blob: 71fb0939834fcca22e65de86acd0434f95e8d59c [file] [log] [blame]
/*
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2019 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/visitor.h"
#include "sysemu/qtest.h"
#include "sysemu/numa.h"
#include "sysemu/replay.h"
#include "sysemu/sysemu.h"
#include "hw/i386/x86.h"
#include "hw/i386/pc.h"
#include "target/i386/cpu.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/nmi.h"
#include "hw/loader.h"
#include "multiboot.h"
#include "elf.h"
#include "standard-headers/asm-x86/bootparam.h"
#define BIOS_FILENAME "bios.bin"
/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;
/*
* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
unsigned int cpu_index)
{
MachineState *ms = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
ms->smp.threads, cpu_index);
if (pcmc->compat_apic_id_mode) {
if (cpu_index != correct_id && !warned && !qtest_enabled()) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
void x86_cpu_new(PCMachineState *pcms, int64_t apic_id, Error **errp)
{
Object *cpu = NULL;
Error *local_err = NULL;
CPUX86State *env = NULL;
cpu = object_new(MACHINE(pcms)->cpu_type);
env = &X86_CPU(cpu)->env;
env->nr_dies = pcms->smp_dies;
object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
object_property_set_bool(cpu, true, "realized", &local_err);
object_unref(cpu);
error_propagate(errp, local_err);
}
void x86_cpus_init(PCMachineState *pcms)
{
int i;
const CPUArchIdList *possible_cpus;
MachineState *ms = MACHINE(pcms);
MachineClass *mc = MACHINE_GET_CLASS(pcms);
PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
x86_cpu_set_default_version(pcmc->default_cpu_version);
/*
* Calculates the limit to CPU APIC ID values
*
* Limit for the APIC ID value, so that all
* CPU APIC IDs are < pcms->apic_id_limit.
*
* This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
*/
pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
ms->smp.max_cpus - 1) + 1;
possible_cpus = mc->possible_cpu_arch_ids(ms);
for (i = 0; i < ms->smp.cpus; i++) {
x86_cpu_new(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
}
}
CpuInstanceProperties
x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
{
X86CPUTopoInfo topo;
PCMachineState *pcms = PC_MACHINE(ms);
assert(idx < ms->possible_cpus->len);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
return topo.pkg_id % ms->numa_state->num_nodes;
}
const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
{
PCMachineState *pcms = PC_MACHINE(ms);
int i;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
/*
* make sure that max_cpus hasn't changed since the first use, i.e.
* -smp hasn't been parsed after it
*/
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (i = 0; i < ms->possible_cpus->len; i++) {
X86CPUTopoInfo topo;
ms->possible_cpus->cpus[i].type = ms->cpu_type;
ms->possible_cpus->cpus[i].vcpus_count = 1;
ms->possible_cpus->cpus[i].arch_id =
x86_cpu_apic_id_from_index(pcms, i);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
ms->possible_cpus->cpus[i].props.has_socket_id = true;
ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
if (pcms->smp_dies > 1) {
ms->possible_cpus->cpus[i].props.has_die_id = true;
ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
}
ms->possible_cpus->cpus[i].props.has_core_id = true;
ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
ms->possible_cpus->cpus[i].props.has_thread_id = true;
ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
}
return ms->possible_cpus;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
struct setup_data {
uint64_t next;
uint32_t type;
uint32_t len;
uint8_t data[0];
} __attribute__((packed));
/*
* The entry point into the kernel for PVH boot is different from
* the native entry point. The PVH entry is defined by the x86/HVM
* direct boot ABI and is available in an ELFNOTE in the kernel binary.
*
* This function is passed to load_elf() when it is called from
* load_elfboot() which then additionally checks for an ELF Note of
* type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
* parse the PVH entry address from the ELF Note.
*
* Due to trickery in elf_opts.h, load_elf() is actually available as
* load_elf32() or load_elf64() and this routine needs to be able
* to deal with being called as 32 or 64 bit.
*
* The address of the PVH entry point is saved to the 'pvh_start_addr'
* global variable. (although the entry point is 32-bit, the kernel
* binary can be either 32-bit or 64-bit).
*/
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
size_t *elf_note_data_addr;
/* Check if ELF Note header passed in is valid */
if (arg1 == NULL) {
return 0;
}
if (is64) {
struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
uint64_t nhdr_size64 = sizeof(struct elf64_note);
uint64_t phdr_align = *(uint64_t *)arg2;
uint64_t nhdr_namesz = nhdr64->n_namesz;
elf_note_data_addr =
((void *)nhdr64) + nhdr_size64 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
} else {
struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
uint32_t nhdr_size32 = sizeof(struct elf32_note);
uint32_t phdr_align = *(uint32_t *)arg2;
uint32_t nhdr_namesz = nhdr32->n_namesz;
elf_note_data_addr =
((void *)nhdr32) + nhdr_size32 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
}
pvh_start_addr = *elf_note_data_addr;
return pvh_start_addr;
}
static bool load_elfboot(const char *kernel_filename,
int kernel_file_size,
uint8_t *header,
size_t pvh_xen_start_addr,
FWCfgState *fw_cfg)
{
uint32_t flags = 0;
uint32_t mh_load_addr = 0;
uint32_t elf_kernel_size = 0;
uint64_t elf_entry;
uint64_t elf_low, elf_high;
int kernel_size;
if (ldl_p(header) != 0x464c457f) {
return false; /* no elfboot */
}
bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
flags = elf_is64 ?
((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
error_report("elfboot unsupported flags = %x", flags);
exit(1);
}
uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
NULL, &elf_note_type, &elf_entry,
&elf_low, &elf_high, 0, I386_ELF_MACHINE,
0, 0);
if (kernel_size < 0) {
error_report("Error while loading elf kernel");
exit(1);
}
mh_load_addr = elf_low;
elf_kernel_size = elf_high - elf_low;
if (pvh_start_addr == 0) {
error_report("Error loading uncompressed kernel without PVH ELF Note");
exit(1);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
return true;
}
void x86_load_linux(PCMachineState *pcms,
FWCfgState *fw_cfg)
{
uint16_t protocol;
int setup_size, kernel_size, cmdline_size;
int dtb_size, setup_data_offset;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
struct setup_data *setup_data;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *dtb_filename = machine->dtb;
const char *kernel_cmdline = machine->kernel_cmdline;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f) {
fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
kernel_size = get_file_size(f);
if (!kernel_size ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
if (ldl_p(header + 0x202) == 0x53726448) {
protocol = lduw_p(header + 0x206);
} else {
/*
* This could be a multiboot kernel. If it is, let's stop treating it
* like a Linux kernel.
* Note: some multiboot images could be in the ELF format (the same of
* PVH), so we try multiboot first since we check the multiboot magic
* header before to load it.
*/
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
/*
* Check if the file is an uncompressed kernel file (ELF) and load it,
* saving the PVH entry point used by the x86/HVM direct boot ABI.
* If load_elfboot() is successful, populate the fw_cfg info.
*/
if (pcmc->pvh_enabled &&
load_elfboot(kernel_filename, kernel_size,
header, pvh_start_addr, fw_cfg)) {
fclose(f);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
header, sizeof(header));
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
pcms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
initrd_size);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "pvh.bin";
nb_option_roms++;
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
/* highest address for loading the initrd */
if (protocol >= 0x20c &&
lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
/*
* Linux has supported initrd up to 4 GB for a very long time (2007,
* long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
* though it only sets initrd_max to 2 GB to "work around bootloader
* bugs". Luckily, QEMU firmware(which does something like bootloader)
* has supported this.
*
* It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
* be loaded into any address.
*
* In addition, initrd_max is uint32_t simply because QEMU doesn't
* support the 64-bit boot protocol (specifically the ext_ramdisk_image
* field).
*
* Therefore here just limit initrd_max to UINT32_MAX simply as well.
*/
initrd_max = UINT32_MAX;
} else if (protocol >= 0x203) {
initrd_max = ldl_p(header + 0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header + 0x228, cmdline_addr);
} else {
stw_p(header + 0x20, 0xA33F);
stw_p(header + 0x22, cmdline_addr - real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
int ret;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
if (ret != 0) {
fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
strerror(-ret));
exit(1);
}
}
stw_p(header + 0x1fa, video_mode);
}
/* loader type */
/*
* High nybble = B reserved for QEMU; low nybble is revision number.
* If this code is substantially changed, you may want to consider
* incrementing the revision.
*/
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
}
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
pcms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header + 0x218, initrd_addr);
stl_p(header + 0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size + 1) * 512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
/* append dtb to kernel */
if (dtb_filename) {
if (protocol < 0x209) {
fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
exit(1);
}
dtb_size = get_image_size(dtb_filename);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
exit(1);
}
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
kernel = g_realloc(kernel, kernel_size);
stq_p(header + 0x250, prot_addr + setup_data_offset);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = 0;
setup_data->type = cpu_to_le32(SETUP_DTB);
setup_data->len = cpu_to_le32(dtb_size);
load_image_size(dtb_filename, setup_data->data, dtb_size);
}
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "linuxboot.bin";
if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
option_rom[nb_option_roms].name = "linuxboot_dma.bin";
}
nb_option_roms++;
}
void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
{
char *filename;
MemoryRegion *bios, *isa_bios;
int bios_size, isa_bios_size;
int ret;
/* BIOS load */
if (bios_name == NULL) {
bios_name = BIOS_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios = g_malloc(sizeof(*bios));
memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
if (!isapc_ram_fw) {
memory_region_set_readonly(bios, true);
}
ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
if (ret != 0) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
g_free(filename);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = MIN(bios_size, 128 * KiB);
isa_bios = g_malloc(sizeof(*isa_bios));
memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
bios_size - isa_bios_size, isa_bios_size);
memory_region_add_subregion_overlap(rom_memory,
0x100000 - isa_bios_size,
isa_bios,
1);
if (!isapc_ram_fw) {
memory_region_set_readonly(isa_bios, true);
}
/* map all the bios at the top of memory */
memory_region_add_subregion(rom_memory,
(uint32_t)(-bios_size),
bios);
}