blob: 02adc8752736cae8d9d9c48af1a0196a1a6afcbe [file] [log] [blame]
/*
* ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
* set. Known devices table current as of Jun/2012 and taken from linux.
* See drivers/mtd/devices/m25p80.c.
*
* Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
* Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
* Copyright (C) 2012 PetaLogix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) a later version of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "sysemu/block-backend.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/ssi/ssi.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "trace.h"
#include "qom/object.h"
#include "m25p80_sfdp.h"
/* 16 MiB max in 3 byte address mode */
#define MAX_3BYTES_SIZE 0x1000000
#define SPI_NOR_MAX_ID_LEN 6
/* Fields for FlashPartInfo->flags */
enum spi_flash_option_flags {
ER_4K = BIT(0),
ER_32K = BIT(1),
EEPROM = BIT(2),
HAS_SR_TB = BIT(3),
HAS_SR_BP3_BIT6 = BIT(4),
};
typedef struct FlashPartInfo {
const char *part_name;
/*
* This array stores the ID bytes.
* The first three bytes are the JEDIC ID.
* JEDEC ID zero means "no ID" (mostly older chips).
*/
uint8_t id[SPI_NOR_MAX_ID_LEN];
uint8_t id_len;
/* there is confusion between manufacturers as to what a sector is. In this
* device model, a "sector" is the size that is erased by the ERASE_SECTOR
* command (opcode 0xd8).
*/
uint32_t sector_size;
uint32_t n_sectors;
uint32_t page_size;
uint16_t flags;
/*
* Big sized spi nor are often stacked devices, thus sometime
* replace chip erase with die erase.
* This field inform how many die is in the chip.
*/
uint8_t die_cnt;
uint8_t (*sfdp_read)(uint32_t sfdp_addr);
} FlashPartInfo;
/* adapted from linux */
/* Used when the "_ext_id" is two bytes at most */
#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
.part_name = _part_name,\
.id = {\
((_jedec_id) >> 16) & 0xff,\
((_jedec_id) >> 8) & 0xff,\
(_jedec_id) & 0xff,\
((_ext_id) >> 8) & 0xff,\
(_ext_id) & 0xff,\
},\
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
.sector_size = (_sector_size),\
.n_sectors = (_n_sectors),\
.page_size = 256,\
.flags = (_flags),\
.die_cnt = 0
#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
.part_name = _part_name,\
.id = {\
((_jedec_id) >> 16) & 0xff,\
((_jedec_id) >> 8) & 0xff,\
(_jedec_id) & 0xff,\
((_ext_id) >> 16) & 0xff,\
((_ext_id) >> 8) & 0xff,\
(_ext_id) & 0xff,\
},\
.id_len = 6,\
.sector_size = (_sector_size),\
.n_sectors = (_n_sectors),\
.page_size = 256,\
.flags = (_flags),\
.die_cnt = 0
#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
_flags, _die_cnt)\
.part_name = _part_name,\
.id = {\
((_jedec_id) >> 16) & 0xff,\
((_jedec_id) >> 8) & 0xff,\
(_jedec_id) & 0xff,\
((_ext_id) >> 8) & 0xff,\
(_ext_id) & 0xff,\
},\
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
.sector_size = (_sector_size),\
.n_sectors = (_n_sectors),\
.page_size = 256,\
.flags = (_flags),\
.die_cnt = _die_cnt
#define JEDEC_NUMONYX 0x20
#define JEDEC_WINBOND 0xEF
#define JEDEC_SPANSION 0x01
/* Numonyx (Micron) Configuration register macros */
#define VCFG_DUMMY 0x1
#define VCFG_WRAP_SEQUENTIAL 0x2
#define NVCFG_XIP_MODE_DISABLED (7 << 9)
#define NVCFG_XIP_MODE_MASK (7 << 9)
#define VCFG_XIP_MODE_DISABLED (1 << 3)
#define CFG_DUMMY_CLK_LEN 4
#define NVCFG_DUMMY_CLK_POS 12
#define VCFG_DUMMY_CLK_POS 4
#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
#define EVCFG_VPP_ACCELERATOR (1 << 3)
#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
#define NVCFG_DUAL_IO_MASK (1 << 2)
#define EVCFG_DUAL_IO_DISABLED (1 << 6)
#define NVCFG_QUAD_IO_MASK (1 << 3)
#define EVCFG_QUAD_IO_DISABLED (1 << 7)
#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
/* Numonyx (Micron) Flag Status Register macros */
#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
#define FSR_FLASH_READY (1 << 7)
/* Spansion configuration registers macros. */
#define SPANSION_QUAD_CFG_POS 0
#define SPANSION_QUAD_CFG_LEN 1
#define SPANSION_DUMMY_CLK_POS 0
#define SPANSION_DUMMY_CLK_LEN 4
#define SPANSION_ADDR_LEN_POS 7
#define SPANSION_ADDR_LEN_LEN 1
/*
* Spansion read mode command length in bytes,
* the mode is currently not supported.
*/
#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
static const FlashPartInfo known_devices[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
{ INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
{ INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
{ INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
{ INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
{ INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
{ INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
{ INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
{ INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
{ INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
/* Atmel EEPROMS - it is assumed, that don't care bit in command
* is set to 0. Block protection is not supported.
*/
{ INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
{ INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
/* EON -- en25xxx */
{ INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
{ INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
{ INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
{ INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
{ INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
/* GigaDevice */
{ INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
{ INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
/* Intel/Numonyx -- xxxs33b */
{ INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
{ INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
{ INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
{ INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
/* ISSI */
{ INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) },
{ INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) },
{ INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) },
{ INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) },
{ INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) },
{ INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) },
{ INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) },
{ INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) },
{ INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) },
{ INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) },
{ INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K) },
/* Macronix */
{ INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
{ INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
{ INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
{ INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
{ INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
{ INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
{ INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
{ INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
{ INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512,
ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
{ INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512,
ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
{ INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
{ INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
{ INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
{ INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
{ INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K),
.sfdp_read = m25p80_sfdp_mx66l1g45g },
/* Micron */
{ INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
{ INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
{ INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
{ INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
{ INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
{ INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
{ INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
{ INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K),
.sfdp_read = m25p80_sfdp_n25q256a },
{ INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
{ INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
{ INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
{ INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512,
ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
.sfdp_read = m25p80_sfdp_n25q256a },
{ INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
{ INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
{ INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
{ INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
ER_4K | ER_32K, 2) },
{ INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
{ INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
{ INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
{ INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
{ INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
{ INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
{ INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
{ INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
{ INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
{ INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
{ INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
{ INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
{ INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
{ INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
{ INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
{ INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
{ INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
{ INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
{ INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
{ INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
{ INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
{ INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
/* Spansion -- boot sectors support */
{ INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
{ INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
/* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
{ INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
{ INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
{ INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
{ INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
{ INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
{ INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
{ INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
{ INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
{ INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
/* ST Microelectronics -- newer production may have feature updates */
{ INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
{ INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
{ INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
{ INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
{ INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
{ INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
{ INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
{ INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
{ INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
{ INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
{ INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
{ INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
{ INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
{ INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
{ INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
{ INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
{ INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
/* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
{ INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
{ INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
{ INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
{ INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
{ INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
{ INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
{ INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
{ INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
{ INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
{ INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
{ INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
{ INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
{ INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K),
.sfdp_read = m25p80_sfdp_w25q256 },
{ INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K),
.sfdp_read = m25p80_sfdp_w25q512jv },
{ INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K),
.sfdp_read = m25p80_sfdp_w25q01jvq },
};
typedef enum {
NOP = 0,
WRSR = 0x1,
WRDI = 0x4,
RDSR = 0x5,
WREN = 0x6,
BRRD = 0x16,
BRWR = 0x17,
JEDEC_READ = 0x9f,
BULK_ERASE_60 = 0x60,
BULK_ERASE = 0xc7,
READ_FSR = 0x70,
RDCR = 0x15,
RDSFDP = 0x5a,
READ = 0x03,
READ4 = 0x13,
FAST_READ = 0x0b,
FAST_READ4 = 0x0c,
DOR = 0x3b,
DOR4 = 0x3c,
QOR = 0x6b,
QOR4 = 0x6c,
DIOR = 0xbb,
DIOR4 = 0xbc,
QIOR = 0xeb,
QIOR4 = 0xec,
PP = 0x02,
PP4 = 0x12,
PP4_4 = 0x3e,
DPP = 0xa2,
QPP = 0x32,
QPP_4 = 0x34,
RDID_90 = 0x90,
RDID_AB = 0xab,
AAI_WP = 0xad,
ERASE_4K = 0x20,
ERASE4_4K = 0x21,
ERASE_32K = 0x52,
ERASE4_32K = 0x5c,
ERASE_SECTOR = 0xd8,
ERASE4_SECTOR = 0xdc,
EN_4BYTE_ADDR = 0xB7,
EX_4BYTE_ADDR = 0xE9,
EXTEND_ADDR_READ = 0xC8,
EXTEND_ADDR_WRITE = 0xC5,
RESET_ENABLE = 0x66,
RESET_MEMORY = 0x99,
/*
* Micron: 0x35 - enable QPI
* Spansion: 0x35 - read control register
*/
RDCR_EQIO = 0x35,
RSTQIO = 0xf5,
RNVCR = 0xB5,
WNVCR = 0xB1,
RVCR = 0x85,
WVCR = 0x81,
REVCR = 0x65,
WEVCR = 0x61,
DIE_ERASE = 0xC4,
} FlashCMD;
typedef enum {
STATE_IDLE,
STATE_PAGE_PROGRAM,
STATE_READ,
STATE_COLLECTING_DATA,
STATE_COLLECTING_VAR_LEN_DATA,
STATE_READING_DATA,
STATE_READING_SFDP,
} CMDState;
typedef enum {
MAN_SPANSION,
MAN_MACRONIX,
MAN_NUMONYX,
MAN_WINBOND,
MAN_SST,
MAN_ISSI,
MAN_GENERIC,
} Manufacturer;
typedef enum {
MODE_STD = 0,
MODE_DIO = 1,
MODE_QIO = 2
} SPIMode;
#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
struct Flash {
SSIPeripheral parent_obj;
BlockBackend *blk;
uint8_t *storage;
uint32_t size;
int page_size;
uint8_t state;
uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
uint32_t len;
uint32_t pos;
bool data_read_loop;
uint8_t needed_bytes;
uint8_t cmd_in_progress;
uint32_t cur_addr;
uint32_t nonvolatile_cfg;
/* Configuration register for Macronix */
uint32_t volatile_cfg;
uint32_t enh_volatile_cfg;
/* Spansion cfg registers. */
uint8_t spansion_cr1nv;
uint8_t spansion_cr2nv;
uint8_t spansion_cr3nv;
uint8_t spansion_cr4nv;
uint8_t spansion_cr1v;
uint8_t spansion_cr2v;
uint8_t spansion_cr3v;
uint8_t spansion_cr4v;
bool wp_level;
bool write_enable;
bool four_bytes_address_mode;
bool reset_enable;
bool quad_enable;
bool aai_enable;
bool block_protect0;
bool block_protect1;
bool block_protect2;
bool block_protect3;
bool top_bottom_bit;
bool status_register_write_disabled;
uint8_t ear;
int64_t dirty_page;
const FlashPartInfo *pi;
};
struct M25P80Class {
SSIPeripheralClass parent_class;
FlashPartInfo *pi;
};
#define TYPE_M25P80 "m25p80-generic"
OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
static inline Manufacturer get_man(Flash *s)
{
switch (s->pi->id[0]) {
case 0x20:
return MAN_NUMONYX;
case 0xEF:
return MAN_WINBOND;
case 0x01:
return MAN_SPANSION;
case 0xC2:
return MAN_MACRONIX;
case 0xBF:
return MAN_SST;
case 0x9D:
return MAN_ISSI;
default:
return MAN_GENERIC;
}
}
static void blk_sync_complete(void *opaque, int ret)
{
QEMUIOVector *iov = opaque;
qemu_iovec_destroy(iov);
g_free(iov);
/* do nothing. Masters do not directly interact with the backing store,
* only the working copy so no mutexing required.
*/
}
static void flash_sync_page(Flash *s, int page)
{
QEMUIOVector *iov;
if (!s->blk || !blk_is_writable(s->blk)) {
return;
}
iov = g_new(QEMUIOVector, 1);
qemu_iovec_init(iov, 1);
qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
s->pi->page_size);
blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
blk_sync_complete, iov);
}
static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
{
QEMUIOVector *iov;
if (!s->blk || !blk_is_writable(s->blk)) {
return;
}
assert(!(len % BDRV_SECTOR_SIZE));
iov = g_new(QEMUIOVector, 1);
qemu_iovec_init(iov, 1);
qemu_iovec_add(iov, s->storage + off, len);
blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
}
static void flash_erase(Flash *s, int offset, FlashCMD cmd)
{
uint32_t len;
uint8_t capa_to_assert = 0;
switch (cmd) {
case ERASE_4K:
case ERASE4_4K:
len = 4 * KiB;
capa_to_assert = ER_4K;
break;
case ERASE_32K:
case ERASE4_32K:
len = 32 * KiB;
capa_to_assert = ER_32K;
break;
case ERASE_SECTOR:
case ERASE4_SECTOR:
len = s->pi->sector_size;
break;
case BULK_ERASE:
len = s->size;
break;
case DIE_ERASE:
if (s->pi->die_cnt) {
len = s->size / s->pi->die_cnt;
offset = offset & (~(len - 1));
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
" by device\n");
return;
}
break;
default:
abort();
}
trace_m25p80_flash_erase(s, offset, len);
if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
" device\n", len);
}
if (!s->write_enable) {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
return;
}
memset(s->storage + offset, 0xff, len);
flash_sync_area(s, offset, len);
}
static inline void flash_sync_dirty(Flash *s, int64_t newpage)
{
if (s->dirty_page >= 0 && s->dirty_page != newpage) {
flash_sync_page(s, s->dirty_page);
s->dirty_page = newpage;
}
}
static inline
void flash_write8(Flash *s, uint32_t addr, uint8_t data)
{
uint32_t page = addr / s->pi->page_size;
uint8_t prev = s->storage[s->cur_addr];
uint32_t block_protect_value = (s->block_protect3 << 3) |
(s->block_protect2 << 2) |
(s->block_protect1 << 1) |
(s->block_protect0 << 0);
if (!s->write_enable) {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
return;
}
if (block_protect_value > 0) {
uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
uint32_t sector = addr / s->pi->sector_size;
/* top_bottom_bit == 0 means TOP */
if (!s->top_bottom_bit) {
if (s->pi->n_sectors <= sector + num_protected_sectors) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: write with write protect!\n");
return;
}
} else {
if (sector < num_protected_sectors) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: write with write protect!\n");
return;
}
}
}
if ((prev ^ data) & data) {
trace_m25p80_programming_zero_to_one(s, addr, prev, data);
}
if (s->pi->flags & EEPROM) {
s->storage[s->cur_addr] = data;
} else {
s->storage[s->cur_addr] &= data;
}
flash_sync_dirty(s, page);
s->dirty_page = page;
}
static inline int get_addr_length(Flash *s)
{
/* check if eeprom is in use */
if (s->pi->flags == EEPROM) {
return 2;
}
switch (s->cmd_in_progress) {
case RDSFDP:
return 3;
case PP4:
case PP4_4:
case QPP_4:
case READ4:
case QIOR4:
case ERASE4_4K:
case ERASE4_32K:
case ERASE4_SECTOR:
case FAST_READ4:
case DOR4:
case QOR4:
case DIOR4:
return 4;
default:
return s->four_bytes_address_mode ? 4 : 3;
}
}
static void complete_collecting_data(Flash *s)
{
int i, n;
n = get_addr_length(s);
s->cur_addr = (n == 3 ? s->ear : 0);
for (i = 0; i < n; ++i) {
s->cur_addr <<= 8;
s->cur_addr |= s->data[i];
}
s->cur_addr &= s->size - 1;
s->state = STATE_IDLE;
trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
s->cur_addr);
switch (s->cmd_in_progress) {
case DPP:
case QPP:
case QPP_4:
case PP:
case PP4:
case PP4_4:
s->state = STATE_PAGE_PROGRAM;
break;
case AAI_WP:
/* AAI programming starts from the even address */
s->cur_addr &= ~BIT(0);
s->state = STATE_PAGE_PROGRAM;
break;
case READ:
case READ4:
case FAST_READ:
case FAST_READ4:
case DOR:
case DOR4:
case QOR:
case QOR4:
case DIOR:
case DIOR4:
case QIOR:
case QIOR4:
s->state = STATE_READ;
break;
case ERASE_4K:
case ERASE4_4K:
case ERASE_32K:
case ERASE4_32K:
case ERASE_SECTOR:
case ERASE4_SECTOR:
case DIE_ERASE:
flash_erase(s, s->cur_addr, s->cmd_in_progress);
break;
case WRSR:
s->status_register_write_disabled = extract32(s->data[0], 7, 1);
s->block_protect0 = extract32(s->data[0], 2, 1);
s->block_protect1 = extract32(s->data[0], 3, 1);
s->block_protect2 = extract32(s->data[0], 4, 1);
if (s->pi->flags & HAS_SR_TB) {
s->top_bottom_bit = extract32(s->data[0], 5, 1);
}
if (s->pi->flags & HAS_SR_BP3_BIT6) {
s->block_protect3 = extract32(s->data[0], 6, 1);
}
switch (get_man(s)) {
case MAN_SPANSION:
s->quad_enable = !!(s->data[1] & 0x02);
break;
case MAN_ISSI:
s->quad_enable = extract32(s->data[0], 6, 1);
break;
case MAN_MACRONIX:
s->quad_enable = extract32(s->data[0], 6, 1);
if (s->len > 1) {
s->volatile_cfg = s->data[1];
s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
}
break;
default:
break;
}
if (s->write_enable) {
s->write_enable = false;
}
break;
case BRWR:
case EXTEND_ADDR_WRITE:
s->ear = s->data[0];
break;
case WNVCR:
s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
break;
case WVCR:
s->volatile_cfg = s->data[0];
break;
case WEVCR:
s->enh_volatile_cfg = s->data[0];
break;
case RDID_90:
case RDID_AB:
if (get_man(s) == MAN_SST) {
if (s->cur_addr <= 1) {
if (s->cur_addr) {
s->data[0] = s->pi->id[2];
s->data[1] = s->pi->id[0];
} else {
s->data[0] = s->pi->id[0];
s->data[1] = s->pi->id[2];
}
s->pos = 0;
s->len = 2;
s->data_read_loop = true;
s->state = STATE_READING_DATA;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Invalid read id address\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Read id (command 0x90/0xAB) is not supported"
" by device\n");
}
break;
case RDSFDP:
s->state = STATE_READING_SFDP;
break;
default:
break;
}
}
static void reset_memory(Flash *s)
{
s->cmd_in_progress = NOP;
s->cur_addr = 0;
s->ear = 0;
s->four_bytes_address_mode = false;
s->len = 0;
s->needed_bytes = 0;
s->pos = 0;
s->state = STATE_IDLE;
s->write_enable = false;
s->reset_enable = false;
s->quad_enable = false;
s->aai_enable = false;
switch (get_man(s)) {
case MAN_NUMONYX:
s->volatile_cfg = 0;
s->volatile_cfg |= VCFG_DUMMY;
s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
== NVCFG_XIP_MODE_DISABLED) {
s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
}
s->volatile_cfg |= deposit32(s->volatile_cfg,
VCFG_DUMMY_CLK_POS,
CFG_DUMMY_CLK_LEN,
extract32(s->nonvolatile_cfg,
NVCFG_DUMMY_CLK_POS,
CFG_DUMMY_CLK_LEN)
);
s->enh_volatile_cfg = 0;
s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
}
if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
}
if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
s->four_bytes_address_mode = true;
}
if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
s->ear = s->size / MAX_3BYTES_SIZE - 1;
}
break;
case MAN_MACRONIX:
s->volatile_cfg = 0x7;
break;
case MAN_SPANSION:
s->spansion_cr1v = s->spansion_cr1nv;
s->spansion_cr2v = s->spansion_cr2nv;
s->spansion_cr3v = s->spansion_cr3nv;
s->spansion_cr4v = s->spansion_cr4nv;
s->quad_enable = extract32(s->spansion_cr1v,
SPANSION_QUAD_CFG_POS,
SPANSION_QUAD_CFG_LEN
);
s->four_bytes_address_mode = extract32(s->spansion_cr2v,
SPANSION_ADDR_LEN_POS,
SPANSION_ADDR_LEN_LEN
);
break;
default:
break;
}
trace_m25p80_reset_done(s);
}
static uint8_t numonyx_mode(Flash *s)
{
if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
return MODE_QIO;
} else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
return MODE_DIO;
} else {
return MODE_STD;
}
}
static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
{
uint8_t num_dummies;
uint8_t mode;
assert(get_man(s) == MAN_NUMONYX);
mode = numonyx_mode(s);
num_dummies = extract32(s->volatile_cfg, 4, 4);
if (num_dummies == 0x0 || num_dummies == 0xf) {
switch (s->cmd_in_progress) {
case QIOR:
case QIOR4:
num_dummies = 10;
break;
default:
num_dummies = (mode == MODE_QIO) ? 10 : 8;
break;
}
}
return num_dummies;
}
static void decode_fast_read_cmd(Flash *s)
{
s->needed_bytes = get_addr_length(s);
switch (get_man(s)) {
/* Dummy cycles - modeled with bytes writes instead of bits */
case MAN_SST:
s->needed_bytes += 1;
break;
case MAN_WINBOND:
s->needed_bytes += 8;
break;
case MAN_NUMONYX:
s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
break;
case MAN_MACRONIX:
if (extract32(s->volatile_cfg, 6, 2) == 1) {
s->needed_bytes += 6;
} else {
s->needed_bytes += 8;
}
break;
case MAN_SPANSION:
s->needed_bytes += extract32(s->spansion_cr2v,
SPANSION_DUMMY_CLK_POS,
SPANSION_DUMMY_CLK_LEN
);
break;
case MAN_ISSI:
/*
* The Fast Read instruction code is followed by address bytes and
* dummy cycles, transmitted via the SI line.
*
* The number of dummy cycles is configurable but this is currently
* unmodeled, hence the default value 8 is used.
*
* QPI (Quad Peripheral Interface) mode has different default value
* of dummy cycles, but this is unsupported at the time being.
*/
s->needed_bytes += 1;
break;
default:
break;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
static void decode_dio_read_cmd(Flash *s)
{
s->needed_bytes = get_addr_length(s);
/* Dummy cycles modeled with bytes writes instead of bits */
switch (get_man(s)) {
case MAN_WINBOND:
s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
break;
case MAN_SPANSION:
s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
s->needed_bytes += extract32(s->spansion_cr2v,
SPANSION_DUMMY_CLK_POS,
SPANSION_DUMMY_CLK_LEN
);
break;
case MAN_NUMONYX:
s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
break;
case MAN_MACRONIX:
switch (extract32(s->volatile_cfg, 6, 2)) {
case 1:
s->needed_bytes += 6;
break;
case 2:
s->needed_bytes += 8;
break;
default:
s->needed_bytes += 4;
break;
}
break;
case MAN_ISSI:
/*
* The Fast Read Dual I/O instruction code is followed by address bytes
* and dummy cycles, transmitted via the IO1 and IO0 line.
*
* The number of dummy cycles is configurable but this is currently
* unmodeled, hence the default value 4 is used.
*/
s->needed_bytes += 1;
break;
default:
break;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
static void decode_qio_read_cmd(Flash *s)
{
s->needed_bytes = get_addr_length(s);
/* Dummy cycles modeled with bytes writes instead of bits */
switch (get_man(s)) {
case MAN_WINBOND:
s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
s->needed_bytes += 4;
break;
case MAN_SPANSION:
s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
s->needed_bytes += extract32(s->spansion_cr2v,
SPANSION_DUMMY_CLK_POS,
SPANSION_DUMMY_CLK_LEN
);
break;
case MAN_NUMONYX:
s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
break;
case MAN_MACRONIX:
switch (extract32(s->volatile_cfg, 6, 2)) {
case 1:
s->needed_bytes += 4;
break;
case 2:
s->needed_bytes += 8;
break;
default:
s->needed_bytes += 6;
break;
}
break;
case MAN_ISSI:
/*
* The Fast Read Quad I/O instruction code is followed by address bytes
* and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
*
* The number of dummy cycles is configurable but this is currently
* unmodeled, hence the default value 6 is used.
*
* QPI (Quad Peripheral Interface) mode has different default value
* of dummy cycles, but this is unsupported at the time being.
*/
s->needed_bytes += 3;
break;
default:
break;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
static bool is_valid_aai_cmd(uint32_t cmd)
{
return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
}
static void decode_new_cmd(Flash *s, uint32_t value)
{
int i;
s->cmd_in_progress = value;
trace_m25p80_command_decoded(s, value);
if (value != RESET_MEMORY) {
s->reset_enable = false;
}
if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Invalid cmd within AAI programming sequence");
}
switch (value) {
case ERASE_4K:
case ERASE4_4K:
case ERASE_32K:
case ERASE4_32K:
case ERASE_SECTOR:
case ERASE4_SECTOR:
case PP:
case PP4:
case DIE_ERASE:
case RDID_90:
case RDID_AB:
s->needed_bytes = get_addr_length(s);
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case READ:
case READ4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
s->needed_bytes = get_addr_length(s);
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"DIO or QIO mode\n", s->cmd_in_progress);
}
break;
case DPP:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
s->needed_bytes = get_addr_length(s);
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"QIO mode\n", s->cmd_in_progress);
}
break;
case QPP:
case QPP_4:
case PP4_4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
s->needed_bytes = get_addr_length(s);
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"DIO mode\n", s->cmd_in_progress);
}
break;
case FAST_READ:
case FAST_READ4:
decode_fast_read_cmd(s);
break;
case DOR:
case DOR4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
decode_fast_read_cmd(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"QIO mode\n", s->cmd_in_progress);
}
break;
case QOR:
case QOR4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
decode_fast_read_cmd(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"DIO mode\n", s->cmd_in_progress);
}
break;
case DIOR:
case DIOR4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
decode_dio_read_cmd(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"QIO mode\n", s->cmd_in_progress);
}
break;
case QIOR:
case QIOR4:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
decode_qio_read_cmd(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
"DIO mode\n", s->cmd_in_progress);
}
break;
case WRSR:
/*
* If WP# is low and status_register_write_disabled is high,
* status register writes are disabled.
* This is also called "hardware protected mode" (HPM). All other
* combinations of the two states are called "software protected mode"
* (SPM), and status register writes are permitted.
*/
if ((s->wp_level == 0 && s->status_register_write_disabled)
|| !s->write_enable) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Status register write is disabled!\n");
break;
}
switch (get_man(s)) {
case MAN_SPANSION:
s->needed_bytes = 2;
s->state = STATE_COLLECTING_DATA;
break;
case MAN_MACRONIX:
s->needed_bytes = 2;
s->state = STATE_COLLECTING_VAR_LEN_DATA;
break;
default:
s->needed_bytes = 1;
s->state = STATE_COLLECTING_DATA;
}
s->pos = 0;
break;
case WRDI:
s->write_enable = false;
if (get_man(s) == MAN_SST) {
s->aai_enable = false;
}
break;
case WREN:
s->write_enable = true;
break;
case RDSR:
s->data[0] = (!!s->write_enable) << 1;
s->data[0] |= (!!s->status_register_write_disabled) << 7;
s->data[0] |= (!!s->block_protect0) << 2;
s->data[0] |= (!!s->block_protect1) << 3;
s->data[0] |= (!!s->block_protect2) << 4;
if (s->pi->flags & HAS_SR_TB) {
s->data[0] |= (!!s->top_bottom_bit) << 5;
}
if (s->pi->flags & HAS_SR_BP3_BIT6) {
s->data[0] |= (!!s->block_protect3) << 6;
}
if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
s->data[0] |= (!!s->quad_enable) << 6;
}
if (get_man(s) == MAN_SST) {
s->data[0] |= (!!s->aai_enable) << 6;
}
s->pos = 0;
s->len = 1;
s->data_read_loop = true;
s->state = STATE_READING_DATA;
break;
case READ_FSR:
s->data[0] = FSR_FLASH_READY;
if (s->four_bytes_address_mode) {
s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
}
s->pos = 0;
s->len = 1;
s->data_read_loop = true;
s->state = STATE_READING_DATA;
break;
case JEDEC_READ:
if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
trace_m25p80_populated_jedec(s);
for (i = 0; i < s->pi->id_len; i++) {
s->data[i] = s->pi->id[i];
}
for (; i < SPI_NOR_MAX_ID_LEN; i++) {
s->data[i] = 0;
}
s->len = SPI_NOR_MAX_ID_LEN;
s->pos = 0;
s->state = STATE_READING_DATA;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
"in DIO or QIO mode\n");
}
break;
case RDCR:
s->data[0] = s->volatile_cfg & 0xFF;
s->data[0] |= (!!s->four_bytes_address_mode) << 5;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case BULK_ERASE_60:
case BULK_ERASE:
if (s->write_enable) {
trace_m25p80_chip_erase(s);
flash_erase(s, 0, BULK_ERASE);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
"protect!\n");
}
break;
case NOP:
break;
case EN_4BYTE_ADDR:
s->four_bytes_address_mode = true;
break;
case EX_4BYTE_ADDR:
s->four_bytes_address_mode = false;
break;
case BRRD:
case EXTEND_ADDR_READ:
s->data[0] = s->ear;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case BRWR:
case EXTEND_ADDR_WRITE:
if (s->write_enable) {
s->needed_bytes = 1;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
break;
case RNVCR:
s->data[0] = s->nonvolatile_cfg & 0xFF;
s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
s->pos = 0;
s->len = 2;
s->state = STATE_READING_DATA;
break;
case WNVCR:
if (s->write_enable && get_man(s) == MAN_NUMONYX) {
s->needed_bytes = 2;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
break;
case RVCR:
s->data[0] = s->volatile_cfg & 0xFF;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case WVCR:
if (s->write_enable) {
s->needed_bytes = 1;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
break;
case REVCR:
s->data[0] = s->enh_volatile_cfg & 0xFF;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case WEVCR:
if (s->write_enable) {
s->needed_bytes = 1;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
}
break;
case RESET_ENABLE:
s->reset_enable = true;
break;
case RESET_MEMORY:
if (s->reset_enable) {
reset_memory(s);
}
break;
case RDCR_EQIO:
switch (get_man(s)) {
case MAN_SPANSION:
s->data[0] = (!!s->quad_enable) << 1;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case MAN_MACRONIX:
s->quad_enable = true;
break;
default:
break;
}
break;
case RSTQIO:
s->quad_enable = false;
break;
case AAI_WP:
if (get_man(s) == MAN_SST) {
if (s->write_enable) {
if (s->aai_enable) {
s->state = STATE_PAGE_PROGRAM;
} else {
s->aai_enable = true;
s->needed_bytes = get_addr_length(s);
s->state = STATE_COLLECTING_DATA;
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: AAI_WP with write protect\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
}
break;
case RDSFDP:
if (s->pi->sfdp_read) {
s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
}
/* Fallthrough */
default:
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
s->data_read_loop = true;
s->data[0] = 0;
qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
break;
}
}
static int m25p80_cs(SSIPeripheral *ss, bool select)
{
Flash *s = M25P80(ss);
if (select) {
if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
complete_collecting_data(s);
}
s->len = 0;
s->pos = 0;
s->state = STATE_IDLE;
flash_sync_dirty(s, -1);
s->data_read_loop = false;
}
trace_m25p80_select(s, select ? "de" : "");
return 0;
}
static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
{
Flash *s = M25P80(ss);
uint32_t r = 0;
trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
s->cur_addr, (uint8_t)tx);
switch (s->state) {
case STATE_PAGE_PROGRAM:
trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
flash_write8(s, s->cur_addr, (uint8_t)tx);
s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
/*
* There is no wrap mode during AAI programming once the highest
* unprotected memory address is reached. The Write-Enable-Latch
* bit is automatically reset, and AAI programming mode aborts.
*/
s->write_enable = false;
s->aai_enable = false;
}
break;
case STATE_READ:
r = s->storage[s->cur_addr];
trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
break;
case STATE_COLLECTING_DATA:
case STATE_COLLECTING_VAR_LEN_DATA:
if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Write overrun internal data buffer. "
"SPI controller (QEMU emulator or guest driver) "
"is misbehaving\n");
s->len = s->pos = 0;
s->state = STATE_IDLE;
break;
}
s->data[s->len] = (uint8_t)tx;
s->len++;
if (s->len == s->needed_bytes) {
complete_collecting_data(s);
}
break;
case STATE_READING_DATA:
if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
qemu_log_mask(LOG_GUEST_ERROR,
"M25P80: Read overrun internal data buffer. "
"SPI controller (QEMU emulator or guest driver) "
"is misbehaving\n");
s->len = s->pos = 0;
s->state = STATE_IDLE;
break;
}
r = s->data[s->pos];
trace_m25p80_read_data(s, s->pos, (uint8_t)r);
s->pos++;
if (s->pos == s->len) {
s->pos = 0;
if (!s->data_read_loop) {
s->state = STATE_IDLE;
}
}
break;
case STATE_READING_SFDP:
assert(s->pi->sfdp_read);
r = s->pi->sfdp_read(s->cur_addr);
trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
break;
default:
case STATE_IDLE:
decode_new_cmd(s, (uint8_t)tx);
break;
}
return r;
}
static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
{
Flash *s = M25P80(opaque);
/* WP# is just a single pin. */
assert(n == 0);
s->wp_level = !!level;
}
static void m25p80_realize(SSIPeripheral *ss, Error **errp)
{
Flash *s = M25P80(ss);
M25P80Class *mc = M25P80_GET_CLASS(s);
int ret;
s->pi = mc->pi;
s->size = s->pi->sector_size * s->pi->n_sectors;
s->dirty_page = -1;
if (s->blk) {
uint64_t perm = BLK_PERM_CONSISTENT_READ |
(blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
trace_m25p80_binding(s);
s->storage = blk_blockalign(s->blk, s->size);
if (blk_pread(s->blk, 0, s->size, s->storage, 0) < 0) {
error_setg(errp, "failed to read the initial flash content");
return;
}
} else {
trace_m25p80_binding_no_bdrv(s);
s->storage = blk_blockalign(NULL, s->size);
memset(s->storage, 0xFF, s->size);
}
qdev_init_gpio_in_named(DEVICE(s),
m25p80_write_protect_pin_irq_handler, "WP#", 1);
}
static void m25p80_reset(DeviceState *d)
{
Flash *s = M25P80(d);
s->wp_level = true;
s->status_register_write_disabled = false;
s->block_protect0 = false;
s->block_protect1 = false;
s->block_protect2 = false;
s->block_protect3 = false;
s->top_bottom_bit = false;
reset_memory(s);
}
static int m25p80_pre_save(void *opaque)
{
flash_sync_dirty((Flash *)opaque, -1);
return 0;
}
static Property m25p80_properties[] = {
/* This is default value for Micron flash */
DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
DEFINE_PROP_DRIVE("drive", Flash, blk),
DEFINE_PROP_END_OF_LIST(),
};
static int m25p80_pre_load(void *opaque)
{
Flash *s = (Flash *)opaque;
s->data_read_loop = false;
return 0;
}
static bool m25p80_data_read_loop_needed(void *opaque)
{
Flash *s = (Flash *)opaque;
return s->data_read_loop;
}
static const VMStateDescription vmstate_m25p80_data_read_loop = {
.name = "m25p80/data_read_loop",
.version_id = 1,
.minimum_version_id = 1,
.needed = m25p80_data_read_loop_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(data_read_loop, Flash),
VMSTATE_END_OF_LIST()
}
};
static bool m25p80_aai_enable_needed(void *opaque)
{
Flash *s = (Flash *)opaque;
return s->aai_enable;
}
static const VMStateDescription vmstate_m25p80_aai_enable = {
.name = "m25p80/aai_enable",
.version_id = 1,
.minimum_version_id = 1,
.needed = m25p80_aai_enable_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(aai_enable, Flash),
VMSTATE_END_OF_LIST()
}
};
static bool m25p80_wp_level_srwd_needed(void *opaque)
{
Flash *s = (Flash *)opaque;
return !s->wp_level || s->status_register_write_disabled;
}
static const VMStateDescription vmstate_m25p80_write_protect = {
.name = "m25p80/write_protect",
.version_id = 1,
.minimum_version_id = 1,
.needed = m25p80_wp_level_srwd_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(wp_level, Flash),
VMSTATE_BOOL(status_register_write_disabled, Flash),
VMSTATE_END_OF_LIST()
}
};
static bool m25p80_block_protect_needed(void *opaque)
{
Flash *s = (Flash *)opaque;
return s->block_protect0 ||
s->block_protect1 ||
s->block_protect2 ||
s->block_protect3 ||
s->top_bottom_bit;
}
static const VMStateDescription vmstate_m25p80_block_protect = {
.name = "m25p80/block_protect",
.version_id = 1,
.minimum_version_id = 1,
.needed = m25p80_block_protect_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(block_protect0, Flash),
VMSTATE_BOOL(block_protect1, Flash),
VMSTATE_BOOL(block_protect2, Flash),
VMSTATE_BOOL(block_protect3, Flash),
VMSTATE_BOOL(top_bottom_bit, Flash),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m25p80 = {
.name = "m25p80",
.version_id = 0,
.minimum_version_id = 0,
.pre_save = m25p80_pre_save,
.pre_load = m25p80_pre_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(state, Flash),
VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
VMSTATE_UINT32(len, Flash),
VMSTATE_UINT32(pos, Flash),
VMSTATE_UINT8(needed_bytes, Flash),
VMSTATE_UINT8(cmd_in_progress, Flash),
VMSTATE_UINT32(cur_addr, Flash),
VMSTATE_BOOL(write_enable, Flash),
VMSTATE_BOOL(reset_enable, Flash),
VMSTATE_UINT8(ear, Flash),
VMSTATE_BOOL(four_bytes_address_mode, Flash),
VMSTATE_UINT32(nonvolatile_cfg, Flash),
VMSTATE_UINT32(volatile_cfg, Flash),
VMSTATE_UINT32(enh_volatile_cfg, Flash),
VMSTATE_BOOL(quad_enable, Flash),
VMSTATE_UINT8(spansion_cr1nv, Flash),
VMSTATE_UINT8(spansion_cr2nv, Flash),
VMSTATE_UINT8(spansion_cr3nv, Flash),
VMSTATE_UINT8(spansion_cr4nv, Flash),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_m25p80_data_read_loop,
&vmstate_m25p80_aai_enable,
&vmstate_m25p80_write_protect,
&vmstate_m25p80_block_protect,
NULL
}
};
static void m25p80_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
M25P80Class *mc = M25P80_CLASS(klass);
k->realize = m25p80_realize;
k->transfer = m25p80_transfer8;
k->set_cs = m25p80_cs;
k->cs_polarity = SSI_CS_LOW;
dc->vmsd = &vmstate_m25p80;
device_class_set_props(dc, m25p80_properties);
dc->reset = m25p80_reset;
mc->pi = data;
}
static const TypeInfo m25p80_info = {
.name = TYPE_M25P80,
.parent = TYPE_SSI_PERIPHERAL,
.instance_size = sizeof(Flash),
.class_size = sizeof(M25P80Class),
.abstract = true,
};
static void m25p80_register_types(void)
{
int i;
type_register_static(&m25p80_info);
for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
TypeInfo ti = {
.name = known_devices[i].part_name,
.parent = TYPE_M25P80,
.class_init = m25p80_class_init,
.class_data = (void *)&known_devices[i],
};
type_register(&ti);
}
}
type_init(m25p80_register_types)