| /* |
| * QEMU KVM support |
| * |
| * Copyright IBM, Corp. 2008 |
| * Red Hat, Inc. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * Glauber Costa <gcosta@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <stdarg.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "sysemu.h" |
| #include "kvm.h" |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define dprintf(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define dprintf(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| typedef struct KVMSlot |
| { |
| target_phys_addr_t start_addr; |
| ram_addr_t memory_size; |
| ram_addr_t phys_offset; |
| int slot; |
| int flags; |
| } KVMSlot; |
| |
| typedef struct kvm_dirty_log KVMDirtyLog; |
| |
| int kvm_allowed = 0; |
| |
| struct KVMState |
| { |
| KVMSlot slots[32]; |
| int fd; |
| int vmfd; |
| }; |
| |
| static KVMState *kvm_state; |
| |
| static KVMSlot *kvm_alloc_slot(KVMState *s) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| /* KVM private memory slots */ |
| if (i >= 8 && i < 12) |
| continue; |
| if (s->slots[i].memory_size == 0) |
| return &s->slots[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (start_addr >= mem->start_addr && |
| start_addr < (mem->start_addr + mem->memory_size)) |
| return mem; |
| } |
| |
| return NULL; |
| } |
| |
| static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
| { |
| struct kvm_userspace_memory_region mem; |
| |
| mem.slot = slot->slot; |
| mem.guest_phys_addr = slot->start_addr; |
| mem.memory_size = slot->memory_size; |
| mem.userspace_addr = (unsigned long)phys_ram_base + slot->phys_offset; |
| mem.flags = slot->flags; |
| |
| return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| } |
| |
| |
| int kvm_init_vcpu(CPUState *env) |
| { |
| KVMState *s = kvm_state; |
| long mmap_size; |
| int ret; |
| |
| dprintf("kvm_init_vcpu\n"); |
| |
| ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
| if (ret < 0) { |
| dprintf("kvm_create_vcpu failed\n"); |
| goto err; |
| } |
| |
| env->kvm_fd = ret; |
| env->kvm_state = s; |
| |
| mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| if (mmap_size < 0) { |
| dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
| goto err; |
| } |
| |
| env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
| env->kvm_fd, 0); |
| if (env->kvm_run == MAP_FAILED) { |
| ret = -errno; |
| dprintf("mmap'ing vcpu state failed\n"); |
| goto err; |
| } |
| |
| ret = kvm_arch_init_vcpu(env); |
| |
| err: |
| return ret; |
| } |
| |
| /* |
| * dirty pages logging control |
| */ |
| static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr, |
| unsigned flags, |
| unsigned mask) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem = kvm_lookup_slot(s, phys_addr); |
| if (mem == NULL) { |
| dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr); |
| return -EINVAL; |
| } |
| |
| flags = (mem->flags & ~mask) | flags; |
| /* Nothing changed, no need to issue ioctl */ |
| if (flags == mem->flags) |
| return 0; |
| |
| mem->flags = flags; |
| |
| return kvm_set_user_memory_region(s, mem); |
| } |
| |
| int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) |
| { |
| return kvm_dirty_pages_log_change(phys_addr, end_addr, |
| KVM_MEM_LOG_DIRTY_PAGES, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| } |
| |
| int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) |
| { |
| return kvm_dirty_pages_log_change(phys_addr, end_addr, |
| 0, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| } |
| |
| /** |
| * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space |
| * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). |
| * This means all bits are set to dirty. |
| * |
| * @start_add: start of logged region. This is what we use to search the memslot |
| * @end_addr: end of logged region. |
| */ |
| void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
| { |
| KVMState *s = kvm_state; |
| KVMDirtyLog d; |
| KVMSlot *mem = kvm_lookup_slot(s, start_addr); |
| unsigned long alloc_size; |
| ram_addr_t addr; |
| target_phys_addr_t phys_addr = start_addr; |
| |
| dprintf("sync addr: %llx into %lx\n", start_addr, mem->phys_offset); |
| if (mem == NULL) { |
| fprintf(stderr, "BUG: %s: invalid parameters\n", __func__); |
| return; |
| } |
| |
| alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap); |
| d.dirty_bitmap = qemu_mallocz(alloc_size); |
| |
| if (d.dirty_bitmap == NULL) { |
| dprintf("Could not allocate dirty bitmap\n"); |
| return; |
| } |
| |
| d.slot = mem->slot; |
| dprintf("slot %d, phys_addr %llx, uaddr: %llx\n", |
| d.slot, mem->start_addr, mem->phys_offset); |
| |
| if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
| dprintf("ioctl failed %d\n", errno); |
| goto out; |
| } |
| |
| phys_addr = start_addr; |
| for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { |
| unsigned long *bitmap = (unsigned long *)d.dirty_bitmap; |
| unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS; |
| unsigned word = nr / (sizeof(*bitmap) * 8); |
| unsigned bit = nr % (sizeof(*bitmap) * 8); |
| if ((bitmap[word] >> bit) & 1) |
| cpu_physical_memory_set_dirty(addr); |
| } |
| out: |
| qemu_free(d.dirty_bitmap); |
| } |
| |
| int kvm_init(int smp_cpus) |
| { |
| KVMState *s; |
| int ret; |
| int i; |
| |
| if (smp_cpus > 1) |
| return -EINVAL; |
| |
| s = qemu_mallocz(sizeof(KVMState)); |
| if (s == NULL) |
| return -ENOMEM; |
| |
| for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
| s->slots[i].slot = i; |
| |
| s->vmfd = -1; |
| s->fd = open("/dev/kvm", O_RDWR); |
| if (s->fd == -1) { |
| fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
| ret = -errno; |
| goto err; |
| } |
| |
| ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
| if (ret < KVM_API_VERSION) { |
| if (ret > 0) |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version too old\n"); |
| goto err; |
| } |
| |
| if (ret > KVM_API_VERSION) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version not supported\n"); |
| goto err; |
| } |
| |
| s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
| if (s->vmfd < 0) |
| goto err; |
| |
| /* initially, KVM allocated its own memory and we had to jump through |
| * hooks to make phys_ram_base point to this. Modern versions of KVM |
| * just use a user allocated buffer so we can use phys_ram_base |
| * unmodified. Make sure we have a sufficiently modern version of KVM. |
| */ |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY); |
| if (ret <= 0) { |
| if (ret == 0) |
| ret = -EINVAL; |
| fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n"); |
| goto err; |
| } |
| |
| ret = kvm_arch_init(s, smp_cpus); |
| if (ret < 0) |
| goto err; |
| |
| kvm_state = s; |
| |
| return 0; |
| |
| err: |
| if (s) { |
| if (s->vmfd != -1) |
| close(s->vmfd); |
| if (s->fd != -1) |
| close(s->fd); |
| } |
| qemu_free(s); |
| |
| return ret; |
| } |
| |
| static int kvm_handle_io(CPUState *env, uint16_t port, void *data, |
| int direction, int size, uint32_t count) |
| { |
| int i; |
| uint8_t *ptr = data; |
| |
| for (i = 0; i < count; i++) { |
| if (direction == KVM_EXIT_IO_IN) { |
| switch (size) { |
| case 1: |
| stb_p(ptr, cpu_inb(env, port)); |
| break; |
| case 2: |
| stw_p(ptr, cpu_inw(env, port)); |
| break; |
| case 4: |
| stl_p(ptr, cpu_inl(env, port)); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| cpu_outb(env, port, ldub_p(ptr)); |
| break; |
| case 2: |
| cpu_outw(env, port, lduw_p(ptr)); |
| break; |
| case 4: |
| cpu_outl(env, port, ldl_p(ptr)); |
| break; |
| } |
| } |
| |
| ptr += size; |
| } |
| |
| return 1; |
| } |
| |
| int kvm_cpu_exec(CPUState *env) |
| { |
| struct kvm_run *run = env->kvm_run; |
| int ret; |
| |
| dprintf("kvm_cpu_exec()\n"); |
| |
| do { |
| kvm_arch_pre_run(env, run); |
| |
| if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
| dprintf("interrupt exit requested\n"); |
| ret = 0; |
| break; |
| } |
| |
| ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
| kvm_arch_post_run(env, run); |
| |
| if (ret == -EINTR || ret == -EAGAIN) { |
| dprintf("io window exit\n"); |
| ret = 0; |
| break; |
| } |
| |
| if (ret < 0) { |
| dprintf("kvm run failed %s\n", strerror(-ret)); |
| abort(); |
| } |
| |
| ret = 0; /* exit loop */ |
| switch (run->exit_reason) { |
| case KVM_EXIT_IO: |
| dprintf("handle_io\n"); |
| ret = kvm_handle_io(env, run->io.port, |
| (uint8_t *)run + run->io.data_offset, |
| run->io.direction, |
| run->io.size, |
| run->io.count); |
| break; |
| case KVM_EXIT_MMIO: |
| dprintf("handle_mmio\n"); |
| cpu_physical_memory_rw(run->mmio.phys_addr, |
| run->mmio.data, |
| run->mmio.len, |
| run->mmio.is_write); |
| ret = 1; |
| break; |
| case KVM_EXIT_IRQ_WINDOW_OPEN: |
| dprintf("irq_window_open\n"); |
| break; |
| case KVM_EXIT_SHUTDOWN: |
| dprintf("shutdown\n"); |
| qemu_system_reset_request(); |
| ret = 1; |
| break; |
| case KVM_EXIT_UNKNOWN: |
| dprintf("kvm_exit_unknown\n"); |
| break; |
| case KVM_EXIT_FAIL_ENTRY: |
| dprintf("kvm_exit_fail_entry\n"); |
| break; |
| case KVM_EXIT_EXCEPTION: |
| dprintf("kvm_exit_exception\n"); |
| break; |
| case KVM_EXIT_DEBUG: |
| dprintf("kvm_exit_debug\n"); |
| break; |
| default: |
| dprintf("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(env, run); |
| break; |
| } |
| } while (ret > 0); |
| |
| if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
| env->exception_index = EXCP_INTERRUPT; |
| } |
| |
| return ret; |
| } |
| |
| void kvm_set_phys_mem(target_phys_addr_t start_addr, |
| ram_addr_t size, |
| ram_addr_t phys_offset) |
| { |
| KVMState *s = kvm_state; |
| ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; |
| KVMSlot *mem; |
| |
| /* KVM does not support read-only slots */ |
| phys_offset &= ~IO_MEM_ROM; |
| |
| mem = kvm_lookup_slot(s, start_addr); |
| if (mem) { |
| if ((flags == IO_MEM_UNASSIGNED) || (flags >= TLB_MMIO)) { |
| mem->memory_size = 0; |
| mem->start_addr = start_addr; |
| mem->phys_offset = 0; |
| mem->flags = 0; |
| |
| kvm_set_user_memory_region(s, mem); |
| } else if (start_addr >= mem->start_addr && |
| (start_addr + size) <= (mem->start_addr + |
| mem->memory_size)) { |
| KVMSlot slot; |
| target_phys_addr_t mem_start; |
| ram_addr_t mem_size, mem_offset; |
| |
| /* Not splitting */ |
| if ((phys_offset - (start_addr - mem->start_addr)) == |
| mem->phys_offset) |
| return; |
| |
| /* unregister whole slot */ |
| memcpy(&slot, mem, sizeof(slot)); |
| mem->memory_size = 0; |
| kvm_set_user_memory_region(s, mem); |
| |
| /* register prefix slot */ |
| mem_start = slot.start_addr; |
| mem_size = start_addr - slot.start_addr; |
| mem_offset = slot.phys_offset; |
| if (mem_size) |
| kvm_set_phys_mem(mem_start, mem_size, mem_offset); |
| |
| /* register new slot */ |
| kvm_set_phys_mem(start_addr, size, phys_offset); |
| |
| /* register suffix slot */ |
| mem_start = start_addr + size; |
| mem_offset += mem_size + size; |
| mem_size = slot.memory_size - mem_size - size; |
| if (mem_size) |
| kvm_set_phys_mem(mem_start, mem_size, mem_offset); |
| |
| return; |
| } else { |
| printf("Registering overlapping slot\n"); |
| abort(); |
| } |
| } |
| /* KVM does not need to know about this memory */ |
| if (flags >= IO_MEM_UNASSIGNED) |
| return; |
| |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = size; |
| mem->start_addr = start_addr; |
| mem->phys_offset = phys_offset; |
| mem->flags = 0; |
| |
| kvm_set_user_memory_region(s, mem); |
| /* FIXME deal with errors */ |
| } |
| |
| int kvm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(s->fd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_vm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(s->vmfd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| ret = ioctl(env->kvm_fd, type, arg); |
| if (ret == -1) |
| ret = -errno; |
| |
| return ret; |
| } |
| |
| int kvm_has_sync_mmu(void) |
| { |
| KVMState *s = kvm_state; |
| |
| #ifdef KVM_CAP_SYNC_MMU |
| if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0) |
| return 1; |
| #endif |
| |
| return 0; |
| } |