| #include <math.h> |
| #include <fenv.h> |
| #include "exec.h" |
| |
| //#define DEBUG_MMU |
| |
| #ifdef USE_INT_TO_FLOAT_HELPERS |
| void do_fitos(void) |
| { |
| FT0 = (float) *((int32_t *)&FT1); |
| } |
| |
| void do_fitod(void) |
| { |
| DT0 = (double) *((int32_t *)&FT1); |
| } |
| #endif |
| |
| void do_fabss(void) |
| { |
| FT0 = fabsf(FT1); |
| } |
| |
| void do_fsqrts(void) |
| { |
| FT0 = sqrtf(FT1); |
| } |
| |
| void do_fsqrtd(void) |
| { |
| DT0 = sqrt(DT1); |
| } |
| |
| void do_fcmps (void) |
| { |
| if (isnan(FT0) || isnan(FT1)) { |
| T0 = FSR_FCC1 | FSR_FCC0; |
| env->fsr &= ~(FSR_FCC1 | FSR_FCC0); |
| env->fsr |= T0; |
| if (env->fsr & FSR_NVM) { |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (FT0 < FT1) { |
| T0 = FSR_FCC0; |
| } else if (FT0 > FT1) { |
| T0 = FSR_FCC1; |
| } else { |
| T0 = 0; |
| } |
| env->fsr = T0; |
| } |
| |
| void do_fcmpd (void) |
| { |
| if (isnan(DT0) || isnan(DT1)) { |
| T0 = FSR_FCC1 | FSR_FCC0; |
| env->fsr &= ~(FSR_FCC1 | FSR_FCC0); |
| env->fsr |= T0; |
| if (env->fsr & FSR_NVM) { |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (DT0 < DT1) { |
| T0 = FSR_FCC0; |
| } else if (DT0 > DT1) { |
| T0 = FSR_FCC1; |
| } else { |
| T0 = 0; |
| } |
| env->fsr = T0; |
| } |
| |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint32_t ret; |
| |
| switch (asi) { |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| if (mmulev > 4) |
| ret = 0; |
| else { |
| ret = mmu_probe(T0, mmulev); |
| //bswap32s(&ret); |
| } |
| #ifdef DEBUG_MMU |
| printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); |
| #endif |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/ |
| env->mmuregs[4] = 0; |
| } |
| break; |
| case 0x20 ... 0x2f: /* MMU passthrough */ |
| cpu_physical_memory_read(T0, (void *) &ret, size); |
| if (size == 4) |
| bswap32s(&ret); |
| else if (size == 2) |
| bswap16s((uint16_t *)&ret); |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size, int sign) |
| { |
| switch(asi) { |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| switch (mmulev) { |
| case 0: // flush page |
| tlb_flush_page(cpu_single_env, T0 & 0xfffff000); |
| break; |
| case 1: // flush segment (256k) |
| case 2: // flush region (16M) |
| case 3: // flush context (4G) |
| case 4: // flush entire |
| tlb_flush(cpu_single_env, 1); |
| break; |
| default: |
| break; |
| } |
| dump_mmu(); |
| return; |
| } |
| case 4: /* write MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf, oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| if (reg == 0) { |
| env->mmuregs[reg] &= ~(MMU_E | MMU_NF); |
| env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); |
| } else |
| env->mmuregs[reg] = T1; |
| if (oldreg != env->mmuregs[reg]) { |
| #if 0 |
| // XXX: Only if MMU mapping change, we may need to flush? |
| tlb_flush(cpu_single_env, 1); |
| cpu_loop_exit(); |
| FORCE_RET(); |
| #endif |
| } |
| dump_mmu(); |
| return; |
| } |
| case 0x17: /* Block copy, sta access */ |
| { |
| // value (T1) = src |
| // address (T0) = dst |
| // copy 32 bytes |
| int src = T1, dst = T0; |
| uint8_t temp[32]; |
| |
| bswap32s(&src); |
| |
| cpu_physical_memory_read(src, (void *) &temp, 32); |
| cpu_physical_memory_write(dst, (void *) &temp, 32); |
| } |
| return; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| // value (T1, T2) |
| // address (T0) = dst |
| // fill 32 bytes |
| int i, dst = T0; |
| uint64_t val; |
| |
| val = (((uint64_t)T1) << 32) | T2; |
| bswap64s(&val); |
| |
| for (i = 0; i < 32; i += 8, dst += 8) { |
| cpu_physical_memory_write(dst, (void *) &val, 8); |
| } |
| } |
| return; |
| case 0x20 ... 0x2f: /* MMU passthrough */ |
| { |
| int temp = T1; |
| if (size == 4) |
| bswap32s(&temp); |
| else if (size == 2) |
| bswap16s((uint16_t *)&temp); |
| |
| cpu_physical_memory_write(T0, (void *) &temp, size); |
| } |
| return; |
| default: |
| return; |
| } |
| } |
| |
| void helper_rett() |
| { |
| int cwp; |
| env->psret = 1; |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| env->psrs = env->psrps; |
| } |
| |
| void helper_ldfsr(void) |
| { |
| switch (env->fsr & FSR_RD_MASK) { |
| case FSR_RD_NEAREST: |
| fesetround(FE_TONEAREST); |
| break; |
| case FSR_RD_ZERO: |
| fesetround(FE_TOWARDZERO); |
| break; |
| case FSR_RD_POS: |
| fesetround(FE_UPWARD); |
| break; |
| case FSR_RD_NEG: |
| fesetround(FE_DOWNWARD); |
| break; |
| } |
| } |
| |
| void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f) |
| { |
| int exptemp; |
| |
| *pmant = ldexp(frexp(f, &exptemp), 53); |
| *pexp = exptemp; |
| } |
| |
| double cpu_put_fp64(uint64_t mant, uint16_t exp) |
| { |
| return ldexp((double) mant, exp - 53); |
| } |
| |
| void helper_debug() |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |