cluster_count
- contiguous_free_clusters);
if (ret < 0) {
return ret;
}
}
/* Go back to the first free cluster */
cluster -= contiguous_free_clusters;
for (i = 0; i < cluster_count; i++) {
s->set_refcount(*refcount_table, cluster + i, 1);
}
return cluster << s->cluster_bits;
}
/*
* Creates a new refcount structure based solely on the in-memory information
* given through *refcount_table. All necessary allocations will be reflected
* in that array.
*
* On success, the old refcount structure is leaked (it will be covered by the
* new refcount structure).
*/
static int rebuild_refcount_structure(BlockDriverState *bs,
BdrvCheckResult *res,
void **refcount_table,
int64_t *nb_clusters)
{
BDRVQcow2State *s = bs->opaque;
int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
int64_t refblock_offset, refblock_start, refblock_index;
uint32_t reftable_size = 0;
uint64_t *on_disk_reftable = NULL;
void *on_disk_refblock;
int ret = 0;
struct {
uint64_t reftable_offset;
uint32_t reftable_clusters;
} QEMU_PACKED reftable_offset_and_clusters;
qcow2_cache_empty(bs, s->refcount_block_cache);
write_refblocks:
for (; cluster < *nb_clusters; cluster++) {
if (!s->get_refcount(*refcount_table, cluster)) {
continue;
}
refblock_index = cluster >> s->refcount_block_bits;
refblock_start = refblock_index << s->refcount_block_bits;
/* Don't allocate a cluster in a refblock already written to disk */
if (first_free_cluster < refblock_start) {
first_free_cluster = refblock_start;
}
refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
nb_clusters, &first_free_cluster);
if (refblock_offset < 0) {
fprintf(stderr, "ERROR allocating refblock: %s\n",
strerror(-refblock_offset));
res->check_errors++;
ret = refblock_offset;
goto fail;
}
if (reftable_size <= refblock_index) {
uint32_t old_reftable_size = reftable_size;
uint64_t *new_on_disk_reftable;
reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
s->cluster_size) / sizeof(uint64_t);
new_on_disk_reftable = g_try_realloc(on_disk_reftable,
reftable_size *
sizeof(uint64_t));
if (!new_on_disk_reftable) {
res->check_errors++;
ret = -ENOMEM;
goto fail;
}
on_disk_reftable = new_on_disk_reftable;
memset(on_disk_reftable + old_reftable_size, 0,
(reftable_size - old_reftable_size) * sizeof(uint64_t));
/* The offset we have for the reftable is now no longer valid;
* this will leak that range, but we can easily fix that by running
* a leak-fixing check after this rebuild operation */
reftable_offset = -1;
}
on_disk_reftable[refblock_index] = refblock_offset;
/* If this is apparently the last refblock (for now), try to squeeze the
* reftable in */
if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
reftable_offset < 0)
{
uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
sizeof(uint64_t));
reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
refcount_table, nb_clusters,
&first_free_cluster);
if (reftable_offset < 0) {
fprintf(stderr, "ERROR allocating reftable: %s\n",
strerror(-reftable_offset));
res->check_errors++;
ret = reftable_offset;
goto fail;
}
}
ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
s->cluster_size);
if (ret < 0) {
fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
goto fail;
}
/* The size of *refcount_table is always cluster-aligned, therefore the
* write operation will not overflow */
on_disk_refblock = (void *)((char *) *refcount_table +
refblock_index * s->cluster_size);
ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
on_disk_refblock, s->cluster_sectors);
if (ret < 0) {
fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
goto fail;
}
/* Go to the end of this refblock */
cluster = refblock_start + s->refcount_block_size - 1;
}
if (reftable_offset < 0) {
uint64_t post_refblock_start, reftable_clusters;
post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
reftable_clusters = size_to_clusters(s,
reftable_size * sizeof(uint64_t));
/* Not pretty but simple */
if (first_free_cluster < post_refblock_start) {
first_free_cluster = post_refblock_start;
}
reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
refcount_table, nb_clusters,
&first_free_cluster);
if (reftable_offset < 0) {
fprintf(stderr, "ERROR allocating reftable: %s\n",
strerror(-reftable_offset));
res->check_errors++;
ret = reftable_offset;
goto fail;
}
goto write_refblocks;
}
assert(on_disk_reftable);
for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
cpu_to_be64s(&on_disk_reftable[refblock_index]);
}
ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
reftable_size * sizeof(uint64_t));
if (ret < 0) {
fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
goto fail;
}
assert(reftable_size < INT_MAX / sizeof(uint64_t));
ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
reftable_size * sizeof(uint64_t));
if (ret < 0) {
fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
goto fail;
}
/* Enter new reftable into the image header */
cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
reftable_offset);
cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
size_to_clusters(s, reftable_size * sizeof(uint64_t)));
ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
refcount_table_offset),
&reftable_offset_and_clusters,
sizeof(reftable_offset_and_clusters));
if (ret < 0) {
fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
goto fail;
}
for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
be64_to_cpus(&on_disk_reftable[refblock_index]);
}
s->refcount_table = on_disk_reftable;
s->refcount_table_offset = reftable_offset;
s->refcount_table_size = reftable_size;
return 0;
fail:
g_free(on_disk_reftable);
return ret;
}
/*
* Checks an image for refcount consistency.
*
* Returns 0 if no errors are found, the number of errors in case the image is
* detected as corrupted, and -errno when an internal error occurred.
*/
int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix)
{
BDRVQcow2State *s = bs->opaque;
BdrvCheckResult pre_compare_res;
int64_t size, highest_cluster, nb_clusters;
void *refcount_table = NULL;
bool rebuild = false;
int ret;
size = bdrv_getlength(bs->file->bs);
if (size < 0) {
res->check_errors++;
return size;
}
nb_clusters = size_to_clusters(s, size);
if (nb_clusters > INT_MAX) {
res->check_errors++;
return -EFBIG;
}
res->bfi.total_clusters =
size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
&nb_clusters);
if (ret < 0) {
goto fail;
}
/* In case we don't need to rebuild the refcount structure (but want to fix
* something), this function is immediately called again, in which case the
* result should be ignored */
pre_compare_res = *res;
compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
nb_clusters);
if (rebuild && (fix & BDRV_FIX_ERRORS)) {
BdrvCheckResult old_res = *res;
int fresh_leaks = 0;
fprintf(stderr, "Rebuilding refcount structure\n");
ret = rebuild_refcount_structure(bs, res, &refcount_table,
&nb_clusters);
if (ret < 0) {
goto fail;
}
res->corruptions = 0;
res->leaks = 0;
/* Because the old reftable has been exchanged for a new one the
* references have to be recalculated */
rebuild = false;
memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
&nb_clusters);
if (ret < 0) {
goto fail;
}
if (fix & BDRV_FIX_LEAKS) {
/* The old refcount structures are now leaked, fix it; the result
* can be ignored, aside from leaks which were introduced by
* rebuild_refcount_structure() that could not be fixed */
BdrvCheckResult saved_res = *res;
*res = (BdrvCheckResult){ 0 };
compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
&highest_cluster, refcount_table, nb_clusters);
if (rebuild) {
fprintf(stderr, "ERROR rebuilt refcount structure is still "
"broken\n");
}
/* Any leaks accounted for here were introduced by
* rebuild_refcount_structure() because that function has created a
* new refcount structure from scratch */
fresh_leaks = res->leaks;
*res = saved_res;
}
if (res->corruptions < old_res.corruptions) {
res->corruptions_fixed += old_res.corruptions - res->corruptions;
}
if (res->leaks < old_res.leaks) {
res->leaks_fixed += old_res.leaks - res->leaks;
}
res->leaks += fresh_leaks;
} else if (fix) {
if (rebuild) {
fprintf(stderr, "ERROR need to rebuild refcount structures\n");
res->check_errors++;
ret = -EIO;
goto fail;
}
if (res->leaks || res->corruptions) {
*res = pre_compare_res;
compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
refcount_table, nb_clusters);
}
}
/* check OFLAG_COPIED */
ret = check_oflag_copied(bs, res, fix);
if (ret < 0) {
goto fail;
}
res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
ret = 0;
fail:
g_free(refcount_table);
return ret;
}
#define overlaps_with(ofs, sz) \
ranges_overlap(offset, size, ofs, sz)
/*
* Checks if the given offset into the image file is actually free to use by
* looking for overlaps with important metadata sections (L1/L2 tables etc.),
* i.e. a sanity check without relying on the refcount tables.
*
* The ign parameter specifies what checks not to perform (being a bitmask of
* QCow2MetadataOverlap values), i.e., what sections to ignore.
*
* Returns:
* - 0 if writing to this offset will not affect the mentioned metadata
* - a positive QCow2MetadataOverlap value indicating one overlapping section
* - a negative value (-errno) indicating an error while performing a check,
* e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
*/
int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
int64_t size)
{
BDRVQcow2State *s = bs->opaque;
int chk = s->overlap_check & ~ign;
int i, j;
if (!size) {
return 0;
}
if (chk & QCOW2_OL_MAIN_HEADER) {
if (offset < s->cluster_size) {
return QCOW2_OL_MAIN_HEADER;
}
}
/* align range to test to cluster boundaries */
size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
offset = start_of_cluster(s, offset);
if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
return QCOW2_OL_ACTIVE_L1;
}
}
if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
if (overlaps_with(s->refcount_table_offset,
s->refcount_table_size * sizeof(uint64_t))) {
return QCOW2_OL_REFCOUNT_TABLE;
}
}
if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
return QCOW2_OL_SNAPSHOT_TABLE;
}
}
if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
for (i = 0; i < s->nb_snapshots; i++) {
if (s->snapshots[i].l1_size &&
overlaps_with(s->snapshots[i].l1_table_offset,
s->snapshots[i].l1_size * sizeof(uint64_t))) {
return QCOW2_OL_INACTIVE_L1;
}
}
}
if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
for (i = 0; i < s->l1_size; i++) {
if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
s->cluster_size)) {
return QCOW2_OL_ACTIVE_L2;
}
}
}
if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
for (i = 0; i < s->refcount_table_size; i++) {
if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
s->cluster_size)) {
return QCOW2_OL_REFCOUNT_BLOCK;
}
}
}
if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
for (i = 0; i < s->nb_snapshots; i++) {
uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
uint32_t l1_sz = s->snapshots[i].l1_size;
uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
uint64_t *l1 = g_try_malloc(l1_sz2);
int ret;
if (l1_sz2 && l1 == NULL) {
return -ENOMEM;
}
ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
if (ret < 0) {
g_free(l1);
return ret;
}
for (j = 0; j < l1_sz; j++) {
uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
g_free(l1);
return QCOW2_OL_INACTIVE_L2;
}
}
g_free(l1);
}
}
return 0;
}
static const char *metadata_ol_names[] = {
[QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
[QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
[QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
[QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
[QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
[QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
[QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
[QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
};
/*
* First performs a check for metadata overlaps (through
* qcow2_check_metadata_overlap); if that fails with a negative value (error
* while performing a check), that value is returned. If an impending overlap
* is detected, the BDS will be made unusable, the qcow2 file marked corrupt
* and -EIO returned.
*
* Returns 0 if there were neither overlaps nor errors while checking for
* overlaps; or a negative value (-errno) on error.
*/
int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
int64_t size)
{
int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
if (ret < 0) {
return ret;
} else if (ret > 0) {
int metadata_ol_bitnr = ctz32(ret);
assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
"write on metadata (overlaps with %s)",
metadata_ol_names[metadata_ol_bitnr]);
return -EIO;
}
return 0;
}
/* A pointer to a function of this type is given to walk_over_reftable(). That
* function will create refblocks and pass them to a RefblockFinishOp once they
* are completed (@refblock). @refblock_empty is set if the refblock is
* completely empty.
*
* Along with the refblock, a corresponding reftable entry is passed, in the
* reftable @reftable (which may be reallocated) at @reftable_index.
*
* @allocated should be set to true if a new cluster has been allocated.
*/
typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
uint64_t reftable_index, uint64_t *reftable_size,
void *refblock, bool refblock_empty,
bool *allocated, Error **errp);
/**
* This "operation" for walk_over_reftable() allocates the refblock on disk (if
* it is not empty) and inserts its offset into the new reftable. The size of
* this new reftable is increased as required.
*/
static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
uint64_t reftable_index, uint64_t *reftable_size,
void *refblock, bool refblock_empty, bool *allocated,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int64_t offset;
if (!refblock_empty && reftable_index >= *reftable_size) {
uint64_t *new_reftable;
uint64_t new_reftable_size;
new_reftable_size = ROUND_UP(reftable_index + 1,
s->cluster_size / sizeof(uint64_t));
if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
error_setg(errp,
"This operation would make the refcount table grow "
"beyond the maximum size supported by QEMU, aborting");
return -ENOTSUP;
}
new_reftable = g_try_realloc(*reftable, new_reftable_size *
sizeof(uint64_t));
if (!new_reftable) {
error_setg(errp, "Failed to increase reftable buffer size");
return -ENOMEM;
}
memset(new_reftable + *reftable_size, 0,
(new_reftable_size - *reftable_size) * sizeof(uint64_t));
*reftable = new_reftable;
*reftable_size = new_reftable_size;
}
if (!refblock_empty && !(*reftable)[reftable_index]) {
offset = qcow2_alloc_clusters(bs, s->cluster_size);
if (offset < 0) {
error_setg_errno(errp, -offset, "Failed to allocate refblock");
return offset;
}
(*reftable)[reftable_index] = offset;
*allocated = true;
}
return 0;
}
/**
* This "operation" for walk_over_reftable() writes the refblock to disk at the
* offset specified by the new reftable's entry. It does not modify the new
* reftable or change any refcounts.
*/
static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
uint64_t reftable_index, uint64_t *reftable_size,
void *refblock, bool refblock_empty, bool *allocated,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int64_t offset;
int ret;
if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
offset = (*reftable)[reftable_index];
ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Overlap check failed");
return ret;
}
ret = bdrv_pwrite(bs->file->bs, offset, refblock, s->cluster_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to write refblock");
return ret;
}
} else {
assert(refblock_empty);
}
return 0;
}
/**
* This function walks over the existing reftable and every referenced refblock;
* if @new_set_refcount is non-NULL, it is called for every refcount entry to
* create an equal new entry in the passed @new_refblock. Once that
* @new_refblock is completely filled, @operation will be called.
*
* @status_cb and @cb_opaque are used for the amend operation's status callback.
* @index is the index of the walk_over_reftable() calls and @total is the total
* number of walk_over_reftable() calls per amend operation. Both are used for
* calculating the parameters for the status callback.
*
* @allocated is set to true if a new cluster has been allocated.
*/
static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
uint64_t *new_reftable_index,
uint64_t *new_reftable_size,
void *new_refblock, int new_refblock_size,
int new_refcount_bits,
RefblockFinishOp *operation, bool *allocated,
Qcow2SetRefcountFunc *new_set_refcount,
BlockDriverAmendStatusCB *status_cb,
void *cb_opaque, int index, int total,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
uint64_t reftable_index;
bool new_refblock_empty = true;
int refblock_index;
int new_refblock_index = 0;
int ret;
for (reftable_index = 0; reftable_index < s->refcount_table_size;
reftable_index++)
{
uint64_t refblock_offset = s->refcount_table[reftable_index]
& REFT_OFFSET_MASK;
status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
(uint64_t)total * s->refcount_table_size, cb_opaque);
if (refblock_offset) {
void *refblock;
if (offset_into_cluster(s, refblock_offset)) {
qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
PRIx64 " unaligned (reftable index: %#"
PRIx64 ")", refblock_offset,
reftable_index);
error_setg(errp,
"Image is corrupt (unaligned refblock offset)");
return -EIO;
}
ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
&refblock);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to retrieve refblock");
return ret;
}
for (refblock_index = 0; refblock_index < s->refcount_block_size;
refblock_index++)
{
uint64_t refcount;
if (new_refblock_index >= new_refblock_size) {
/* new_refblock is now complete */
ret = operation(bs, new_reftable, *new_reftable_index,
new_reftable_size, new_refblock,
new_refblock_empty, allocated, errp);
if (ret < 0) {
qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
return ret;
}
(*new_reftable_index)++;
new_refblock_index = 0;
new_refblock_empty = true;
}
refcount = s->get_refcount(refblock, refblock_index);
if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
uint64_t offset;
qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
offset = ((reftable_index << s->refcount_block_bits)
+ refblock_index) << s->cluster_bits;
error_setg(errp, "Cannot decrease refcount entry width to "
"%i bits: Cluster at offset %#" PRIx64 " has a "
"refcount of %" PRIu64, new_refcount_bits,
offset, refcount);
return -EINVAL;
}
if (new_set_refcount) {
new_set_refcount(new_refblock, new_refblock_index++,
refcount);
} else {
new_refblock_index++;
}
new_refblock_empty = new_refblock_empty && refcount == 0;
}
qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
} else {
/* No refblock means every refcount is 0 */
for (refblock_index = 0; refblock_index < s->refcount_block_size;
refblock_index++)
{
if (new_refblock_index >= new_refblock_size) {
/* new_refblock is now complete */
ret = operation(bs, new_reftable, *new_reftable_index,
new_reftable_size, new_refblock,
new_refblock_empty, allocated, errp);
if (ret < 0) {
return ret;
}
(*new_reftable_index)++;
new_refblock_index = 0;
new_refblock_empty = true;
}
if (new_set_refcount) {
new_set_refcount(new_refblock, new_refblock_index++, 0);
} else {
new_refblock_index++;
}
}
}
}
if (new_refblock_index > 0) {
/* Complete the potentially existing partially filled final refblock */
if (new_set_refcount) {
for (; new_refblock_index < new_refblock_size;
new_refblock_index++)
{
new_set_refcount(new_refblock, new_refblock_index, 0);
}
}
ret = operation(bs, new_reftable, *new_reftable_index,
new_reftable_size, new_refblock, new_refblock_empty,
allocated, errp);
if (ret < 0) {
return ret;
}
(*new_reftable_index)++;
}
status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
(uint64_t)total * s->refcount_table_size, cb_opaque);
return 0;
}
int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
BlockDriverAmendStatusCB *status_cb,
void *cb_opaque, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
Qcow2GetRefcountFunc *new_get_refcount;
Qcow2SetRefcountFunc *new_set_refcount;
void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
uint64_t *new_reftable = NULL, new_reftable_size = 0;
uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
uint64_t new_reftable_index = 0;
uint64_t i;
int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
int new_refblock_size, new_refcount_bits = 1 << refcount_order;
int old_refcount_order;
int walk_index = 0;
int ret;
bool new_allocation;
assert(s->qcow_version >= 3);
assert(refcount_order >= 0 && refcount_order <= 6);
/* see qcow2_open() */
new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
new_get_refcount = get_refcount_funcs[refcount_order];
new_set_refcount = set_refcount_funcs[refcount_order];
do {
int total_walks;
new_allocation = false;
/* At least we have to do this walk and the one which writes the
* refblocks; also, at least we have to do this loop here at least
* twice (normally), first to do the allocations, and second to
* determine that everything is correctly allocated, this then makes
* three walks in total */
total_walks = MAX(walk_index + 2, 3);
/* First, allocate the structures so they are present in the refcount
* structures */
ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
&new_reftable_size, NULL, new_refblock_size,
new_refcount_bits, &alloc_refblock,
&new_allocation, NULL, status_cb, cb_opaque,
walk_index++, total_walks, errp);
if (ret < 0) {
goto done;
}
new_reftable_index = 0;
if (new_allocation) {
if (new_reftable_offset) {
qcow2_free_clusters(bs, new_reftable_offset,
allocated_reftable_size * sizeof(uint64_t),
QCOW2_DISCARD_NEVER);
}
new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
sizeof(uint64_t));
if (new_reftable_offset < 0) {
error_setg_errno(errp, -new_reftable_offset,
"Failed to allocate the new reftable");
ret = new_reftable_offset;
goto done;
}
allocated_reftable_size = new_reftable_size;
}
} while (new_allocation);
/* Second, write the new refblocks */
ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
&new_reftable_size, new_refblock,
new_refblock_size, new_refcount_bits,
&flush_refblock, &new_allocation, new_set_refcount,
status_cb, cb_opaque, walk_index, walk_index + 1,
errp);
if (ret < 0) {
goto done;
}
assert(!new_allocation);
/* Write the new reftable */
ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
new_reftable_size * sizeof(uint64_t));
if (ret < 0) {
error_setg_errno(errp, -ret, "Overlap check failed");
goto done;
}
for (i = 0; i < new_reftable_size; i++) {
cpu_to_be64s(&new_reftable[i]);
}
ret = bdrv_pwrite(bs->file->bs, new_reftable_offset, new_reftable,
new_reftable_size * sizeof(uint64_t));
for (i = 0; i < new_reftable_size; i++) {
be64_to_cpus(&new_reftable[i]);
}
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to write the new reftable");
goto done;
}
/* Empty the refcount cache */
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
goto done;
}
/* Update the image header to point to the new reftable; this only updates
* the fields which are relevant to qcow2_update_header(); other fields
* such as s->refcount_table or s->refcount_bits stay stale for now
* (because we have to restore everything if qcow2_update_header() fails) */
old_refcount_order = s->refcount_order;
old_reftable_size = s->refcount_table_size;
old_reftable_offset = s->refcount_table_offset;
s->refcount_order = refcount_order;
s->refcount_table_size = new_reftable_size;
s->refcount_table_offset = new_reftable_offset;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->refcount_order = old_refcount_order;
s->refcount_table_size = old_reftable_size;
s->refcount_table_offset = old_reftable_offset;
error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
goto done;
}
/* Now update the rest of the in-memory information */
old_reftable = s->refcount_table;
s->refcount_table = new_reftable;
s->refcount_bits = 1 << refcount_order;
s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
s->refcount_max += s->refcount_max - 1;
s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
s->refcount_block_size = 1 << s->refcount_block_bits;
s->get_refcount = new_get_refcount;
s->set_refcount = new_set_refcount;
/* For cleaning up all old refblocks and the old reftable below the "done"
* label */
new_reftable = old_reftable;
new_reftable_size = old_reftable_size;
new_reftable_offset = old_reftable_offset;
done:
if (new_reftable) {
/* On success, new_reftable actually points to the old reftable (and
* new_reftable_size is the old reftable's size); but that is just
* fine */
for (i = 0; i < new_reftable_size; i++) {
uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
if (offset) {
qcow2_free_clusters(bs, offset, s->cluster_size,
QCOW2_DISCARD_OTHER);
}
}
g_free(new_reftable);
if (new_reftable_offset > 0) {
qcow2_free_clusters(bs, new_reftable_offset,
new_reftable_size * sizeof(uint64_t),
QCOW2_DISCARD_OTHER);
}
}
qemu_vfree(new_refblock);
return ret;
}