| /* |
| * QEMU generic PowerPC hardware System Emulator |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "hw/hw.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/ppc/ppc_e500.h" |
| #include "qemu/timer.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/cpus.h" |
| #include "hw/timer/m48t59.h" |
| #include "qemu/log.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "hw/loader.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "trace.h" |
| |
| //#define PPC_DEBUG_IRQ |
| //#define PPC_DEBUG_TB |
| |
| #ifdef PPC_DEBUG_IRQ |
| # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__) |
| #else |
| # define LOG_IRQ(...) do { } while (0) |
| #endif |
| |
| |
| #ifdef PPC_DEBUG_TB |
| # define LOG_TB(...) qemu_log(__VA_ARGS__) |
| #else |
| # define LOG_TB(...) do { } while (0) |
| #endif |
| |
| static void cpu_ppc_tb_stop (CPUPPCState *env); |
| static void cpu_ppc_tb_start (CPUPPCState *env); |
| |
| void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| unsigned int old_pending = env->pending_interrupts; |
| |
| if (level) { |
| env->pending_interrupts |= 1 << n_IRQ; |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| env->pending_interrupts &= ~(1 << n_IRQ); |
| if (env->pending_interrupts == 0) { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| if (old_pending != env->pending_interrupts) { |
| #ifdef CONFIG_KVM |
| kvmppc_set_interrupt(cpu, n_IRQ, level); |
| #endif |
| } |
| |
| LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32 |
| "req %08x\n", __func__, env, n_IRQ, level, |
| env->pending_interrupts, CPU(cpu)->interrupt_request); |
| } |
| |
| /* PowerPC 6xx / 7xx internal IRQ controller */ |
| static void ppc6xx_set_irq(void *opaque, int pin, int level) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUPPCState *env = &cpu->env; |
| int cur_level; |
| |
| LOG_IRQ("%s: env %p pin %d level %d\n", __func__, |
| env, pin, level); |
| cur_level = (env->irq_input_state >> pin) & 1; |
| /* Don't generate spurious events */ |
| if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { |
| CPUState *cs = CPU(cpu); |
| |
| switch (pin) { |
| case PPC6xx_INPUT_TBEN: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: %s the time base\n", |
| __func__, level ? "start" : "stop"); |
| if (level) { |
| cpu_ppc_tb_start(env); |
| } else { |
| cpu_ppc_tb_stop(env); |
| } |
| case PPC6xx_INPUT_INT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the external IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); |
| break; |
| case PPC6xx_INPUT_SMI: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the SMI IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); |
| break; |
| case PPC6xx_INPUT_MCP: |
| /* Negative edge sensitive */ |
| /* XXX: TODO: actual reaction may depends on HID0 status |
| * 603/604/740/750: check HID0[EMCP] |
| */ |
| if (cur_level == 1 && level == 0) { |
| LOG_IRQ("%s: raise machine check state\n", |
| __func__); |
| ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); |
| } |
| break; |
| case PPC6xx_INPUT_CKSTP_IN: |
| /* Level sensitive - active low */ |
| /* XXX: TODO: relay the signal to CKSTP_OUT pin */ |
| /* XXX: Note that the only way to restart the CPU is to reset it */ |
| if (level) { |
| LOG_IRQ("%s: stop the CPU\n", __func__); |
| cs->halted = 1; |
| } |
| break; |
| case PPC6xx_INPUT_HRESET: |
| /* Level sensitive - active low */ |
| if (level) { |
| LOG_IRQ("%s: reset the CPU\n", __func__); |
| cpu_interrupt(cs, CPU_INTERRUPT_RESET); |
| } |
| break; |
| case PPC6xx_INPUT_SRESET: |
| LOG_IRQ("%s: set the RESET IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); |
| break; |
| default: |
| /* Unknown pin - do nothing */ |
| LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); |
| return; |
| } |
| if (level) |
| env->irq_input_state |= 1 << pin; |
| else |
| env->irq_input_state &= ~(1 << pin); |
| } |
| } |
| |
| void ppc6xx_irq_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu, |
| PPC6xx_INPUT_NB); |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* PowerPC 970 internal IRQ controller */ |
| static void ppc970_set_irq(void *opaque, int pin, int level) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUPPCState *env = &cpu->env; |
| int cur_level; |
| |
| LOG_IRQ("%s: env %p pin %d level %d\n", __func__, |
| env, pin, level); |
| cur_level = (env->irq_input_state >> pin) & 1; |
| /* Don't generate spurious events */ |
| if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { |
| CPUState *cs = CPU(cpu); |
| |
| switch (pin) { |
| case PPC970_INPUT_INT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the external IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); |
| break; |
| case PPC970_INPUT_THINT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__, |
| level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); |
| break; |
| case PPC970_INPUT_MCP: |
| /* Negative edge sensitive */ |
| /* XXX: TODO: actual reaction may depends on HID0 status |
| * 603/604/740/750: check HID0[EMCP] |
| */ |
| if (cur_level == 1 && level == 0) { |
| LOG_IRQ("%s: raise machine check state\n", |
| __func__); |
| ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); |
| } |
| break; |
| case PPC970_INPUT_CKSTP: |
| /* Level sensitive - active low */ |
| /* XXX: TODO: relay the signal to CKSTP_OUT pin */ |
| if (level) { |
| LOG_IRQ("%s: stop the CPU\n", __func__); |
| cs->halted = 1; |
| } else { |
| LOG_IRQ("%s: restart the CPU\n", __func__); |
| cs->halted = 0; |
| qemu_cpu_kick(cs); |
| } |
| break; |
| case PPC970_INPUT_HRESET: |
| /* Level sensitive - active low */ |
| if (level) { |
| cpu_interrupt(cs, CPU_INTERRUPT_RESET); |
| } |
| break; |
| case PPC970_INPUT_SRESET: |
| LOG_IRQ("%s: set the RESET IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); |
| break; |
| case PPC970_INPUT_TBEN: |
| LOG_IRQ("%s: set the TBEN state to %d\n", __func__, |
| level); |
| /* XXX: TODO */ |
| break; |
| default: |
| /* Unknown pin - do nothing */ |
| LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); |
| return; |
| } |
| if (level) |
| env->irq_input_state |= 1 << pin; |
| else |
| env->irq_input_state &= ~(1 << pin); |
| } |
| } |
| |
| void ppc970_irq_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu, |
| PPC970_INPUT_NB); |
| } |
| |
| /* POWER7 internal IRQ controller */ |
| static void power7_set_irq(void *opaque, int pin, int level) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUPPCState *env = &cpu->env; |
| |
| LOG_IRQ("%s: env %p pin %d level %d\n", __func__, |
| env, pin, level); |
| |
| switch (pin) { |
| case POWER7_INPUT_INT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the external IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); |
| break; |
| default: |
| /* Unknown pin - do nothing */ |
| LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); |
| return; |
| } |
| if (level) { |
| env->irq_input_state |= 1 << pin; |
| } else { |
| env->irq_input_state &= ~(1 << pin); |
| } |
| } |
| |
| void ppcPOWER7_irq_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu, |
| POWER7_INPUT_NB); |
| } |
| #endif /* defined(TARGET_PPC64) */ |
| |
| /* PowerPC 40x internal IRQ controller */ |
| static void ppc40x_set_irq(void *opaque, int pin, int level) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUPPCState *env = &cpu->env; |
| int cur_level; |
| |
| LOG_IRQ("%s: env %p pin %d level %d\n", __func__, |
| env, pin, level); |
| cur_level = (env->irq_input_state >> pin) & 1; |
| /* Don't generate spurious events */ |
| if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { |
| CPUState *cs = CPU(cpu); |
| |
| switch (pin) { |
| case PPC40x_INPUT_RESET_SYS: |
| if (level) { |
| LOG_IRQ("%s: reset the PowerPC system\n", |
| __func__); |
| ppc40x_system_reset(cpu); |
| } |
| break; |
| case PPC40x_INPUT_RESET_CHIP: |
| if (level) { |
| LOG_IRQ("%s: reset the PowerPC chip\n", __func__); |
| ppc40x_chip_reset(cpu); |
| } |
| break; |
| case PPC40x_INPUT_RESET_CORE: |
| /* XXX: TODO: update DBSR[MRR] */ |
| if (level) { |
| LOG_IRQ("%s: reset the PowerPC core\n", __func__); |
| ppc40x_core_reset(cpu); |
| } |
| break; |
| case PPC40x_INPUT_CINT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the critical IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); |
| break; |
| case PPC40x_INPUT_INT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the external IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); |
| break; |
| case PPC40x_INPUT_HALT: |
| /* Level sensitive - active low */ |
| if (level) { |
| LOG_IRQ("%s: stop the CPU\n", __func__); |
| cs->halted = 1; |
| } else { |
| LOG_IRQ("%s: restart the CPU\n", __func__); |
| cs->halted = 0; |
| qemu_cpu_kick(cs); |
| } |
| break; |
| case PPC40x_INPUT_DEBUG: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the debug pin state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); |
| break; |
| default: |
| /* Unknown pin - do nothing */ |
| LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); |
| return; |
| } |
| if (level) |
| env->irq_input_state |= 1 << pin; |
| else |
| env->irq_input_state &= ~(1 << pin); |
| } |
| } |
| |
| void ppc40x_irq_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, |
| cpu, PPC40x_INPUT_NB); |
| } |
| |
| /* PowerPC E500 internal IRQ controller */ |
| static void ppce500_set_irq(void *opaque, int pin, int level) |
| { |
| PowerPCCPU *cpu = opaque; |
| CPUPPCState *env = &cpu->env; |
| int cur_level; |
| |
| LOG_IRQ("%s: env %p pin %d level %d\n", __func__, |
| env, pin, level); |
| cur_level = (env->irq_input_state >> pin) & 1; |
| /* Don't generate spurious events */ |
| if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { |
| switch (pin) { |
| case PPCE500_INPUT_MCK: |
| if (level) { |
| LOG_IRQ("%s: reset the PowerPC system\n", |
| __func__); |
| qemu_system_reset_request(); |
| } |
| break; |
| case PPCE500_INPUT_RESET_CORE: |
| if (level) { |
| LOG_IRQ("%s: reset the PowerPC core\n", __func__); |
| ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); |
| } |
| break; |
| case PPCE500_INPUT_CINT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the critical IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); |
| break; |
| case PPCE500_INPUT_INT: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the core IRQ state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); |
| break; |
| case PPCE500_INPUT_DEBUG: |
| /* Level sensitive - active high */ |
| LOG_IRQ("%s: set the debug pin state to %d\n", |
| __func__, level); |
| ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); |
| break; |
| default: |
| /* Unknown pin - do nothing */ |
| LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); |
| return; |
| } |
| if (level) |
| env->irq_input_state |= 1 << pin; |
| else |
| env->irq_input_state &= ~(1 << pin); |
| } |
| } |
| |
| void ppce500_irq_init(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq, |
| cpu, PPCE500_INPUT_NB); |
| } |
| |
| /* Enable or Disable the E500 EPR capability */ |
| void ppce500_set_mpic_proxy(bool enabled) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| |
| cpu->env.mpic_proxy = enabled; |
| if (kvm_enabled()) { |
| kvmppc_set_mpic_proxy(cpu, enabled); |
| } |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* PowerPC time base and decrementer emulation */ |
| |
| uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) |
| { |
| /* TB time in tb periods */ |
| return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; |
| } |
| |
| uint64_t cpu_ppc_load_tbl (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| if (kvm_enabled()) { |
| return env->spr[SPR_TBL]; |
| } |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); |
| LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); |
| |
| return tb; |
| } |
| |
| static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); |
| LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); |
| |
| return tb >> 32; |
| } |
| |
| uint32_t cpu_ppc_load_tbu (CPUPPCState *env) |
| { |
| if (kvm_enabled()) { |
| return env->spr[SPR_TBU]; |
| } |
| |
| return _cpu_ppc_load_tbu(env); |
| } |
| |
| static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, |
| int64_t *tb_offsetp, uint64_t value) |
| { |
| *tb_offsetp = value - |
| muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); |
| |
| LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n", |
| __func__, value, *tb_offsetp); |
| } |
| |
| void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); |
| tb &= 0xFFFFFFFF00000000ULL; |
| cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| &tb_env->tb_offset, tb | (uint64_t)value); |
| } |
| |
| static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); |
| tb &= 0x00000000FFFFFFFFULL; |
| cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| &tb_env->tb_offset, ((uint64_t)value << 32) | tb); |
| } |
| |
| void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) |
| { |
| _cpu_ppc_store_tbu(env, value); |
| } |
| |
| uint64_t cpu_ppc_load_atbl (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); |
| LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); |
| |
| return tb; |
| } |
| |
| uint32_t cpu_ppc_load_atbu (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); |
| LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); |
| |
| return tb >> 32; |
| } |
| |
| void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); |
| tb &= 0xFFFFFFFF00000000ULL; |
| cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| &tb_env->atb_offset, tb | (uint64_t)value); |
| } |
| |
| void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb; |
| |
| tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); |
| tb &= 0x00000000FFFFFFFFULL; |
| cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| &tb_env->atb_offset, ((uint64_t)value << 32) | tb); |
| } |
| |
| static void cpu_ppc_tb_stop (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb, atb, vmclk; |
| |
| /* If the time base is already frozen, do nothing */ |
| if (tb_env->tb_freq != 0) { |
| vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| /* Get the time base */ |
| tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); |
| /* Get the alternate time base */ |
| atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); |
| /* Store the time base value (ie compute the current offset) */ |
| cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); |
| /* Store the alternate time base value (compute the current offset) */ |
| cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); |
| /* Set the time base frequency to zero */ |
| tb_env->tb_freq = 0; |
| /* Now, the time bases are frozen to tb_offset / atb_offset value */ |
| } |
| } |
| |
| static void cpu_ppc_tb_start (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t tb, atb, vmclk; |
| |
| /* If the time base is not frozen, do nothing */ |
| if (tb_env->tb_freq == 0) { |
| vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| /* Get the time base from tb_offset */ |
| tb = tb_env->tb_offset; |
| /* Get the alternate time base from atb_offset */ |
| atb = tb_env->atb_offset; |
| /* Restore the tb frequency from the decrementer frequency */ |
| tb_env->tb_freq = tb_env->decr_freq; |
| /* Store the time base value */ |
| cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); |
| /* Store the alternate time base value */ |
| cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); |
| } |
| } |
| |
| bool ppc_decr_clear_on_delivery(CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; |
| return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); |
| } |
| |
| static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint32_t decr; |
| int64_t diff; |
| |
| diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| if (diff >= 0) { |
| decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); |
| } else if (tb_env->flags & PPC_TIMER_BOOKE) { |
| decr = 0; |
| } else { |
| decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); |
| } |
| LOG_TB("%s: %08" PRIx32 "\n", __func__, decr); |
| |
| return decr; |
| } |
| |
| uint32_t cpu_ppc_load_decr (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| |
| if (kvm_enabled()) { |
| return env->spr[SPR_DECR]; |
| } |
| |
| return _cpu_ppc_load_decr(env, tb_env->decr_next); |
| } |
| |
| uint32_t cpu_ppc_load_hdecr (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| |
| return _cpu_ppc_load_decr(env, tb_env->hdecr_next); |
| } |
| |
| uint64_t cpu_ppc_load_purr (CPUPPCState *env) |
| { |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t diff; |
| |
| diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start; |
| |
| return tb_env->purr_load + |
| muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND); |
| } |
| |
| /* When decrementer expires, |
| * all we need to do is generate or queue a CPU exception |
| */ |
| static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) |
| { |
| /* Raise it */ |
| LOG_TB("raise decrementer exception\n"); |
| ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); |
| } |
| |
| static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) |
| { |
| ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); |
| } |
| |
| static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| /* Raise it */ |
| LOG_TB("raise hv decrementer exception\n"); |
| |
| /* The architecture specifies that we don't deliver HDEC |
| * interrupts in a PM state. Not only they don't cause a |
| * wakeup but they also get effectively discarded. |
| */ |
| if (!env->in_pm_state) { |
| ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); |
| } |
| } |
| |
| static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) |
| { |
| ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); |
| } |
| |
| static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, |
| QEMUTimer *timer, |
| void (*raise_excp)(void *), |
| void (*lower_excp)(PowerPCCPU *), |
| uint32_t decr, uint32_t value) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_tb_t *tb_env = env->tb_env; |
| uint64_t now, next; |
| |
| LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__, |
| decr, value); |
| |
| if (kvm_enabled()) { |
| /* KVM handles decrementer exceptions, we don't need our own timer */ |
| return; |
| } |
| |
| /* |
| * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC |
| * interrupt. |
| * |
| * If we get a really small DEC value, we can assume that by the time we |
| * handled it we should inject an interrupt already. |
| * |
| * On MSB level based DEC implementations the MSB always means the interrupt |
| * is pending, so raise it on those. |
| * |
| * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers |
| * an edge interrupt, so raise it here too. |
| */ |
| if ((value < 3) || |
| ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) || |
| ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000) |
| && !(decr & 0x80000000))) { |
| (*raise_excp)(cpu); |
| return; |
| } |
| |
| /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ |
| if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) { |
| (*lower_excp)(cpu); |
| } |
| |
| /* Calculate the next timer event */ |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); |
| *nextp = next; |
| |
| /* Adjust timer */ |
| timer_mod(timer, next); |
| } |
| |
| static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr, |
| uint32_t value) |
| { |
| ppc_tb_t *tb_env = cpu->env.tb_env; |
| |
| __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, |
| tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr, |
| value); |
| } |
| |
| void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| |
| _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value); |
| } |
| |
| static void cpu_ppc_decr_cb(void *opaque) |
| { |
| PowerPCCPU *cpu = opaque; |
| |
| cpu_ppc_decr_excp(cpu); |
| } |
| |
| static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr, |
| uint32_t value) |
| { |
| ppc_tb_t *tb_env = cpu->env.tb_env; |
| |
| if (tb_env->hdecr_timer != NULL) { |
| __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, |
| tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, |
| hdecr, value); |
| } |
| } |
| |
| void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| |
| _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value); |
| } |
| |
| static void cpu_ppc_hdecr_cb(void *opaque) |
| { |
| PowerPCCPU *cpu = opaque; |
| |
| cpu_ppc_hdecr_excp(cpu); |
| } |
| |
| static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value) |
| { |
| ppc_tb_t *tb_env = cpu->env.tb_env; |
| |
| tb_env->purr_load = value; |
| tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| } |
| |
| static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) |
| { |
| CPUPPCState *env = opaque; |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| ppc_tb_t *tb_env = env->tb_env; |
| |
| tb_env->tb_freq = freq; |
| tb_env->decr_freq = freq; |
| /* There is a bug in Linux 2.4 kernels: |
| * if a decrementer exception is pending when it enables msr_ee at startup, |
| * it's not ready to handle it... |
| */ |
| _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF); |
| _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF); |
| cpu_ppc_store_purr(cpu, 0x0000000000000000ULL); |
| } |
| |
| static void timebase_save(PPCTimebase *tb) |
| { |
| uint64_t ticks = cpu_get_host_ticks(); |
| PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); |
| |
| if (!first_ppc_cpu->env.tb_env) { |
| error_report("No timebase object"); |
| return; |
| } |
| |
| /* not used anymore, we keep it for compatibility */ |
| tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); |
| /* |
| * tb_offset is only expected to be changed by QEMU so |
| * there is no need to update it from KVM here |
| */ |
| tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; |
| } |
| |
| static void timebase_load(PPCTimebase *tb) |
| { |
| CPUState *cpu; |
| PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); |
| int64_t tb_off_adj, tb_off; |
| unsigned long freq; |
| |
| if (!first_ppc_cpu->env.tb_env) { |
| error_report("No timebase object"); |
| return; |
| } |
| |
| freq = first_ppc_cpu->env.tb_env->tb_freq; |
| |
| tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); |
| |
| tb_off = first_ppc_cpu->env.tb_env->tb_offset; |
| trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, |
| (tb_off_adj - tb_off) / freq); |
| |
| /* Set new offset to all CPUs */ |
| CPU_FOREACH(cpu) { |
| PowerPCCPU *pcpu = POWERPC_CPU(cpu); |
| pcpu->env.tb_env->tb_offset = tb_off_adj; |
| #if defined(CONFIG_KVM) |
| kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET, |
| &pcpu->env.tb_env->tb_offset); |
| #endif |
| } |
| } |
| |
| void cpu_ppc_clock_vm_state_change(void *opaque, int running, |
| RunState state) |
| { |
| PPCTimebase *tb = opaque; |
| |
| if (running) { |
| timebase_load(tb); |
| } else { |
| timebase_save(tb); |
| } |
| } |
| |
| /* |
| * When migrating, read the clock just before migration, |
| * so that the guest clock counts during the events |
| * between: |
| * |
| * * vm_stop() |
| * * |
| * * pre_save() |
| * |
| * This reduces clock difference on migration from 5s |
| * to 0.1s (when max_downtime == 5s), because sending the |
| * final pages of memory (which happens between vm_stop() |
| * and pre_save()) takes max_downtime. |
| */ |
| static void timebase_pre_save(void *opaque) |
| { |
| PPCTimebase *tb = opaque; |
| |
| timebase_save(tb); |
| } |
| |
| const VMStateDescription vmstate_ppc_timebase = { |
| .name = "timebase", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .minimum_version_id_old = 1, |
| .pre_save = timebase_pre_save, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT64(guest_timebase, PPCTimebase), |
| VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| /* Set up (once) timebase frequency (in Hz) */ |
| clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| ppc_tb_t *tb_env; |
| |
| tb_env = g_malloc0(sizeof(ppc_tb_t)); |
| env->tb_env = tb_env; |
| tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; |
| if (env->insns_flags & PPC_SEGMENT_64B) { |
| /* All Book3S 64bit CPUs implement level based DEC logic */ |
| tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; |
| } |
| /* Create new timer */ |
| tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); |
| if (env->has_hv_mode) { |
| tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, |
| cpu); |
| } else { |
| tb_env->hdecr_timer = NULL; |
| } |
| cpu_ppc_set_tb_clk(env, freq); |
| |
| return &cpu_ppc_set_tb_clk; |
| } |
| |
| /* Specific helpers for POWER & PowerPC 601 RTC */ |
| void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value) |
| { |
| _cpu_ppc_store_tbu(env, value); |
| } |
| |
| uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env) |
| { |
| return _cpu_ppc_load_tbu(env); |
| } |
| |
| void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value) |
| { |
| cpu_ppc_store_tbl(env, value & 0x3FFFFF80); |
| } |
| |
| uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env) |
| { |
| return cpu_ppc_load_tbl(env) & 0x3FFFFF80; |
| } |
| |
| /*****************************************************************************/ |
| /* PowerPC 40x timers */ |
| |
| /* PIT, FIT & WDT */ |
| typedef struct ppc40x_timer_t ppc40x_timer_t; |
| struct ppc40x_timer_t { |
| uint64_t pit_reload; /* PIT auto-reload value */ |
| uint64_t fit_next; /* Tick for next FIT interrupt */ |
| QEMUTimer *fit_timer; |
| uint64_t wdt_next; /* Tick for next WDT interrupt */ |
| QEMUTimer *wdt_timer; |
| |
| /* 405 have the PIT, 440 have a DECR. */ |
| unsigned int decr_excp; |
| }; |
| |
| /* Fixed interval timer */ |
| static void cpu_4xx_fit_cb (void *opaque) |
| { |
| PowerPCCPU *cpu; |
| CPUPPCState *env; |
| ppc_tb_t *tb_env; |
| ppc40x_timer_t *ppc40x_timer; |
| uint64_t now, next; |
| |
| env = opaque; |
| cpu = ppc_env_get_cpu(env); |
| tb_env = env->tb_env; |
| ppc40x_timer = tb_env->opaque; |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { |
| case 0: |
| next = 1 << 9; |
| break; |
| case 1: |
| next = 1 << 13; |
| break; |
| case 2: |
| next = 1 << 17; |
| break; |
| case 3: |
| next = 1 << 21; |
| break; |
| default: |
| /* Cannot occur, but makes gcc happy */ |
| return; |
| } |
| next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); |
| if (next == now) |
| next++; |
| timer_mod(ppc40x_timer->fit_timer, next); |
| env->spr[SPR_40x_TSR] |= 1 << 26; |
| if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { |
| ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); |
| } |
| LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, |
| (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), |
| env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); |
| } |
| |
| /* Programmable interval timer */ |
| static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) |
| { |
| ppc40x_timer_t *ppc40x_timer; |
| uint64_t now, next; |
| |
| ppc40x_timer = tb_env->opaque; |
| if (ppc40x_timer->pit_reload <= 1 || |
| !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || |
| (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { |
| /* Stop PIT */ |
| LOG_TB("%s: stop PIT\n", __func__); |
| timer_del(tb_env->decr_timer); |
| } else { |
| LOG_TB("%s: start PIT %016" PRIx64 "\n", |
| __func__, ppc40x_timer->pit_reload); |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| next = now + muldiv64(ppc40x_timer->pit_reload, |
| NANOSECONDS_PER_SECOND, tb_env->decr_freq); |
| if (is_excp) |
| next += tb_env->decr_next - now; |
| if (next == now) |
| next++; |
| timer_mod(tb_env->decr_timer, next); |
| tb_env->decr_next = next; |
| } |
| } |
| |
| static void cpu_4xx_pit_cb (void *opaque) |
| { |
| PowerPCCPU *cpu; |
| CPUPPCState *env; |
| ppc_tb_t *tb_env; |
| ppc40x_timer_t *ppc40x_timer; |
| |
| env = opaque; |
| cpu = ppc_env_get_cpu(env); |
| tb_env = env->tb_env; |
| ppc40x_timer = tb_env->opaque; |
| env->spr[SPR_40x_TSR] |= 1 << 27; |
| if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { |
| ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); |
| } |
| start_stop_pit(env, tb_env, 1); |
| LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " " |
| "%016" PRIx64 "\n", __func__, |
| (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), |
| (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), |
| env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], |
| ppc40x_timer->pit_reload); |
| } |
| |
| /* Watchdog timer */ |
| static void cpu_4xx_wdt_cb (void *opaque) |
| { |
| PowerPCCPU *cpu; |
| CPUPPCState *env; |
| ppc_tb_t *tb_env; |
| ppc40x_timer_t *ppc40x_timer; |
| uint64_t now, next; |
| |
| env = opaque; |
| cpu = ppc_env_get_cpu(env); |
| tb_env = env->tb_env; |
| ppc40x_timer = tb_env->opaque; |
| now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { |
| case 0: |
| next = 1 << 17; |
| break; |
| case 1: |
| next = 1 << 21; |
| break; |
| case 2: |
| next = 1 << 25; |
| break; |
| case 3: |
| next = 1 << 29; |
| break; |
| default: |
| /* Cannot occur, but makes gcc happy */ |
| return; |
| } |
| next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); |
| if (next == now) |
| next++; |
| LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, |
| env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); |
| switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { |
| case 0x0: |
| case 0x1: |
| timer_mod(ppc40x_timer->wdt_timer, next); |
| ppc40x_timer->wdt_next = next; |
| env->spr[SPR_40x_TSR] |= 1U << 31; |
| break; |
| case 0x2: |
| timer_mod(ppc40x_timer->wdt_timer, next); |
| ppc40x_timer->wdt_next = next; |
| env->spr[SPR_40x_TSR] |= 1 << 30; |
| if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { |
| ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); |
| } |
| break; |
| case 0x3: |
| env->spr[SPR_40x_TSR] &= ~0x30000000; |
| env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; |
| switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { |
| case 0x0: |
| /* No reset */ |
| break; |
| case 0x1: /* Core reset */ |
| ppc40x_core_reset(cpu); |
| break; |
| case 0x2: /* Chip reset */ |
| ppc40x_chip_reset(cpu); |
| break; |
| case 0x3: /* System reset */ |
| ppc40x_system_reset(cpu); |
| break; |
| } |
| } |
| } |
| |
| void store_40x_pit (CPUPPCState *env, target_ulong val) |
| { |
| ppc_tb_t *tb_env; |
| ppc40x_timer_t *ppc40x_timer; |
| |
| tb_env = env->tb_env; |
| ppc40x_timer = tb_env->opaque; |
| LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val); |
| ppc40x_timer->pit_reload = val; |
| start_stop_pit(env, tb_env, 0); |
| } |
| |
| target_ulong load_40x_pit (CPUPPCState *env) |
| { |
| return cpu_ppc_load_decr(env); |
| } |
| |
| static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) |
| { |
| CPUPPCState *env = opaque; |
| ppc_tb_t *tb_env = env->tb_env; |
| |
| LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__, |
| freq); |
| tb_env->tb_freq = freq; |
| tb_env->decr_freq = freq; |
| /* XXX: we should also update all timers */ |
| } |
| |
| clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, |
| unsigned int decr_excp) |
| { |
| ppc_tb_t *tb_env; |
| ppc40x_timer_t *ppc40x_timer; |
| |
| tb_env = g_malloc0(sizeof(ppc_tb_t)); |
| env->tb_env = tb_env; |
| tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; |
| ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t)); |
| tb_env->tb_freq = freq; |
| tb_env->decr_freq = freq; |
| tb_env->opaque = ppc40x_timer; |
| LOG_TB("%s freq %" PRIu32 "\n", __func__, freq); |
| if (ppc40x_timer != NULL) { |
| /* We use decr timer for PIT */ |
| tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env); |
| ppc40x_timer->fit_timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env); |
| ppc40x_timer->wdt_timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env); |
| ppc40x_timer->decr_excp = decr_excp; |
| } |
| |
| return &ppc_40x_set_tb_clk; |
| } |
| |
| /*****************************************************************************/ |
| /* Embedded PowerPC Device Control Registers */ |
| typedef struct ppc_dcrn_t ppc_dcrn_t; |
| struct ppc_dcrn_t { |
| dcr_read_cb dcr_read; |
| dcr_write_cb dcr_write; |
| void *opaque; |
| }; |
| |
| /* XXX: on 460, DCR addresses are 32 bits wide, |
| * using DCRIPR to get the 22 upper bits of the DCR address |
| */ |
| #define DCRN_NB 1024 |
| struct ppc_dcr_t { |
| ppc_dcrn_t dcrn[DCRN_NB]; |
| int (*read_error)(int dcrn); |
| int (*write_error)(int dcrn); |
| }; |
| |
| int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) |
| { |
| ppc_dcrn_t *dcr; |
| |
| if (dcrn < 0 || dcrn >= DCRN_NB) |
| goto error; |
| dcr = &dcr_env->dcrn[dcrn]; |
| if (dcr->dcr_read == NULL) |
| goto error; |
| *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); |
| |
| return 0; |
| |
| error: |
| if (dcr_env->read_error != NULL) |
| return (*dcr_env->read_error)(dcrn); |
| |
| return -1; |
| } |
| |
| int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) |
| { |
| ppc_dcrn_t *dcr; |
| |
| if (dcrn < 0 || dcrn >= DCRN_NB) |
| goto error; |
| dcr = &dcr_env->dcrn[dcrn]; |
| if (dcr->dcr_write == NULL) |
| goto error; |
| (*dcr->dcr_write)(dcr->opaque, dcrn, val); |
| |
| return 0; |
| |
| error: |
| if (dcr_env->write_error != NULL) |
| return (*dcr_env->write_error)(dcrn); |
| |
| return -1; |
| } |
| |
| int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, |
| dcr_read_cb dcr_read, dcr_write_cb dcr_write) |
| { |
| ppc_dcr_t *dcr_env; |
| ppc_dcrn_t *dcr; |
| |
| dcr_env = env->dcr_env; |
| if (dcr_env == NULL) |
| return -1; |
| if (dcrn < 0 || dcrn >= DCRN_NB) |
| return -1; |
| dcr = &dcr_env->dcrn[dcrn]; |
| if (dcr->opaque != NULL || |
| dcr->dcr_read != NULL || |
| dcr->dcr_write != NULL) |
| return -1; |
| dcr->opaque = opaque; |
| dcr->dcr_read = dcr_read; |
| dcr->dcr_write = dcr_write; |
| |
| return 0; |
| } |
| |
| int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), |
| int (*write_error)(int dcrn)) |
| { |
| ppc_dcr_t *dcr_env; |
| |
| dcr_env = g_malloc0(sizeof(ppc_dcr_t)); |
| dcr_env->read_error = read_error; |
| dcr_env->write_error = write_error; |
| env->dcr_env = dcr_env; |
| |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| /* Debug port */ |
| void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val) |
| { |
| addr &= 0xF; |
| switch (addr) { |
| case 0: |
| printf("%c", val); |
| break; |
| case 1: |
| printf("\n"); |
| fflush(stdout); |
| break; |
| case 2: |
| printf("Set loglevel to %04" PRIx32 "\n", val); |
| qemu_set_log(val | 0x100); |
| break; |
| } |
| } |
| |
| /* CPU device-tree ID helpers */ |
| int ppc_get_vcpu_dt_id(PowerPCCPU *cpu) |
| { |
| return cpu->cpu_dt_id; |
| } |
| |
| PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| |
| if (cpu->cpu_dt_id == cpu_dt_id) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void ppc_cpu_parse_features(const char *cpu_model) |
| { |
| CPUClass *cc; |
| ObjectClass *oc; |
| const char *typename; |
| gchar **model_pieces; |
| |
| model_pieces = g_strsplit(cpu_model, ",", 2); |
| if (!model_pieces[0]) { |
| error_report("Invalid/empty CPU model name"); |
| exit(1); |
| } |
| |
| oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]); |
| if (oc == NULL) { |
| error_report("Unable to find CPU definition: %s", model_pieces[0]); |
| exit(1); |
| } |
| |
| typename = object_class_get_name(oc); |
| cc = CPU_CLASS(oc); |
| cc->parse_features(typename, model_pieces[1], &error_fatal); |
| g_strfreev(model_pieces); |
| } |