| /* |
| * S/390 memory access helper routines |
| * |
| * Copyright (c) 2009 Ulrich Hecht |
| * Copyright (c) 2009 Alexander Graf |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/cpu_ldst.h" |
| #include "hw/s390x/storage-keys.h" |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| int ret; |
| |
| ret = s390_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx); |
| if (unlikely(ret != 0)) { |
| if (likely(retaddr)) { |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr); |
| } |
| cpu_loop_exit(cs); |
| } |
| } |
| |
| #endif |
| |
| /* #define DEBUG_HELPER */ |
| #ifdef DEBUG_HELPER |
| #define HELPER_LOG(x...) qemu_log(x) |
| #else |
| #define HELPER_LOG(x...) |
| #endif |
| |
| /* Reduce the length so that addr + len doesn't cross a page boundary. */ |
| static inline uint64_t adj_len_to_page(uint64_t len, uint64_t addr) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) { |
| return -addr & ~TARGET_PAGE_MASK; |
| } |
| #endif |
| return len; |
| } |
| |
| static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte, |
| uint32_t l) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| |
| while (l > 0) { |
| void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx); |
| if (p) { |
| /* Access to the whole page in write mode granted. */ |
| int l_adj = adj_len_to_page(l, dest); |
| memset(p, byte, l_adj); |
| dest += l_adj; |
| l -= l_adj; |
| } else { |
| /* We failed to get access to the whole page. The next write |
| access will likely fill the QEMU TLB for the next iteration. */ |
| cpu_stb_data(env, dest, byte); |
| dest++; |
| l--; |
| } |
| } |
| } |
| |
| static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src, |
| uint32_t l) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| |
| while (l > 0) { |
| void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx); |
| void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx); |
| if (src_p && dest_p) { |
| /* Access to both whole pages granted. */ |
| int l_adj = adj_len_to_page(l, src); |
| l_adj = adj_len_to_page(l_adj, dest); |
| memmove(dest_p, src_p, l_adj); |
| src += l_adj; |
| dest += l_adj; |
| l -= l_adj; |
| } else { |
| /* We failed to get access to one or both whole pages. The next |
| read or write access will likely fill the QEMU TLB for the |
| next iteration. */ |
| cpu_stb_data(env, dest, cpu_ldub_data(env, src)); |
| src++; |
| dest++; |
| l--; |
| } |
| } |
| } |
| |
| /* and on array */ |
| uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest, |
| uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __func__, l, dest, src); |
| for (i = 0; i <= l; i++) { |
| x = cpu_ldub_data(env, dest + i) & cpu_ldub_data(env, src + i); |
| if (x) { |
| cc = 1; |
| } |
| cpu_stb_data(env, dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* xor on array */ |
| uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest, |
| uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __func__, l, dest, src); |
| |
| /* xor with itself is the same as memset(0) */ |
| if (src == dest) { |
| fast_memset(env, dest, 0, l + 1); |
| return 0; |
| } |
| |
| for (i = 0; i <= l; i++) { |
| x = cpu_ldub_data(env, dest + i) ^ cpu_ldub_data(env, src + i); |
| if (x) { |
| cc = 1; |
| } |
| cpu_stb_data(env, dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* or on array */ |
| uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest, |
| uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __func__, l, dest, src); |
| for (i = 0; i <= l; i++) { |
| x = cpu_ldub_data(env, dest + i) | cpu_ldub_data(env, src + i); |
| if (x) { |
| cc = 1; |
| } |
| cpu_stb_data(env, dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* memmove */ |
| void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src) |
| { |
| int i = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __func__, l, dest, src); |
| |
| /* mvc with source pointing to the byte after the destination is the |
| same as memset with the first source byte */ |
| if (dest == (src + 1)) { |
| fast_memset(env, dest, cpu_ldub_data(env, src), l + 1); |
| return; |
| } |
| |
| /* mvc and memmove do not behave the same when areas overlap! */ |
| if ((dest < src) || (src + l < dest)) { |
| fast_memmove(env, dest, src, l + 1); |
| return; |
| } |
| |
| /* slow version with byte accesses which always work */ |
| for (i = 0; i <= l; i++) { |
| cpu_stb_data(env, dest + i, cpu_ldub_data(env, src + i)); |
| } |
| } |
| |
| /* compare unsigned byte arrays */ |
| uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2) |
| { |
| int i; |
| unsigned char x, y; |
| uint32_t cc; |
| |
| HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n", |
| __func__, l, s1, s2); |
| for (i = 0; i <= l; i++) { |
| x = cpu_ldub_data(env, s1 + i); |
| y = cpu_ldub_data(env, s2 + i); |
| HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y); |
| if (x < y) { |
| cc = 1; |
| goto done; |
| } else if (x > y) { |
| cc = 2; |
| goto done; |
| } |
| } |
| cc = 0; |
| done: |
| HELPER_LOG("\n"); |
| return cc; |
| } |
| |
| /* compare logical under mask */ |
| uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask, |
| uint64_t addr) |
| { |
| uint8_t r, d; |
| uint32_t cc; |
| |
| HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1, |
| mask, addr); |
| cc = 0; |
| while (mask) { |
| if (mask & 8) { |
| d = cpu_ldub_data(env, addr); |
| r = (r1 & 0xff000000UL) >> 24; |
| HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d, |
| addr); |
| if (r < d) { |
| cc = 1; |
| break; |
| } else if (r > d) { |
| cc = 2; |
| break; |
| } |
| addr++; |
| } |
| mask = (mask << 1) & 0xf; |
| r1 <<= 8; |
| } |
| HELPER_LOG("\n"); |
| return cc; |
| } |
| |
| static inline uint64_t fix_address(CPUS390XState *env, uint64_t a) |
| { |
| /* 31-Bit mode */ |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| a &= 0x7fffffff; |
| } |
| return a; |
| } |
| |
| static inline uint64_t get_address(CPUS390XState *env, int x2, int b2, int d2) |
| { |
| uint64_t r = d2; |
| if (x2) { |
| r += env->regs[x2]; |
| } |
| if (b2) { |
| r += env->regs[b2]; |
| } |
| return fix_address(env, r); |
| } |
| |
| static inline uint64_t get_address_31fix(CPUS390XState *env, int reg) |
| { |
| return fix_address(env, env->regs[reg]); |
| } |
| |
| /* search string (c is byte to search, r2 is string, r1 end of string) */ |
| uint64_t HELPER(srst)(CPUS390XState *env, uint64_t r0, uint64_t end, |
| uint64_t str) |
| { |
| uint32_t len; |
| uint8_t v, c = r0; |
| |
| str = fix_address(env, str); |
| end = fix_address(env, end); |
| |
| /* Assume for now that R2 is unmodified. */ |
| env->retxl = str; |
| |
| /* Lest we fail to service interrupts in a timely manner, limit the |
| amount of work we're willing to do. For now, let's cap at 8k. */ |
| for (len = 0; len < 0x2000; ++len) { |
| if (str + len == end) { |
| /* Character not found. R1 & R2 are unmodified. */ |
| env->cc_op = 2; |
| return end; |
| } |
| v = cpu_ldub_data(env, str + len); |
| if (v == c) { |
| /* Character found. Set R1 to the location; R2 is unmodified. */ |
| env->cc_op = 1; |
| return str + len; |
| } |
| } |
| |
| /* CPU-determined bytes processed. Advance R2 to next byte to process. */ |
| env->retxl = str + len; |
| env->cc_op = 3; |
| return end; |
| } |
| |
| /* unsigned string compare (c is string terminator) */ |
| uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2) |
| { |
| uint32_t len; |
| |
| c = c & 0xff; |
| s1 = fix_address(env, s1); |
| s2 = fix_address(env, s2); |
| |
| /* Lest we fail to service interrupts in a timely manner, limit the |
| amount of work we're willing to do. For now, let's cap at 8k. */ |
| for (len = 0; len < 0x2000; ++len) { |
| uint8_t v1 = cpu_ldub_data(env, s1 + len); |
| uint8_t v2 = cpu_ldub_data(env, s2 + len); |
| if (v1 == v2) { |
| if (v1 == c) { |
| /* Equal. CC=0, and don't advance the registers. */ |
| env->cc_op = 0; |
| env->retxl = s2; |
| return s1; |
| } |
| } else { |
| /* Unequal. CC={1,2}, and advance the registers. Note that |
| the terminator need not be zero, but the string that contains |
| the terminator is by definition "low". */ |
| env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2); |
| env->retxl = s2 + len; |
| return s1 + len; |
| } |
| } |
| |
| /* CPU-determined bytes equal; advance the registers. */ |
| env->cc_op = 3; |
| env->retxl = s2 + len; |
| return s1 + len; |
| } |
| |
| /* move page */ |
| void HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2) |
| { |
| /* XXX missing r0 handling */ |
| env->cc_op = 0; |
| fast_memmove(env, r1, r2, TARGET_PAGE_SIZE); |
| } |
| |
| /* string copy (c is string terminator) */ |
| uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s) |
| { |
| uint32_t len; |
| |
| c = c & 0xff; |
| d = fix_address(env, d); |
| s = fix_address(env, s); |
| |
| /* Lest we fail to service interrupts in a timely manner, limit the |
| amount of work we're willing to do. For now, let's cap at 8k. */ |
| for (len = 0; len < 0x2000; ++len) { |
| uint8_t v = cpu_ldub_data(env, s + len); |
| cpu_stb_data(env, d + len, v); |
| if (v == c) { |
| /* Complete. Set CC=1 and advance R1. */ |
| env->cc_op = 1; |
| env->retxl = s; |
| return d + len; |
| } |
| } |
| |
| /* Incomplete. Set CC=3 and signal to advance R1 and R2. */ |
| env->cc_op = 3; |
| env->retxl = s + len; |
| return d + len; |
| } |
| |
| static uint32_t helper_icm(CPUS390XState *env, uint32_t r1, uint64_t address, |
| uint32_t mask) |
| { |
| int pos = 24; /* top of the lower half of r1 */ |
| uint64_t rmask = 0xff000000ULL; |
| uint8_t val = 0; |
| int ccd = 0; |
| uint32_t cc = 0; |
| |
| while (mask) { |
| if (mask & 8) { |
| env->regs[r1] &= ~rmask; |
| val = cpu_ldub_data(env, address); |
| if ((val & 0x80) && !ccd) { |
| cc = 1; |
| } |
| ccd = 1; |
| if (val && cc == 0) { |
| cc = 2; |
| } |
| env->regs[r1] |= (uint64_t)val << pos; |
| address++; |
| } |
| mask = (mask << 1) & 0xf; |
| pos -= 8; |
| rmask >>= 8; |
| } |
| |
| return cc; |
| } |
| |
| /* execute instruction |
| this instruction executes an insn modified with the contents of r1 |
| it does not change the executed instruction in memory |
| it does not change the program counter |
| in other words: tricky... |
| currently implemented by interpreting the cases it is most commonly used in |
| */ |
| uint32_t HELPER(ex)(CPUS390XState *env, uint32_t cc, uint64_t v1, |
| uint64_t addr, uint64_t ret) |
| { |
| S390CPU *cpu = s390_env_get_cpu(env); |
| uint16_t insn = cpu_lduw_code(env, addr); |
| |
| HELPER_LOG("%s: v1 0x%lx addr 0x%lx insn 0x%x\n", __func__, v1, addr, |
| insn); |
| if ((insn & 0xf0ff) == 0xd000) { |
| uint32_t l, insn2, b1, b2, d1, d2; |
| |
| l = v1 & 0xff; |
| insn2 = cpu_ldl_code(env, addr + 2); |
| b1 = (insn2 >> 28) & 0xf; |
| b2 = (insn2 >> 12) & 0xf; |
| d1 = (insn2 >> 16) & 0xfff; |
| d2 = insn2 & 0xfff; |
| switch (insn & 0xf00) { |
| case 0x200: |
| helper_mvc(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0x400: |
| cc = helper_nc(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0x500: |
| cc = helper_clc(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0x600: |
| cc = helper_oc(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0x700: |
| cc = helper_xc(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0xc00: |
| helper_tr(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| case 0xd00: |
| cc = helper_trt(env, l, get_address(env, 0, b1, d1), |
| get_address(env, 0, b2, d2)); |
| break; |
| default: |
| goto abort; |
| } |
| } else if ((insn & 0xff00) == 0x0a00) { |
| /* supervisor call */ |
| HELPER_LOG("%s: svc %ld via execute\n", __func__, (insn | v1) & 0xff); |
| env->psw.addr = ret - 4; |
| env->int_svc_code = (insn | v1) & 0xff; |
| env->int_svc_ilen = 4; |
| helper_exception(env, EXCP_SVC); |
| } else if ((insn & 0xff00) == 0xbf00) { |
| uint32_t insn2, r1, r3, b2, d2; |
| |
| insn2 = cpu_ldl_code(env, addr + 2); |
| r1 = (insn2 >> 20) & 0xf; |
| r3 = (insn2 >> 16) & 0xf; |
| b2 = (insn2 >> 12) & 0xf; |
| d2 = insn2 & 0xfff; |
| cc = helper_icm(env, r1, get_address(env, 0, b2, d2), r3); |
| } else { |
| abort: |
| cpu_abort(CPU(cpu), "EXECUTE on instruction prefix 0x%x not implemented\n", |
| insn); |
| } |
| return cc; |
| } |
| |
| /* load access registers r1 to r3 from memory at a2 */ |
| void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| env->aregs[i] = cpu_ldl_data(env, a2); |
| a2 += 4; |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| /* store access registers r1 to r3 in memory at a2 */ |
| void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| cpu_stl_data(env, a2, env->aregs[i]); |
| a2 += 4; |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| /* move long */ |
| uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2) |
| { |
| uint64_t destlen = env->regs[r1 + 1] & 0xffffff; |
| uint64_t dest = get_address_31fix(env, r1); |
| uint64_t srclen = env->regs[r2 + 1] & 0xffffff; |
| uint64_t src = get_address_31fix(env, r2); |
| uint8_t pad = env->regs[r2 + 1] >> 24; |
| uint8_t v; |
| uint32_t cc; |
| |
| if (destlen == srclen) { |
| cc = 0; |
| } else if (destlen < srclen) { |
| cc = 1; |
| } else { |
| cc = 2; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen && srclen; src++, dest++, destlen--, srclen--) { |
| v = cpu_ldub_data(env, src); |
| cpu_stb_data(env, dest, v); |
| } |
| |
| for (; destlen; dest++, destlen--) { |
| cpu_stb_data(env, dest, pad); |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| env->regs[r2 + 1] -= src - env->regs[r2]; |
| env->regs[r1] = dest; |
| env->regs[r2] = src; |
| |
| return cc; |
| } |
| |
| /* move long extended another memcopy insn with more bells and whistles */ |
| uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2, |
| uint32_t r3) |
| { |
| uint64_t destlen = env->regs[r1 + 1]; |
| uint64_t dest = env->regs[r1]; |
| uint64_t srclen = env->regs[r3 + 1]; |
| uint64_t src = env->regs[r3]; |
| uint8_t pad = a2 & 0xff; |
| uint8_t v; |
| uint32_t cc; |
| |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| destlen = (uint32_t)destlen; |
| srclen = (uint32_t)srclen; |
| dest &= 0x7fffffff; |
| src &= 0x7fffffff; |
| } |
| |
| if (destlen == srclen) { |
| cc = 0; |
| } else if (destlen < srclen) { |
| cc = 1; |
| } else { |
| cc = 2; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen && srclen; src++, dest++, destlen--, srclen--) { |
| v = cpu_ldub_data(env, src); |
| cpu_stb_data(env, dest, v); |
| } |
| |
| for (; destlen; dest++, destlen--) { |
| cpu_stb_data(env, dest, pad); |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| /* FIXME: 31-bit mode! */ |
| env->regs[r3 + 1] -= src - env->regs[r3]; |
| env->regs[r1] = dest; |
| env->regs[r3] = src; |
| |
| return cc; |
| } |
| |
| /* compare logical long extended memcompare insn with padding */ |
| uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2, |
| uint32_t r3) |
| { |
| uint64_t destlen = env->regs[r1 + 1]; |
| uint64_t dest = get_address_31fix(env, r1); |
| uint64_t srclen = env->regs[r3 + 1]; |
| uint64_t src = get_address_31fix(env, r3); |
| uint8_t pad = a2 & 0xff; |
| uint8_t v1 = 0, v2 = 0; |
| uint32_t cc = 0; |
| |
| if (!(destlen || srclen)) { |
| return cc; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen || srclen; src++, dest++, destlen--, srclen--) { |
| v1 = srclen ? cpu_ldub_data(env, src) : pad; |
| v2 = destlen ? cpu_ldub_data(env, dest) : pad; |
| if (v1 != v2) { |
| cc = (v1 < v2) ? 1 : 2; |
| break; |
| } |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| env->regs[r3 + 1] -= src - env->regs[r3]; |
| env->regs[r1] = dest; |
| env->regs[r3] = src; |
| |
| return cc; |
| } |
| |
| /* checksum */ |
| uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1, |
| uint64_t src, uint64_t src_len) |
| { |
| uint64_t max_len, len; |
| uint64_t cksm = (uint32_t)r1; |
| |
| /* Lest we fail to service interrupts in a timely manner, limit the |
| amount of work we're willing to do. For now, let's cap at 8k. */ |
| max_len = (src_len > 0x2000 ? 0x2000 : src_len); |
| |
| /* Process full words as available. */ |
| for (len = 0; len + 4 <= max_len; len += 4, src += 4) { |
| cksm += (uint32_t)cpu_ldl_data(env, src); |
| } |
| |
| switch (max_len - len) { |
| case 1: |
| cksm += cpu_ldub_data(env, src) << 24; |
| len += 1; |
| break; |
| case 2: |
| cksm += cpu_lduw_data(env, src) << 16; |
| len += 2; |
| break; |
| case 3: |
| cksm += cpu_lduw_data(env, src) << 16; |
| cksm += cpu_ldub_data(env, src + 2) << 8; |
| len += 3; |
| break; |
| } |
| |
| /* Fold the carry from the checksum. Note that we can see carry-out |
| during folding more than once (but probably not more than twice). */ |
| while (cksm > 0xffffffffull) { |
| cksm = (uint32_t)cksm + (cksm >> 32); |
| } |
| |
| /* Indicate whether or not we've processed everything. */ |
| env->cc_op = (len == src_len ? 0 : 3); |
| |
| /* Return both cksm and processed length. */ |
| env->retxl = cksm; |
| return len; |
| } |
| |
| void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest, |
| uint64_t src) |
| { |
| int len_dest = len >> 4; |
| int len_src = len & 0xf; |
| uint8_t b; |
| int second_nibble = 0; |
| |
| dest += len_dest; |
| src += len_src; |
| |
| /* last byte is special, it only flips the nibbles */ |
| b = cpu_ldub_data(env, src); |
| cpu_stb_data(env, dest, (b << 4) | (b >> 4)); |
| src--; |
| len_src--; |
| |
| /* now pad every nibble with 0xf0 */ |
| |
| while (len_dest > 0) { |
| uint8_t cur_byte = 0; |
| |
| if (len_src > 0) { |
| cur_byte = cpu_ldub_data(env, src); |
| } |
| |
| len_dest--; |
| dest--; |
| |
| /* only advance one nibble at a time */ |
| if (second_nibble) { |
| cur_byte >>= 4; |
| len_src--; |
| src--; |
| } |
| second_nibble = !second_nibble; |
| |
| /* digit */ |
| cur_byte = (cur_byte & 0xf); |
| /* zone bits */ |
| cur_byte |= 0xf0; |
| |
| cpu_stb_data(env, dest, cur_byte); |
| } |
| } |
| |
| void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array, |
| uint64_t trans) |
| { |
| int i; |
| |
| for (i = 0; i <= len; i++) { |
| uint8_t byte = cpu_ldub_data(env, array + i); |
| uint8_t new_byte = cpu_ldub_data(env, trans + byte); |
| |
| cpu_stb_data(env, array + i, new_byte); |
| } |
| } |
| |
| uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array, |
| uint64_t len, uint64_t trans) |
| { |
| uint8_t end = env->regs[0] & 0xff; |
| uint64_t l = len; |
| uint64_t i; |
| |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| array &= 0x7fffffff; |
| l = (uint32_t)l; |
| } |
| |
| /* Lest we fail to service interrupts in a timely manner, limit the |
| amount of work we're willing to do. For now, let's cap at 8k. */ |
| if (l > 0x2000) { |
| l = 0x2000; |
| env->cc_op = 3; |
| } else { |
| env->cc_op = 0; |
| } |
| |
| for (i = 0; i < l; i++) { |
| uint8_t byte, new_byte; |
| |
| byte = cpu_ldub_data(env, array + i); |
| |
| if (byte == end) { |
| env->cc_op = 1; |
| break; |
| } |
| |
| new_byte = cpu_ldub_data(env, trans + byte); |
| cpu_stb_data(env, array + i, new_byte); |
| } |
| |
| env->retxl = len - i; |
| return array + i; |
| } |
| |
| uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array, |
| uint64_t trans) |
| { |
| uint32_t cc = 0; |
| int i; |
| |
| for (i = 0; i <= len; i++) { |
| uint8_t byte = cpu_ldub_data(env, array + i); |
| uint8_t sbyte = cpu_ldub_data(env, trans + byte); |
| |
| if (sbyte != 0) { |
| env->regs[1] = array + i; |
| env->regs[2] = (env->regs[2] & ~0xff) | sbyte; |
| cc = (i == len) ? 2 : 1; |
| break; |
| } |
| } |
| |
| return cc; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| S390CPU *cpu = s390_env_get_cpu(env); |
| bool PERchanged = false; |
| int i; |
| uint64_t src = a2; |
| uint64_t val; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| val = cpu_ldq_data(env, src); |
| if (env->cregs[i] != val && i >= 9 && i <= 11) { |
| PERchanged = true; |
| } |
| env->cregs[i] = val; |
| HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n", |
| i, src, env->cregs[i]); |
| src += sizeof(uint64_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| |
| if (PERchanged && env->psw.mask & PSW_MASK_PER) { |
| s390_cpu_recompute_watchpoints(CPU(cpu)); |
| } |
| |
| tlb_flush(CPU(cpu), 1); |
| } |
| |
| void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| S390CPU *cpu = s390_env_get_cpu(env); |
| bool PERchanged = false; |
| int i; |
| uint64_t src = a2; |
| uint32_t val; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| val = cpu_ldl_data(env, src); |
| if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) { |
| PERchanged = true; |
| } |
| env->cregs[i] = (env->cregs[i] & 0xFFFFFFFF00000000ULL) | val; |
| src += sizeof(uint32_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| |
| if (PERchanged && env->psw.mask & PSW_MASK_PER) { |
| s390_cpu_recompute_watchpoints(CPU(cpu)); |
| } |
| |
| tlb_flush(CPU(cpu), 1); |
| } |
| |
| void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t dest = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| cpu_stq_data(env, dest, env->cregs[i]); |
| dest += sizeof(uint64_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t dest = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| cpu_stl_data(env, dest, env->cregs[i]); |
| dest += sizeof(uint32_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2) |
| { |
| /* XXX implement */ |
| |
| return 0; |
| } |
| |
| /* insert storage key extended */ |
| uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2) |
| { |
| static S390SKeysState *ss; |
| static S390SKeysClass *skeyclass; |
| uint64_t addr = get_address(env, 0, 0, r2); |
| uint8_t key; |
| |
| if (addr > ram_size) { |
| return 0; |
| } |
| |
| if (unlikely(!ss)) { |
| ss = s390_get_skeys_device(); |
| skeyclass = S390_SKEYS_GET_CLASS(ss); |
| } |
| |
| if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) { |
| return 0; |
| } |
| return key; |
| } |
| |
| /* set storage key extended */ |
| void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2) |
| { |
| static S390SKeysState *ss; |
| static S390SKeysClass *skeyclass; |
| uint64_t addr = get_address(env, 0, 0, r2); |
| uint8_t key; |
| |
| if (addr > ram_size) { |
| return; |
| } |
| |
| if (unlikely(!ss)) { |
| ss = s390_get_skeys_device(); |
| skeyclass = S390_SKEYS_GET_CLASS(ss); |
| } |
| |
| key = (uint8_t) r1; |
| skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); |
| } |
| |
| /* reset reference bit extended */ |
| uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2) |
| { |
| static S390SKeysState *ss; |
| static S390SKeysClass *skeyclass; |
| uint8_t re, key; |
| |
| if (r2 > ram_size) { |
| return 0; |
| } |
| |
| if (unlikely(!ss)) { |
| ss = s390_get_skeys_device(); |
| skeyclass = S390_SKEYS_GET_CLASS(ss); |
| } |
| |
| if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) { |
| return 0; |
| } |
| |
| re = key & (SK_R | SK_C); |
| key &= ~SK_R; |
| |
| if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) { |
| return 0; |
| } |
| |
| /* |
| * cc |
| * |
| * 0 Reference bit zero; change bit zero |
| * 1 Reference bit zero; change bit one |
| * 2 Reference bit one; change bit zero |
| * 3 Reference bit one; change bit one |
| */ |
| |
| return re >> 1; |
| } |
| |
| /* compare and swap and purge */ |
| uint32_t HELPER(csp)(CPUS390XState *env, uint32_t r1, uint64_t r2) |
| { |
| S390CPU *cpu = s390_env_get_cpu(env); |
| uint32_t cc; |
| uint32_t o1 = env->regs[r1]; |
| uint64_t a2 = r2 & ~3ULL; |
| uint32_t o2 = cpu_ldl_data(env, a2); |
| |
| if (o1 == o2) { |
| cpu_stl_data(env, a2, env->regs[(r1 + 1) & 15]); |
| if (r2 & 0x3) { |
| /* flush TLB / ALB */ |
| tlb_flush(CPU(cpu), 1); |
| } |
| cc = 0; |
| } else { |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | o2; |
| cc = 1; |
| } |
| |
| return cc; |
| } |
| |
| uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2) |
| { |
| int cc = 0, i; |
| |
| HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", |
| __func__, l, a1, a2); |
| |
| if (l > 256) { |
| /* max 256 */ |
| l = 256; |
| cc = 3; |
| } |
| |
| /* XXX replace w/ memcpy */ |
| for (i = 0; i < l; i++) { |
| cpu_stb_secondary(env, a1 + i, cpu_ldub_primary(env, a2 + i)); |
| } |
| |
| return cc; |
| } |
| |
| uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2) |
| { |
| int cc = 0, i; |
| |
| HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", |
| __func__, l, a1, a2); |
| |
| if (l > 256) { |
| /* max 256 */ |
| l = 256; |
| cc = 3; |
| } |
| |
| /* XXX replace w/ memcpy */ |
| for (i = 0; i < l; i++) { |
| cpu_stb_primary(env, a1 + i, cpu_ldub_secondary(env, a2 + i)); |
| } |
| |
| return cc; |
| } |
| |
| /* invalidate pte */ |
| void HELPER(ipte)(CPUS390XState *env, uint64_t pte_addr, uint64_t vaddr) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| uint64_t page = vaddr & TARGET_PAGE_MASK; |
| uint64_t pte = 0; |
| |
| /* XXX broadcast to other CPUs */ |
| |
| /* XXX Linux is nice enough to give us the exact pte address. |
| According to spec we'd have to find it out ourselves */ |
| /* XXX Linux is fine with overwriting the pte, the spec requires |
| us to only set the invalid bit */ |
| stq_phys(cs->as, pte_addr, pte | _PAGE_INVALID); |
| |
| /* XXX we exploit the fact that Linux passes the exact virtual |
| address here - it's not obliged to! */ |
| tlb_flush_page(cs, page); |
| |
| /* XXX 31-bit hack */ |
| if (page & 0x80000000) { |
| tlb_flush_page(cs, page & ~0x80000000); |
| } else { |
| tlb_flush_page(cs, page | 0x80000000); |
| } |
| } |
| |
| /* flush local tlb */ |
| void HELPER(ptlb)(CPUS390XState *env) |
| { |
| S390CPU *cpu = s390_env_get_cpu(env); |
| |
| tlb_flush(CPU(cpu), 1); |
| } |
| |
| /* load using real address */ |
| uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| |
| return (uint32_t)ldl_phys(cs->as, get_address(env, 0, 0, addr)); |
| } |
| |
| uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| |
| return ldq_phys(cs->as, get_address(env, 0, 0, addr)); |
| } |
| |
| /* store using real address */ |
| void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| |
| stl_phys(cs->as, get_address(env, 0, 0, addr), (uint32_t)v1); |
| |
| if ((env->psw.mask & PSW_MASK_PER) && |
| (env->cregs[9] & PER_CR9_EVENT_STORE) && |
| (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) { |
| /* PSW is saved just before calling the helper. */ |
| env->per_address = env->psw.addr; |
| env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env); |
| } |
| } |
| |
| void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| |
| stq_phys(cs->as, get_address(env, 0, 0, addr), v1); |
| |
| if ((env->psw.mask & PSW_MASK_PER) && |
| (env->cregs[9] & PER_CR9_EVENT_STORE) && |
| (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) { |
| /* PSW is saved just before calling the helper. */ |
| env->per_address = env->psw.addr; |
| env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env); |
| } |
| } |
| |
| /* load real address */ |
| uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| uint32_t cc = 0; |
| int old_exc = cs->exception_index; |
| uint64_t asc = env->psw.mask & PSW_MASK_ASC; |
| uint64_t ret; |
| int flags; |
| |
| /* XXX incomplete - has more corner cases */ |
| if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) { |
| program_interrupt(env, PGM_SPECIAL_OP, 2); |
| } |
| |
| cs->exception_index = old_exc; |
| if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) { |
| cc = 3; |
| } |
| if (cs->exception_index == EXCP_PGM) { |
| ret = env->int_pgm_code | 0x80000000; |
| } else { |
| ret |= addr & ~TARGET_PAGE_MASK; |
| } |
| cs->exception_index = old_exc; |
| |
| env->cc_op = cc; |
| return ret; |
| } |
| #endif |