| /* |
| * Copyright (C) 2010-2012 Guan Xuetao |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Contributions from 2012-04-01 on are considered under GPL version 2, |
| * or (at your option) any later version. |
| */ |
| |
| #include "cpu.h" |
| #include "gdbstub.h" |
| #include "helper.h" |
| #include "host-utils.h" |
| |
| #undef DEBUG_UC32 |
| |
| #ifdef DEBUG_UC32 |
| #define DPRINTF(fmt, ...) printf("%s: " fmt , __func__, ## __VA_ARGS__) |
| #else |
| #define DPRINTF(fmt, ...) do {} while (0) |
| #endif |
| |
| CPUUniCore32State *uc32_cpu_init(const char *cpu_model) |
| { |
| UniCore32CPU *cpu; |
| CPUUniCore32State *env; |
| static int inited = 1; |
| |
| if (object_class_by_name(cpu_model) == NULL) { |
| return NULL; |
| } |
| cpu = UNICORE32_CPU(object_new(cpu_model)); |
| env = &cpu->env; |
| |
| if (inited) { |
| inited = 0; |
| uc32_translate_init(); |
| } |
| |
| qemu_init_vcpu(env); |
| return env; |
| } |
| |
| uint32_t HELPER(clo)(uint32_t x) |
| { |
| return clo32(x); |
| } |
| |
| uint32_t HELPER(clz)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| void helper_cp0_set(CPUUniCore32State *env, uint32_t val, uint32_t creg, |
| uint32_t cop) |
| { |
| /* |
| * movc pp.nn, rn, #imm9 |
| * rn: UCOP_REG_D |
| * nn: UCOP_REG_N |
| * 1: sys control reg. |
| * 2: page table base reg. |
| * 3: data fault status reg. |
| * 4: insn fault status reg. |
| * 5: cache op. reg. |
| * 6: tlb op. reg. |
| * imm9: split UCOP_IMM10 with bit5 is 0 |
| */ |
| switch (creg) { |
| case 1: |
| if (cop != 0) { |
| goto unrecognized; |
| } |
| env->cp0.c1_sys = val; |
| break; |
| case 2: |
| if (cop != 0) { |
| goto unrecognized; |
| } |
| env->cp0.c2_base = val; |
| break; |
| case 3: |
| if (cop != 0) { |
| goto unrecognized; |
| } |
| env->cp0.c3_faultstatus = val; |
| break; |
| case 4: |
| if (cop != 0) { |
| goto unrecognized; |
| } |
| env->cp0.c4_faultaddr = val; |
| break; |
| case 5: |
| switch (cop) { |
| case 28: |
| DPRINTF("Invalidate Entire I&D cache\n"); |
| return; |
| case 20: |
| DPRINTF("Invalidate Entire Icache\n"); |
| return; |
| case 12: |
| DPRINTF("Invalidate Entire Dcache\n"); |
| return; |
| case 10: |
| DPRINTF("Clean Entire Dcache\n"); |
| return; |
| case 14: |
| DPRINTF("Flush Entire Dcache\n"); |
| return; |
| case 13: |
| DPRINTF("Invalidate Dcache line\n"); |
| return; |
| case 11: |
| DPRINTF("Clean Dcache line\n"); |
| return; |
| case 15: |
| DPRINTF("Flush Dcache line\n"); |
| return; |
| } |
| break; |
| case 6: |
| if ((cop <= 6) && (cop >= 2)) { |
| /* invalid all tlb */ |
| tlb_flush(env, 1); |
| return; |
| } |
| break; |
| default: |
| goto unrecognized; |
| } |
| return; |
| unrecognized: |
| DPRINTF("Wrong register (%d) or wrong operation (%d) in cp0_set!\n", |
| creg, cop); |
| } |
| |
| uint32_t helper_cp0_get(CPUUniCore32State *env, uint32_t creg, uint32_t cop) |
| { |
| /* |
| * movc rd, pp.nn, #imm9 |
| * rd: UCOP_REG_D |
| * nn: UCOP_REG_N |
| * 0: cpuid and cachetype |
| * 1: sys control reg. |
| * 2: page table base reg. |
| * 3: data fault status reg. |
| * 4: insn fault status reg. |
| * imm9: split UCOP_IMM10 with bit5 is 0 |
| */ |
| switch (creg) { |
| case 0: |
| switch (cop) { |
| case 0: |
| return env->cp0.c0_cpuid; |
| case 1: |
| return env->cp0.c0_cachetype; |
| } |
| break; |
| case 1: |
| if (cop == 0) { |
| return env->cp0.c1_sys; |
| } |
| break; |
| case 2: |
| if (cop == 0) { |
| return env->cp0.c2_base; |
| } |
| break; |
| case 3: |
| if (cop == 0) { |
| return env->cp0.c3_faultstatus; |
| } |
| break; |
| case 4: |
| if (cop == 0) { |
| return env->cp0.c4_faultaddr; |
| } |
| break; |
| } |
| DPRINTF("Wrong register (%d) or wrong operation (%d) in cp0_set!\n", |
| creg, cop); |
| return 0; |
| } |
| |
| void helper_cp1_putc(target_ulong x) |
| { |
| /* TODO: curses display should be added here for screen output. */ |
| DPRINTF("%c", x); |
| } |
| #endif |
| |
| #ifdef CONFIG_USER_ONLY |
| void switch_mode(CPUUniCore32State *env, int mode) |
| { |
| if (mode != ASR_MODE_USER) { |
| cpu_abort(env, "Tried to switch out of user mode\n"); |
| } |
| } |
| |
| void do_interrupt(CPUUniCore32State *env) |
| { |
| cpu_abort(env, "NO interrupt in user mode\n"); |
| } |
| |
| int uc32_cpu_handle_mmu_fault(CPUUniCore32State *env, target_ulong address, |
| int access_type, int mmu_idx) |
| { |
| cpu_abort(env, "NO mmu fault in user mode\n"); |
| return 1; |
| } |
| #endif |
| |
| /* UniCore-F64 support. We follow the convention used for F64 instrunctions: |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| /* Convert host exception flags to f64 form. */ |
| static inline int ucf64_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) { |
| target_bits |= UCF64_FPSCR_FLAG_INVALID; |
| } |
| if (host_bits & float_flag_divbyzero) { |
| target_bits |= UCF64_FPSCR_FLAG_DIVZERO; |
| } |
| if (host_bits & float_flag_overflow) { |
| target_bits |= UCF64_FPSCR_FLAG_OVERFLOW; |
| } |
| if (host_bits & float_flag_underflow) { |
| target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW; |
| } |
| if (host_bits & float_flag_inexact) { |
| target_bits |= UCF64_FPSCR_FLAG_INEXACT; |
| } |
| return target_bits; |
| } |
| |
| uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK); |
| i = get_float_exception_flags(&env->ucf64.fp_status); |
| fpscr |= ucf64_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| /* Convert ucf64 exception flags to target form. */ |
| static inline int ucf64_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & UCF64_FPSCR_FLAG_INVALID) { |
| host_bits |= float_flag_invalid; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) { |
| host_bits |= float_flag_divbyzero; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) { |
| host_bits |= float_flag_overflow; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) { |
| host_bits |= float_flag_underflow; |
| } |
| if (target_bits & UCF64_FPSCR_FLAG_INEXACT) { |
| host_bits |= float_flag_inexact; |
| } |
| return host_bits; |
| } |
| |
| void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val) |
| { |
| int i; |
| uint32_t changed; |
| |
| changed = env->ucf64.xregs[UC32_UCF64_FPSCR]; |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK); |
| |
| changed ^= val; |
| if (changed & (UCF64_FPSCR_RND_MASK)) { |
| i = UCF64_FPSCR_RND(val); |
| switch (i) { |
| case 0: |
| i = float_round_nearest_even; |
| break; |
| case 1: |
| i = float_round_to_zero; |
| break; |
| case 2: |
| i = float_round_up; |
| break; |
| case 3: |
| i = float_round_down; |
| break; |
| default: /* 100 and 101 not implement */ |
| cpu_abort(env, "Unsupported UniCore-F64 round mode"); |
| } |
| set_float_rounding_mode(i, &env->ucf64.fp_status); |
| } |
| |
| i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val)); |
| set_float_exception_flags(i, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_add(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_add(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_sub(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_sub(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_mul(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_mul(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env) |
| { |
| return float32_div(a, b, &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env) |
| { |
| return float64_div(a, b, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_negs)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 HELPER(ucf64_negd)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 HELPER(ucf64_abss)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 HELPER(ucf64_absd)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUUniCore32State *env) |
| { |
| int flag; |
| flag = float32_compare_quiet(a, b, &env->ucf64.fp_status); |
| env->CF = 0; |
| switch (c & 0x7) { |
| case 0: /* F */ |
| break; |
| case 1: /* UN */ |
| if (flag == 2) { |
| env->CF = 1; |
| } |
| break; |
| case 2: /* EQ */ |
| if (flag == 0) { |
| env->CF = 1; |
| } |
| break; |
| case 3: /* UEQ */ |
| if ((flag == 0) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 4: /* OLT */ |
| if (flag == -1) { |
| env->CF = 1; |
| } |
| break; |
| case 5: /* ULT */ |
| if ((flag == -1) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 6: /* OLE */ |
| if ((flag == -1) || (flag == 0)) { |
| env->CF = 1; |
| } |
| break; |
| case 7: /* ULE */ |
| if (flag != 1) { |
| env->CF = 1; |
| } |
| break; |
| } |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) |
| | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); |
| } |
| |
| void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env) |
| { |
| int flag; |
| flag = float64_compare_quiet(a, b, &env->ucf64.fp_status); |
| env->CF = 0; |
| switch (c & 0x7) { |
| case 0: /* F */ |
| break; |
| case 1: /* UN */ |
| if (flag == 2) { |
| env->CF = 1; |
| } |
| break; |
| case 2: /* EQ */ |
| if (flag == 0) { |
| env->CF = 1; |
| } |
| break; |
| case 3: /* UEQ */ |
| if ((flag == 0) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 4: /* OLT */ |
| if (flag == -1) { |
| env->CF = 1; |
| } |
| break; |
| case 5: /* ULT */ |
| if ((flag == -1) || (flag == 2)) { |
| env->CF = 1; |
| } |
| break; |
| case 6: /* OLE */ |
| if ((flag == -1) || (flag == 0)) { |
| env->CF = 1; |
| } |
| break; |
| case 7: /* ULE */ |
| if (flag != 1) { |
| env->CF = 1; |
| } |
| break; |
| } |
| env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) |
| | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); |
| } |
| |
| /* Helper routines to perform bitwise copies between float and int. */ |
| static inline float32 ucf64_itos(uint32_t i) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.i = i; |
| return v.s; |
| } |
| |
| static inline uint32_t ucf64_stoi(float32 s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.s = s; |
| return v.i; |
| } |
| |
| static inline float64 ucf64_itod(uint64_t i) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| |
| v.i = i; |
| return v.d; |
| } |
| |
| static inline uint64_t ucf64_dtoi(float64 d) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| |
| v.d = d; |
| return v.i; |
| } |
| |
| /* Integer to float conversion. */ |
| float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env) |
| { |
| return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status); |
| } |
| |
| float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env) |
| { |
| return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status); |
| } |
| |
| /* Float to integer conversion. */ |
| float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env) |
| { |
| return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status)); |
| } |
| |
| float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env) |
| { |
| return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status)); |
| } |
| |
| /* floating point conversion */ |
| float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env) |
| { |
| return float32_to_float64(x, &env->ucf64.fp_status); |
| } |
| |
| float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env) |
| { |
| return float64_to_float32(x, &env->ucf64.fp_status); |
| } |