blob: 04f4b3d66144b19d43e80ee3adcf2f67ad132e1b [file] [log] [blame]
/*
* MIPS internal definitions and helpers
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef MIPS_INTERNAL_H
#define MIPS_INTERNAL_H
#include "exec/memattrs.h"
/*
* MMU types, the first four entries have the same layout as the
* CP0C0_MT field.
*/
enum mips_mmu_types {
MMU_TYPE_NONE = 0,
MMU_TYPE_R4000 = 1, /* Standard TLB */
MMU_TYPE_BAT = 2, /* Block Address Translation */
MMU_TYPE_FMT = 3, /* Fixed Mapping */
MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
MMU_TYPE_R3000,
MMU_TYPE_R6000,
MMU_TYPE_R8000
};
struct mips_def_t {
const char *name;
int32_t CP0_PRid;
int32_t CP0_Config0;
int32_t CP0_Config1;
int32_t CP0_Config2;
int32_t CP0_Config3;
int32_t CP0_Config4;
int32_t CP0_Config4_rw_bitmask;
int32_t CP0_Config5;
int32_t CP0_Config5_rw_bitmask;
int32_t CP0_Config6;
int32_t CP0_Config6_rw_bitmask;
int32_t CP0_Config7;
int32_t CP0_Config7_rw_bitmask;
target_ulong CP0_LLAddr_rw_bitmask;
int CP0_LLAddr_shift;
int32_t SYNCI_Step;
int32_t CCRes;
int32_t CP0_Status_rw_bitmask;
int32_t CP0_TCStatus_rw_bitmask;
int32_t CP0_SRSCtl;
int32_t CP1_fcr0;
int32_t CP1_fcr31_rw_bitmask;
int32_t CP1_fcr31;
int32_t MSAIR;
int32_t SEGBITS;
int32_t PABITS;
int32_t CP0_SRSConf0_rw_bitmask;
int32_t CP0_SRSConf0;
int32_t CP0_SRSConf1_rw_bitmask;
int32_t CP0_SRSConf1;
int32_t CP0_SRSConf2_rw_bitmask;
int32_t CP0_SRSConf2;
int32_t CP0_SRSConf3_rw_bitmask;
int32_t CP0_SRSConf3;
int32_t CP0_SRSConf4_rw_bitmask;
int32_t CP0_SRSConf4;
int32_t CP0_PageGrain_rw_bitmask;
int32_t CP0_PageGrain;
target_ulong CP0_EBaseWG_rw_bitmask;
uint64_t insn_flags;
enum mips_mmu_types mmu_type;
int32_t SAARP;
};
extern const char regnames[32][4];
extern const char fregnames[32][4];
extern const struct mips_def_t mips_defs[];
extern const int mips_defs_number;
void mips_cpu_do_interrupt(CPUState *cpu);
bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
#if !defined(CONFIG_USER_ONLY)
typedef struct r4k_tlb_t r4k_tlb_t;
struct r4k_tlb_t {
target_ulong VPN;
uint32_t PageMask;
uint16_t ASID;
uint32_t MMID;
unsigned int G:1;
unsigned int C0:3;
unsigned int C1:3;
unsigned int V0:1;
unsigned int V1:1;
unsigned int D0:1;
unsigned int D1:1;
unsigned int XI0:1;
unsigned int XI1:1;
unsigned int RI0:1;
unsigned int RI1:1;
unsigned int EHINV:1;
uint64_t PFN[2];
};
struct CPUMIPSTLBContext {
uint32_t nb_tlb;
uint32_t tlb_in_use;
int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type);
void (*helper_tlbwi)(struct CPUMIPSState *env);
void (*helper_tlbwr)(struct CPUMIPSState *env);
void (*helper_tlbp)(struct CPUMIPSState *env);
void (*helper_tlbr)(struct CPUMIPSState *env);
void (*helper_tlbinv)(struct CPUMIPSState *env);
void (*helper_tlbinvf)(struct CPUMIPSState *env);
union {
struct {
r4k_tlb_t tlb[MIPS_TLB_MAX];
} r4k;
} mmu;
};
int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type);
int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type);
int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type);
void r4k_helper_tlbwi(CPUMIPSState *env);
void r4k_helper_tlbwr(CPUMIPSState *env);
void r4k_helper_tlbp(CPUMIPSState *env);
void r4k_helper_tlbr(CPUMIPSState *env);
void r4k_helper_tlbinv(CPUMIPSState *env);
void r4k_helper_tlbinvf(CPUMIPSState *env);
void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
uint32_t cpu_mips_get_random(CPUMIPSState *env);
void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
MMUAccessType access_type);
#endif
#define cpu_signal_handler cpu_mips_signal_handler
#ifndef CONFIG_USER_ONLY
extern const VMStateDescription vmstate_mips_cpu;
#endif
static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
{
return (env->CP0_Status & (1 << CP0St_IE)) &&
!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
/*
* Note that the TCStatus IXMT field is initialized to zero,
* and only MT capable cores can set it to one. So we don't
* need to check for MT capabilities here.
*/
!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
}
/* Check if there is pending and not masked out interrupt */
static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
{
int32_t pending;
int32_t status;
bool r;
pending = env->CP0_Cause & CP0Ca_IP_mask;
status = env->CP0_Status & CP0Ca_IP_mask;
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
/*
* A MIPS configured with a vectorizing external interrupt controller
* will feed a vector into the Cause pending lines. The core treats
* the status lines as a vector level, not as individual masks.
*/
r = pending > status;
} else {
/*
* A MIPS configured with compatibility or VInt (Vectored Interrupts)
* treats the pending lines as individual interrupt lines, the status
* lines are individual masks.
*/
r = (pending & status) != 0;
}
return r;
}
void mips_tcg_init(void);
void msa_reset(CPUMIPSState *env);
/* cp0_timer.c */
uint32_t cpu_mips_get_count(CPUMIPSState *env);
void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
void cpu_mips_start_count(CPUMIPSState *env);
void cpu_mips_stop_count(CPUMIPSState *env);
/* helper.c */
void mmu_init(CPUMIPSState *env, const mips_def_t *def);
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
/* op_helper.c */
void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
{
env->active_tc.PC = value & ~(target_ulong)1;
if (value & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
static inline void restore_pamask(CPUMIPSState *env)
{
if (env->hflags & MIPS_HFLAG_ELPA) {
env->PAMask = (1ULL << env->PABITS) - 1;
} else {
env->PAMask = PAMASK_BASE;
}
}
static inline int mips_vpe_active(CPUMIPSState *env)
{
int active = 1;
/* Check that the VPE is enabled. */
if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
active = 0;
}
/* Check that the VPE is activated. */
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
active = 0;
}
/*
* Now verify that there are active thread contexts in the VPE.
*
* This assumes the CPU model will internally reschedule threads
* if the active one goes to sleep. If there are no threads available
* the active one will be in a sleeping state, and we can turn off
* the entire VPE.
*/
if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
/* TC is not activated. */
active = 0;
}
if (env->active_tc.CP0_TCHalt & 1) {
/* TC is in halt state. */
active = 0;
}
return active;
}
static inline int mips_vp_active(CPUMIPSState *env)
{
CPUState *other_cs = first_cpu;
/* Check if the VP disabled other VPs (which means the VP is enabled) */
if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
return 1;
}
/* Check if the virtual processor is disabled due to a DVP */
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
if ((&other_cpu->env != env) &&
((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
return 0;
}
}
return 1;
}
static inline void compute_hflags(CPUMIPSState *env)
{
env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
if (env->CP0_Status & (1 << CP0St_ERL)) {
env->hflags |= MIPS_HFLAG_ERL;
}
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM)) {
env->hflags |= (env->CP0_Status >> CP0St_KSU) &
MIPS_HFLAG_KSU;
}
#if defined(TARGET_MIPS64)
if ((env->insn_flags & ISA_MIPS3) &&
(((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
(env->CP0_Status & (1 << CP0St_PX)) ||
(env->CP0_Status & (1 << CP0St_UX)))) {
env->hflags |= MIPS_HFLAG_64;
}
if (!(env->insn_flags & ISA_MIPS3)) {
env->hflags |= MIPS_HFLAG_AWRAP;
} else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
!(env->CP0_Status & (1 << CP0St_UX))) {
env->hflags |= MIPS_HFLAG_AWRAP;
} else if (env->insn_flags & ISA_MIPS_R6) {
/* Address wrapping for Supervisor and Kernel is specified in R6 */
if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
!(env->CP0_Status & (1 << CP0St_SX))) ||
(((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
!(env->CP0_Status & (1 << CP0St_KX)))) {
env->hflags |= MIPS_HFLAG_AWRAP;
}
}
#endif
if (((env->CP0_Status & (1 << CP0St_CU0)) &&
!(env->insn_flags & ISA_MIPS_R6)) ||
!(env->hflags & MIPS_HFLAG_KSU)) {
env->hflags |= MIPS_HFLAG_CP0;
}
if (env->CP0_Status & (1 << CP0St_CU1)) {
env->hflags |= MIPS_HFLAG_FPU;
}
if (env->CP0_Status & (1 << CP0St_FR)) {
env->hflags |= MIPS_HFLAG_F64;
}
if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
(env->CP0_Config5 & (1 << CP0C5_SBRI))) {
env->hflags |= MIPS_HFLAG_SBRI;
}
if (env->insn_flags & ASE_DSP_R3) {
/*
* Our cpu supports DSP R3 ASE, so enable
* access to DSP R3 resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
MIPS_HFLAG_DSP_R3;
}
} else if (env->insn_flags & ASE_DSP_R2) {
/*
* Our cpu supports DSP R2 ASE, so enable
* access to DSP R2 resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
}
} else if (env->insn_flags & ASE_DSP) {
/*
* Our cpu supports DSP ASE, so enable
* access to DSP resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP;
}
}
if (env->insn_flags & ISA_MIPS_R2) {
if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS_R1) {
if (env->hflags & MIPS_HFLAG_64) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS4) {
/*
* All supported MIPS IV CPUs use the XX (CU3) to enable
* and disable the MIPS IV extensions to the MIPS III ISA.
* Some other MIPS IV CPUs ignore the bit, so the check here
* would be too restrictive for them.
*/
if (env->CP0_Status & (1U << CP0St_CU3)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
}
if (ase_msa_available(env)) {
if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
env->hflags |= MIPS_HFLAG_MSA;
}
}
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
env->hflags |= MIPS_HFLAG_FRE;
}
}
if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
env->hflags |= MIPS_HFLAG_ELPA;
}
}
}
void cpu_mips_tlb_flush(CPUMIPSState *env);
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
const char *mips_exception_name(int32_t exception);
void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
int error_code, uintptr_t pc);
static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
uint32_t exception,
uintptr_t pc)
{
do_raise_exception_err(env, exception, 0, pc);
}
#endif