blob: 29a8fb68f8930cf4879e3e1ea8b4802fed519005 [file] [log] [blame]
/*
* x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "cpu.h"
#include "helper.h"
#include "qemu/host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "exec/softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
#define FPU_RC_MASK 0xc00
#define FPU_RC_NEAR 0x000
#define FPU_RC_DOWN 0x400
#define FPU_RC_UP 0x800
#define FPU_RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL)
#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL)
#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL)
static inline void fpush(CPUX86State *env)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(CPUX86State *env)
{
env->fptags[env->fpstt] = 1; /* invalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
static inline floatx80 helper_fldt(CPUX86State *env, target_ulong ptr)
{
CPU_LDoubleU temp;
temp.l.lower = cpu_ldq_data(env, ptr);
temp.l.upper = cpu_lduw_data(env, ptr + 8);
return temp.d;
}
static inline void helper_fstt(CPUX86State *env, floatx80 f, target_ulong ptr)
{
CPU_LDoubleU temp;
temp.d = f;
cpu_stq_data(env, ptr, temp.l.lower);
cpu_stw_data(env, ptr + 8, temp.l.upper);
}
/* x87 FPU helpers */
static inline double floatx80_to_double(CPUX86State *env, floatx80 a)
{
union {
float64 f64;
double d;
} u;
u.f64 = floatx80_to_float64(a, &env->fp_status);
return u.d;
}
static inline floatx80 double_to_floatx80(CPUX86State *env, double a)
{
union {
float64 f64;
double d;
} u;
u.d = a;
return float64_to_floatx80(u.f64, &env->fp_status);
}
static void fpu_set_exception(CPUX86State *env, int mask)
{
env->fpus |= mask;
if (env->fpus & (~env->fpuc & FPUC_EM)) {
env->fpus |= FPUS_SE | FPUS_B;
}
}
static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b)
{
if (floatx80_is_zero(b)) {
fpu_set_exception(env, FPUS_ZE);
}
return floatx80_div(a, b, &env->fp_status);
}
static void fpu_raise_exception(CPUX86State *env)
{
if (env->cr[0] & CR0_NE_MASK) {
raise_exception(env, EXCP10_COPR);
}
#if !defined(CONFIG_USER_ONLY)
else {
cpu_set_ferr(env);
}
#endif
}
void helper_flds_FT0(CPUX86State *env, uint32_t val)
{
union {
float32 f;
uint32_t i;
} u;
u.i = val;
FT0 = float32_to_floatx80(u.f, &env->fp_status);
}
void helper_fldl_FT0(CPUX86State *env, uint64_t val)
{
union {
float64 f;
uint64_t i;
} u;
u.i = val;
FT0 = float64_to_floatx80(u.f, &env->fp_status);
}
void helper_fildl_FT0(CPUX86State *env, int32_t val)
{
FT0 = int32_to_floatx80(val, &env->fp_status);
}
void helper_flds_ST0(CPUX86State *env, uint32_t val)
{
int new_fpstt;
union {
float32 f;
uint32_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fldl_ST0(CPUX86State *env, uint64_t val)
{
int new_fpstt;
union {
float64 f;
uint64_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildl_ST0(CPUX86State *env, int32_t val)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildll_ST0(CPUX86State *env, int64_t val)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
uint32_t helper_fsts_ST0(CPUX86State *env)
{
union {
float32 f;
uint32_t i;
} u;
u.f = floatx80_to_float32(ST0, &env->fp_status);
return u.i;
}
uint64_t helper_fstl_ST0(CPUX86State *env)
{
union {
float64 f;
uint64_t i;
} u;
u.f = floatx80_to_float64(ST0, &env->fp_status);
return u.i;
}
int32_t helper_fist_ST0(CPUX86State *env)
{
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
if (val != (int16_t)val) {
val = -32768;
}
return val;
}
int32_t helper_fistl_ST0(CPUX86State *env)
{
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
return val;
}
int64_t helper_fistll_ST0(CPUX86State *env)
{
int64_t val;
val = floatx80_to_int64(ST0, &env->fp_status);
return val;
}
int32_t helper_fistt_ST0(CPUX86State *env)
{
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
if (val != (int16_t)val) {
val = -32768;
}
return val;
}
int32_t helper_fisttl_ST0(CPUX86State *env)
{
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
return val;
}
int64_t helper_fisttll_ST0(CPUX86State *env)
{
int64_t val;
val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
return val;
}
void helper_fldt_ST0(CPUX86State *env, target_ulong ptr)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = helper_fldt(env, ptr);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fstt_ST0(CPUX86State *env, target_ulong ptr)
{
helper_fstt(env, ST0, ptr);
}
void helper_fpush(CPUX86State *env)
{
fpush(env);
}
void helper_fpop(CPUX86State *env)
{
fpop(env);
}
void helper_fdecstp(CPUX86State *env)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fpus &= ~0x4700;
}
void helper_fincstp(CPUX86State *env)
{
env->fpstt = (env->fpstt + 1) & 7;
env->fpus &= ~0x4700;
}
/* FPU move */
void helper_ffree_STN(CPUX86State *env, int st_index)
{
env->fptags[(env->fpstt + st_index) & 7] = 1;
}
void helper_fmov_ST0_FT0(CPUX86State *env)
{
ST0 = FT0;
}
void helper_fmov_FT0_STN(CPUX86State *env, int st_index)
{
FT0 = ST(st_index);
}
void helper_fmov_ST0_STN(CPUX86State *env, int st_index)
{
ST0 = ST(st_index);
}
void helper_fmov_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = ST0;
}
void helper_fxchg_ST0_STN(CPUX86State *env, int st_index)
{
floatx80 tmp;
tmp = ST(st_index);
ST(st_index) = ST0;
ST0 = tmp;
}
/* FPU operations */
static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
void helper_fcom_ST0_FT0(CPUX86State *env)
{
int ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}
void helper_fucom_ST0_FT0(CPUX86State *env)
{
int ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}
static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
void helper_fcomi_ST0_FT0(CPUX86State *env)
{
int eflags;
int ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
eflags = cpu_cc_compute_all(env, CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
}
void helper_fucomi_ST0_FT0(CPUX86State *env)
{
int eflags;
int ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
eflags = cpu_cc_compute_all(env, CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
}
void helper_fadd_ST0_FT0(CPUX86State *env)
{
ST0 = floatx80_add(ST0, FT0, &env->fp_status);
}
void helper_fmul_ST0_FT0(CPUX86State *env)
{
ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
}
void helper_fsub_ST0_FT0(CPUX86State *env)
{
ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
}
void helper_fsubr_ST0_FT0(CPUX86State *env)
{
ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
}
void helper_fdiv_ST0_FT0(CPUX86State *env)
{
ST0 = helper_fdiv(env, ST0, FT0);
}
void helper_fdivr_ST0_FT0(CPUX86State *env)
{
ST0 = helper_fdiv(env, FT0, ST0);
}
/* fp operations between STN and ST0 */
void helper_fadd_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
}
void helper_fmul_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
}
void helper_fsub_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
}
void helper_fsubr_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
}
void helper_fdiv_STN_ST0(CPUX86State *env, int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(env, *p, ST0);
}
void helper_fdivr_STN_ST0(CPUX86State *env, int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(env, ST0, *p);
}
/* misc FPU operations */
void helper_fchs_ST0(CPUX86State *env)
{
ST0 = floatx80_chs(ST0);
}
void helper_fabs_ST0(CPUX86State *env)
{
ST0 = floatx80_abs(ST0);
}
void helper_fld1_ST0(CPUX86State *env)
{
ST0 = floatx80_one;
}
void helper_fldl2t_ST0(CPUX86State *env)
{
ST0 = floatx80_l2t;
}
void helper_fldl2e_ST0(CPUX86State *env)
{
ST0 = floatx80_l2e;
}
void helper_fldpi_ST0(CPUX86State *env)
{
ST0 = floatx80_pi;
}
void helper_fldlg2_ST0(CPUX86State *env)
{
ST0 = floatx80_lg2;
}
void helper_fldln2_ST0(CPUX86State *env)
{
ST0 = floatx80_ln2;
}
void helper_fldz_ST0(CPUX86State *env)
{
ST0 = floatx80_zero;
}
void helper_fldz_FT0(CPUX86State *env)
{
FT0 = floatx80_zero;
}
uint32_t helper_fnstsw(CPUX86State *env)
{
return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
}
uint32_t helper_fnstcw(CPUX86State *env)
{
return env->fpuc;
}
static void update_fp_status(CPUX86State *env)
{
int rnd_type;
/* set rounding mode */
switch (env->fpuc & FPU_RC_MASK) {
default:
case FPU_RC_NEAR:
rnd_type = float_round_nearest_even;
break;
case FPU_RC_DOWN:
rnd_type = float_round_down;
break;
case FPU_RC_UP:
rnd_type = float_round_up;
break;
case FPU_RC_CHOP:
rnd_type = float_round_to_zero;
break;
}
set_float_rounding_mode(rnd_type, &env->fp_status);
switch ((env->fpuc >> 8) & 3) {
case 0:
rnd_type = 32;
break;
case 2:
rnd_type = 64;
break;
case 3:
default:
rnd_type = 80;
break;
}
set_floatx80_rounding_precision(rnd_type, &env->fp_status);
}
void helper_fldcw(CPUX86State *env, uint32_t val)
{
env->fpuc = val;
update_fp_status(env);
}
void helper_fclex(CPUX86State *env)
{
env->fpus &= 0x7f00;
}
void helper_fwait(CPUX86State *env)
{
if (env->fpus & FPUS_SE) {
fpu_raise_exception(env);
}
}
void helper_fninit(CPUX86State *env)
{
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
/* BCD ops */
void helper_fbld_ST0(CPUX86State *env, target_ulong ptr)
{
floatx80 tmp;
uint64_t val;
unsigned int v;
int i;
val = 0;
for (i = 8; i >= 0; i--) {
v = cpu_ldub_data(env, ptr + i);
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
}
tmp = int64_to_floatx80(val, &env->fp_status);
if (cpu_ldub_data(env, ptr + 9) & 0x80) {
floatx80_chs(tmp);
}
fpush(env);
ST0 = tmp;
}
void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
{
int v;
target_ulong mem_ref, mem_end;
int64_t val;
val = floatx80_to_int64(ST0, &env->fp_status);
mem_ref = ptr;
mem_end = mem_ref + 9;
if (val < 0) {
cpu_stb_data(env, mem_end, 0x80);
val = -val;
} else {
cpu_stb_data(env, mem_end, 0x00);
}
while (mem_ref < mem_end) {
if (val == 0) {
break;
}
v = val % 100;
val = val / 100;
v = ((v / 10) << 4) | (v % 10);
cpu_stb_data(env, mem_ref++, v);
}
while (mem_ref < mem_end) {
cpu_stb_data(env, mem_ref++, 0);
}
}
void helper_f2xm1(CPUX86State *env)
{
double val = floatx80_to_double(env, ST0);
val = pow(2.0, val) - 1.0;
ST0 = double_to_floatx80(env, val);
}
void helper_fyl2x(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if (fptemp > 0.0) {
fptemp = log(fptemp) / log(2.0); /* log2(ST) */
fptemp *= floatx80_to_double(env, ST1);
ST1 = double_to_floatx80(env, fptemp);
fpop(env);
} else {
env->fpus &= ~0x4700;
env->fpus |= 0x400;
}
}
void helper_fptan(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
fptemp = tan(fptemp);
ST0 = double_to_floatx80(env, fptemp);
fpush(env);
ST0 = floatx80_one;
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
}
void helper_fpatan(CPUX86State *env)
{
double fptemp, fpsrcop;
fpsrcop = floatx80_to_double(env, ST1);
fptemp = floatx80_to_double(env, ST0);
ST1 = double_to_floatx80(env, atan2(fpsrcop, fptemp));
fpop(env);
}
void helper_fxtract(CPUX86State *env)
{
CPU_LDoubleU temp;
temp.d = ST0;
if (floatx80_is_zero(ST0)) {
/* Easy way to generate -inf and raising division by 0 exception */
ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero,
&env->fp_status);
fpush(env);
ST0 = temp.d;
} else {
int expdif;
expdif = EXPD(temp) - EXPBIAS;
/* DP exponent bias */
ST0 = int32_to_floatx80(expdif, &env->fp_status);
fpush(env);
BIASEXPONENT(temp);
ST0 = temp.d;
}
}
void helper_fprem1(CPUX86State *env)
{
double st0, st1, dblq, fpsrcop, fptemp;
CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
st0 = floatx80_to_double(env, ST0);
st1 = floatx80_to_double(env, ST1);
if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
return;
}
fpsrcop = st0;
fptemp = st1;
fpsrcop1.d = ST0;
fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
/* optimisation? taken from the AMD docs */
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
/* ST0 is unchanged */
return;
}
if (expdif < 53) {
dblq = fpsrcop / fptemp;
/* round dblq towards nearest integer */
dblq = rint(dblq);
st0 = fpsrcop - fptemp * dblq;
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0) {
q = (signed long long int)(-dblq);
} else {
q = (signed long long int)dblq;
}
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C3,C1) <-- (q2,q1,q0) */
env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif - 50);
fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
st0 -= (st1 * fpsrcop * fptemp);
}
ST0 = double_to_floatx80(env, st0);
}
void helper_fprem(CPUX86State *env)
{
double st0, st1, dblq, fpsrcop, fptemp;
CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
st0 = floatx80_to_double(env, ST0);
st1 = floatx80_to_double(env, ST1);
if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
return;
}
fpsrcop = st0;
fptemp = st1;
fpsrcop1.d = ST0;
fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
/* optimisation? taken from the AMD docs */
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
/* ST0 is unchanged */
return;
}
if (expdif < 53) {
dblq = fpsrcop / fptemp; /* ST0 / ST1 */
/* round dblq towards zero */
dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
st0 = fpsrcop - fptemp * dblq; /* fpsrcop is ST0 */
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0) {
q = (signed long long int)(-dblq);
} else {
q = (signed long long int)dblq;
}
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C3,C1) <-- (q2,q1,q0) */
env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
int N = 32 + (expdif % 32); /* as per AMD docs */
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, (double)(expdif - N));
fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
st0 -= (st1 * fpsrcop * fptemp);
}
ST0 = double_to_floatx80(env, st0);
}
void helper_fyl2xp1(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp + 1.0) > 0.0) {
fptemp = log(fptemp + 1.0) / log(2.0); /* log2(ST + 1.0) */
fptemp *= floatx80_to_double(env, ST1);
ST1 = double_to_floatx80(env, fptemp);
fpop(env);
} else {
env->fpus &= ~0x4700;
env->fpus |= 0x400;
}
}
void helper_fsqrt(CPUX86State *env)
{
if (floatx80_is_neg(ST0)) {
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
ST0 = floatx80_sqrt(ST0, &env->fp_status);
}
void helper_fsincos(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, sin(fptemp));
fpush(env);
ST0 = double_to_floatx80(env, cos(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_frndint(CPUX86State *env)
{
ST0 = floatx80_round_to_int(ST0, &env->fp_status);
}
void helper_fscale(CPUX86State *env)
{
if (floatx80_is_any_nan(ST1)) {
ST0 = ST1;
} else {
int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
}
}
void helper_fsin(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, sin(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
}
void helper_fcos(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, cos(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_fxam_ST0(CPUX86State *env)
{
CPU_LDoubleU temp;
int expdif;
temp.d = ST0;
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
if (SIGND(temp)) {
env->fpus |= 0x200; /* C1 <-- 1 */
}
/* XXX: test fptags too */
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
if (MANTD(temp) == 0x8000000000000000ULL) {
env->fpus |= 0x500; /* Infinity */
} else {
env->fpus |= 0x100; /* NaN */
}
} else if (expdif == 0) {
if (MANTD(temp) == 0) {
env->fpus |= 0x4000; /* Zero */
} else {
env->fpus |= 0x4400; /* Denormal */
}
} else {
env->fpus |= 0x400;
}
}
void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32)
{
int fpus, fptag, exp, i;
uint64_t mant;
CPU_LDoubleU tmp;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i = 7; i >= 0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
tmp.d = env->fpregs[i].d;
exp = EXPD(tmp);
mant = MANTD(tmp);
if (exp == 0 && mant == 0) {
/* zero */
fptag |= 1;
} else if (exp == 0 || exp == MAXEXPD
|| (mant & (1LL << 63)) == 0) {
/* NaNs, infinity, denormal */
fptag |= 2;
}
}
}
if (data32) {
/* 32 bit */
cpu_stl_data(env, ptr, env->fpuc);
cpu_stl_data(env, ptr + 4, fpus);
cpu_stl_data(env, ptr + 8, fptag);
cpu_stl_data(env, ptr + 12, 0); /* fpip */
cpu_stl_data(env, ptr + 16, 0); /* fpcs */
cpu_stl_data(env, ptr + 20, 0); /* fpoo */
cpu_stl_data(env, ptr + 24, 0); /* fpos */
} else {
/* 16 bit */
cpu_stw_data(env, ptr, env->fpuc);
cpu_stw_data(env, ptr + 2, fpus);
cpu_stw_data(env, ptr + 4, fptag);
cpu_stw_data(env, ptr + 6, 0);
cpu_stw_data(env, ptr + 8, 0);
cpu_stw_data(env, ptr + 10, 0);
cpu_stw_data(env, ptr + 12, 0);
}
}
void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32)
{
int i, fpus, fptag;
if (data32) {
env->fpuc = cpu_lduw_data(env, ptr);
fpus = cpu_lduw_data(env, ptr + 4);
fptag = cpu_lduw_data(env, ptr + 8);
} else {
env->fpuc = cpu_lduw_data(env, ptr);
fpus = cpu_lduw_data(env, ptr + 2);
fptag = cpu_lduw_data(env, ptr + 4);
}
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
for (i = 0; i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
}
void helper_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
floatx80 tmp;
int i;
helper_fstenv(env, ptr, data32);
ptr += (14 << data32);
for (i = 0; i < 8; i++) {
tmp = ST(i);
helper_fstt(env, tmp, ptr);
ptr += 10;
}
/* fninit */
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
void helper_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
floatx80 tmp;
int i;
helper_fldenv(env, ptr, data32);
ptr += (14 << data32);
for (i = 0; i < 8; i++) {
tmp = helper_fldt(env, ptr);
ST(i) = tmp;
ptr += 10;
}
}
#if defined(CONFIG_USER_ONLY)
void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
helper_fsave(env, ptr, data32);
}
void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
helper_frstor(env, ptr, data32);
}
#endif
void helper_fxsave(CPUX86State *env, target_ulong ptr, int data64)
{
int fpus, fptag, i, nb_xmm_regs;
floatx80 tmp;
target_ulong addr;
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception(env, EXCP0D_GPF);
}
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i = 0; i < 8; i++) {
fptag |= (env->fptags[i] << i);
}
cpu_stw_data(env, ptr, env->fpuc);
cpu_stw_data(env, ptr + 2, fpus);
cpu_stw_data(env, ptr + 4, fptag ^ 0xff);
#ifdef TARGET_X86_64
if (data64) {
cpu_stq_data(env, ptr + 0x08, 0); /* rip */
cpu_stq_data(env, ptr + 0x10, 0); /* rdp */
} else
#endif
{
cpu_stl_data(env, ptr + 0x08, 0); /* eip */
cpu_stl_data(env, ptr + 0x0c, 0); /* sel */
cpu_stl_data(env, ptr + 0x10, 0); /* dp */
cpu_stl_data(env, ptr + 0x14, 0); /* sel */
}
addr = ptr + 0x20;
for (i = 0; i < 8; i++) {
tmp = ST(i);
helper_fstt(env, tmp, addr);
addr += 16;
}
if (env->cr[4] & CR4_OSFXSR_MASK) {
/* XXX: finish it */
cpu_stl_data(env, ptr + 0x18, env->mxcsr); /* mxcsr */
cpu_stl_data(env, ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
addr = ptr + 0xa0;
/* Fast FXSAVE leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
for (i = 0; i < nb_xmm_regs; i++) {
cpu_stq_data(env, addr, env->xmm_regs[i].XMM_Q(0));
cpu_stq_data(env, addr + 8, env->xmm_regs[i].XMM_Q(1));
addr += 16;
}
}
}
}
void helper_fxrstor(CPUX86State *env, target_ulong ptr, int data64)
{
int i, fpus, fptag, nb_xmm_regs;
floatx80 tmp;
target_ulong addr;
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception(env, EXCP0D_GPF);
}
env->fpuc = cpu_lduw_data(env, ptr);
fpus = cpu_lduw_data(env, ptr + 2);
fptag = cpu_lduw_data(env, ptr + 4);
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
fptag ^= 0xff;
for (i = 0; i < 8; i++) {
env->fptags[i] = ((fptag >> i) & 1);
}
addr = ptr + 0x20;
for (i = 0; i < 8; i++) {
tmp = helper_fldt(env, addr);
ST(i) = tmp;
addr += 16;
}
if (env->cr[4] & CR4_OSFXSR_MASK) {
/* XXX: finish it */
env->mxcsr = cpu_ldl_data(env, ptr + 0x18);
/* cpu_ldl_data(env, ptr + 0x1c); */
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
addr = ptr + 0xa0;
/* Fast FXRESTORE leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
for (i = 0; i < nb_xmm_regs; i++) {
env->xmm_regs[i].XMM_Q(0) = cpu_ldq_data(env, addr);
env->xmm_regs[i].XMM_Q(1) = cpu_ldq_data(env, addr + 8);
addr += 16;
}
}
}
}
void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
{
CPU_LDoubleU temp;
temp.d = f;
*pmant = temp.l.lower;
*pexp = temp.l.upper;
}
floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
{
CPU_LDoubleU temp;
temp.l.upper = upper;
temp.l.lower = mant;
return temp.d;
}
/* MMX/SSE */
/* XXX: optimize by storing fptt and fptags in the static cpu state */
#define SSE_DAZ 0x0040
#define SSE_RC_MASK 0x6000
#define SSE_RC_NEAR 0x0000
#define SSE_RC_DOWN 0x2000
#define SSE_RC_UP 0x4000
#define SSE_RC_CHOP 0x6000
#define SSE_FZ 0x8000
static void update_sse_status(CPUX86State *env)
{
int rnd_type;
/* set rounding mode */
switch (env->mxcsr & SSE_RC_MASK) {
default:
case SSE_RC_NEAR:
rnd_type = float_round_nearest_even;
break;
case SSE_RC_DOWN:
rnd_type = float_round_down;
break;
case SSE_RC_UP:
rnd_type = float_round_up;
break;
case SSE_RC_CHOP:
rnd_type = float_round_to_zero;
break;
}
set_float_rounding_mode(rnd_type, &env->sse_status);
/* set denormals are zero */
set_flush_inputs_to_zero((env->mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);
/* set flush to zero */
set_flush_to_zero((env->mxcsr & SSE_FZ) ? 1 : 0, &env->fp_status);
}
void helper_ldmxcsr(CPUX86State *env, uint32_t val)
{
env->mxcsr = val;
update_sse_status(env);
}
void helper_enter_mmx(CPUX86State *env)
{
env->fpstt = 0;
*(uint32_t *)(env->fptags) = 0;
*(uint32_t *)(env->fptags + 4) = 0;
}
void helper_emms(CPUX86State *env)
{
/* set to empty state */
*(uint32_t *)(env->fptags) = 0x01010101;
*(uint32_t *)(env->fptags + 4) = 0x01010101;
}
/* XXX: suppress */
void helper_movq(CPUX86State *env, void *d, void *s)
{
*(uint64_t *)d = *(uint64_t *)s;
}
#define SHIFT 0
#include "ops_sse.h"
#define SHIFT 1
#include "ops_sse.h"