| /* |
| * qemu user cpu loop |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu.h" |
| #include "user-internals.h" |
| #include "cpu_loop-common.h" |
| #include "signal-common.h" |
| #include "qemu/guest-random.h" |
| #include "semihosting/common-semi.h" |
| #include "target/arm/syndrome.h" |
| |
| #define get_user_code_u32(x, gaddr, env) \ |
| ({ abi_long __r = get_user_u32((x), (gaddr)); \ |
| if (!__r && bswap_code(arm_sctlr_b(env))) { \ |
| (x) = bswap32(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #define get_user_code_u16(x, gaddr, env) \ |
| ({ abi_long __r = get_user_u16((x), (gaddr)); \ |
| if (!__r && bswap_code(arm_sctlr_b(env))) { \ |
| (x) = bswap16(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #define get_user_data_u32(x, gaddr, env) \ |
| ({ abi_long __r = get_user_u32((x), (gaddr)); \ |
| if (!__r && arm_cpu_bswap_data(env)) { \ |
| (x) = bswap32(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #define get_user_data_u16(x, gaddr, env) \ |
| ({ abi_long __r = get_user_u16((x), (gaddr)); \ |
| if (!__r && arm_cpu_bswap_data(env)) { \ |
| (x) = bswap16(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #define put_user_data_u32(x, gaddr, env) \ |
| ({ typeof(x) __x = (x); \ |
| if (arm_cpu_bswap_data(env)) { \ |
| __x = bswap32(__x); \ |
| } \ |
| put_user_u32(__x, (gaddr)); \ |
| }) |
| |
| #define put_user_data_u16(x, gaddr, env) \ |
| ({ typeof(x) __x = (x); \ |
| if (arm_cpu_bswap_data(env)) { \ |
| __x = bswap16(__x); \ |
| } \ |
| put_user_u16(__x, (gaddr)); \ |
| }) |
| |
| /* AArch64 main loop */ |
| void cpu_loop(CPUARMState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| int trapnr, ec, fsc, si_code, si_signo; |
| abi_long ret; |
| |
| for (;;) { |
| cpu_exec_start(cs); |
| trapnr = cpu_exec(cs); |
| cpu_exec_end(cs); |
| process_queued_cpu_work(cs); |
| |
| switch (trapnr) { |
| case EXCP_SWI: |
| ret = do_syscall(env, |
| env->xregs[8], |
| env->xregs[0], |
| env->xregs[1], |
| env->xregs[2], |
| env->xregs[3], |
| env->xregs[4], |
| env->xregs[5], |
| 0, 0); |
| if (ret == -TARGET_ERESTARTSYS) { |
| env->pc -= 4; |
| } else if (ret != -TARGET_QEMU_ESIGRETURN) { |
| env->xregs[0] = ret; |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_UDEF: |
| force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->pc); |
| break; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| /* We should only arrive here with EC in {DATAABORT, INSNABORT}. */ |
| ec = syn_get_ec(env->exception.syndrome); |
| assert(ec == EC_DATAABORT || ec == EC_INSNABORT); |
| |
| /* Both EC have the same format for FSC, or close enough. */ |
| fsc = extract32(env->exception.syndrome, 0, 6); |
| switch (fsc) { |
| case 0x04 ... 0x07: /* Translation fault, level {0-3} */ |
| si_signo = TARGET_SIGSEGV; |
| si_code = TARGET_SEGV_MAPERR; |
| break; |
| case 0x09 ... 0x0b: /* Access flag fault, level {1-3} */ |
| case 0x0d ... 0x0f: /* Permission fault, level {1-3} */ |
| si_signo = TARGET_SIGSEGV; |
| si_code = TARGET_SEGV_ACCERR; |
| break; |
| case 0x11: /* Synchronous Tag Check Fault */ |
| si_signo = TARGET_SIGSEGV; |
| si_code = TARGET_SEGV_MTESERR; |
| break; |
| case 0x21: /* Alignment fault */ |
| si_signo = TARGET_SIGBUS; |
| si_code = TARGET_BUS_ADRALN; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| force_sig_fault(si_signo, si_code, env->exception.vaddress); |
| break; |
| case EXCP_DEBUG: |
| case EXCP_BKPT: |
| force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->pc); |
| break; |
| case EXCP_SEMIHOST: |
| env->xregs[0] = do_common_semihosting(cs); |
| env->pc += 4; |
| break; |
| case EXCP_YIELD: |
| /* nothing to do here for user-mode, just resume guest code */ |
| break; |
| case EXCP_ATOMIC: |
| cpu_exec_step_atomic(cs); |
| break; |
| default: |
| EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); |
| abort(); |
| } |
| |
| /* Check for MTE asynchronous faults */ |
| if (unlikely(env->cp15.tfsr_el[0])) { |
| env->cp15.tfsr_el[0] = 0; |
| force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MTEAERR, 0); |
| } |
| |
| process_pending_signals(env); |
| /* Exception return on AArch64 always clears the exclusive monitor, |
| * so any return to running guest code implies this. |
| */ |
| env->exclusive_addr = -1; |
| } |
| } |
| |
| void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| CPUState *cs = env_cpu(env); |
| TaskState *ts = cs->opaque; |
| struct image_info *info = ts->info; |
| int i; |
| |
| if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { |
| fprintf(stderr, |
| "The selected ARM CPU does not support 64 bit mode\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| for (i = 0; i < 31; i++) { |
| env->xregs[i] = regs->regs[i]; |
| } |
| env->pc = regs->pc; |
| env->xregs[31] = regs->sp; |
| #ifdef TARGET_WORDS_BIGENDIAN |
| env->cp15.sctlr_el[1] |= SCTLR_E0E; |
| for (i = 1; i < 4; ++i) { |
| env->cp15.sctlr_el[i] |= SCTLR_EE; |
| } |
| arm_rebuild_hflags(env); |
| #endif |
| |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| qemu_guest_getrandom_nofail(&env->keys, sizeof(env->keys)); |
| } |
| |
| ts->stack_base = info->start_stack; |
| ts->heap_base = info->brk; |
| /* This will be filled in on the first SYS_HEAPINFO call. */ |
| ts->heap_limit = 0; |
| } |