| /* |
| * RISC-V Vector Extension Helpers for QEMU. |
| * |
| * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/bitops.h" |
| #include "cpu.h" |
| #include "exec/memop.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| #include "fpu/softfloat.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "internals.h" |
| #include <math.h> |
| |
| target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1, |
| target_ulong s2) |
| { |
| int vlmax, vl; |
| RISCVCPU *cpu = env_archcpu(env); |
| uint64_t lmul = FIELD_EX64(s2, VTYPE, VLMUL); |
| uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW); |
| uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV); |
| int xlen = riscv_cpu_xlen(env); |
| bool vill = (s2 >> (xlen - 1)) & 0x1; |
| target_ulong reserved = s2 & |
| MAKE_64BIT_MASK(R_VTYPE_RESERVED_SHIFT, |
| xlen - 1 - R_VTYPE_RESERVED_SHIFT); |
| |
| if (lmul & 4) { |
| /* Fractional LMUL. */ |
| if (lmul == 4 || |
| cpu->cfg.elen >> (8 - lmul) < sew) { |
| vill = true; |
| } |
| } |
| |
| if ((sew > cpu->cfg.elen) |
| || vill |
| || (ediv != 0) |
| || (reserved != 0)) { |
| /* only set vill bit. */ |
| env->vill = 1; |
| env->vtype = 0; |
| env->vl = 0; |
| env->vstart = 0; |
| return 0; |
| } |
| |
| vlmax = vext_get_vlmax(cpu, s2); |
| if (s1 <= vlmax) { |
| vl = s1; |
| } else { |
| vl = vlmax; |
| } |
| env->vl = vl; |
| env->vtype = s2; |
| env->vstart = 0; |
| env->vill = 0; |
| return vl; |
| } |
| |
| /* |
| * Note that vector data is stored in host-endian 64-bit chunks, |
| * so addressing units smaller than that needs a host-endian fixup. |
| */ |
| #if HOST_BIG_ENDIAN |
| #define H1(x) ((x) ^ 7) |
| #define H1_2(x) ((x) ^ 6) |
| #define H1_4(x) ((x) ^ 4) |
| #define H2(x) ((x) ^ 3) |
| #define H4(x) ((x) ^ 1) |
| #define H8(x) ((x)) |
| #else |
| #define H1(x) (x) |
| #define H1_2(x) (x) |
| #define H1_4(x) (x) |
| #define H2(x) (x) |
| #define H4(x) (x) |
| #define H8(x) (x) |
| #endif |
| |
| static inline uint32_t vext_nf(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, NF); |
| } |
| |
| static inline uint32_t vext_vm(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, VM); |
| } |
| |
| /* |
| * Encode LMUL to lmul as following: |
| * LMUL vlmul lmul |
| * 1 000 0 |
| * 2 001 1 |
| * 4 010 2 |
| * 8 011 3 |
| * - 100 - |
| * 1/8 101 -3 |
| * 1/4 110 -2 |
| * 1/2 111 -1 |
| */ |
| static inline int32_t vext_lmul(uint32_t desc) |
| { |
| return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3); |
| } |
| |
| /* |
| * Get the maximum number of elements can be operated. |
| * |
| * esz: log2 of element size in bytes. |
| */ |
| static inline uint32_t vext_max_elems(uint32_t desc, uint32_t esz) |
| { |
| /* |
| * As simd_desc support at most 2048 bytes, the max vlen is 1024 bits. |
| * so vlen in bytes (vlenb) is encoded as maxsz. |
| */ |
| uint32_t vlenb = simd_maxsz(desc); |
| |
| /* Return VLMAX */ |
| int scale = vext_lmul(desc) - esz; |
| return scale < 0 ? vlenb >> -scale : vlenb << scale; |
| } |
| |
| static inline target_ulong adjust_addr(CPURISCVState *env, target_ulong addr) |
| { |
| return (addr & env->cur_pmmask) | env->cur_pmbase; |
| } |
| |
| /* |
| * This function checks watchpoint before real load operation. |
| * |
| * In softmmu mode, the TLB API probe_access is enough for watchpoint check. |
| * In user mode, there is no watchpoint support now. |
| * |
| * It will trigger an exception if there is no mapping in TLB |
| * and page table walk can't fill the TLB entry. Then the guest |
| * software can return here after process the exception or never return. |
| */ |
| static void probe_pages(CPURISCVState *env, target_ulong addr, |
| target_ulong len, uintptr_t ra, |
| MMUAccessType access_type) |
| { |
| target_ulong pagelen = -(addr | TARGET_PAGE_MASK); |
| target_ulong curlen = MIN(pagelen, len); |
| |
| probe_access(env, adjust_addr(env, addr), curlen, access_type, |
| cpu_mmu_index(env, false), ra); |
| if (len > curlen) { |
| addr += curlen; |
| curlen = len - curlen; |
| probe_access(env, adjust_addr(env, addr), curlen, access_type, |
| cpu_mmu_index(env, false), ra); |
| } |
| } |
| |
| static inline void vext_set_elem_mask(void *v0, int index, |
| uint8_t value) |
| { |
| int idx = index / 64; |
| int pos = index % 64; |
| uint64_t old = ((uint64_t *)v0)[idx]; |
| ((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value); |
| } |
| |
| /* |
| * Earlier designs (pre-0.9) had a varying number of bits |
| * per mask value (MLEN). In the 0.9 design, MLEN=1. |
| * (Section 4.5) |
| */ |
| static inline int vext_elem_mask(void *v0, int index) |
| { |
| int idx = index / 64; |
| int pos = index % 64; |
| return (((uint64_t *)v0)[idx] >> pos) & 1; |
| } |
| |
| /* elements operations for load and store */ |
| typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr, |
| uint32_t idx, void *vd, uintptr_t retaddr); |
| |
| #define GEN_VEXT_LD_ELEM(NAME, ETYPE, H, LDSUF) \ |
| static void NAME(CPURISCVState *env, abi_ptr addr, \ |
| uint32_t idx, void *vd, uintptr_t retaddr)\ |
| { \ |
| ETYPE *cur = ((ETYPE *)vd + H(idx)); \ |
| *cur = cpu_##LDSUF##_data_ra(env, addr, retaddr); \ |
| } \ |
| |
| GEN_VEXT_LD_ELEM(lde_b, int8_t, H1, ldsb) |
| GEN_VEXT_LD_ELEM(lde_h, int16_t, H2, ldsw) |
| GEN_VEXT_LD_ELEM(lde_w, int32_t, H4, ldl) |
| GEN_VEXT_LD_ELEM(lde_d, int64_t, H8, ldq) |
| |
| #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \ |
| static void NAME(CPURISCVState *env, abi_ptr addr, \ |
| uint32_t idx, void *vd, uintptr_t retaddr)\ |
| { \ |
| ETYPE data = *((ETYPE *)vd + H(idx)); \ |
| cpu_##STSUF##_data_ra(env, addr, data, retaddr); \ |
| } |
| |
| GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb) |
| GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw) |
| GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl) |
| GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq) |
| |
| /* |
| *** stride: access vector element from strided memory |
| */ |
| static void |
| vext_ldst_stride(void *vd, void *v0, target_ulong base, |
| target_ulong stride, CPURISCVState *env, |
| uint32_t desc, uint32_t vm, |
| vext_ldst_elem_fn *ldst_elem, |
| uint32_t esz, uintptr_t ra, MMUAccessType access_type) |
| { |
| uint32_t i, k; |
| uint32_t nf = vext_nf(desc); |
| uint32_t max_elems = vext_max_elems(desc, esz); |
| |
| for (i = env->vstart; i < env->vl; i++, env->vstart++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| |
| k = 0; |
| while (k < nf) { |
| target_ulong addr = base + stride * i + (k << esz); |
| ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra); |
| k++; |
| } |
| } |
| env->vstart = 0; |
| } |
| |
| #define GEN_VEXT_LD_STRIDE(NAME, ETYPE, LOAD_FN) \ |
| void HELPER(NAME)(void *vd, void * v0, target_ulong base, \ |
| target_ulong stride, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \ |
| } |
| |
| GEN_VEXT_LD_STRIDE(vlse8_v, int8_t, lde_b) |
| GEN_VEXT_LD_STRIDE(vlse16_v, int16_t, lde_h) |
| GEN_VEXT_LD_STRIDE(vlse32_v, int32_t, lde_w) |
| GEN_VEXT_LD_STRIDE(vlse64_v, int64_t, lde_d) |
| |
| #define GEN_VEXT_ST_STRIDE(NAME, ETYPE, STORE_FN) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| target_ulong stride, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \ |
| } |
| |
| GEN_VEXT_ST_STRIDE(vsse8_v, int8_t, ste_b) |
| GEN_VEXT_ST_STRIDE(vsse16_v, int16_t, ste_h) |
| GEN_VEXT_ST_STRIDE(vsse32_v, int32_t, ste_w) |
| GEN_VEXT_ST_STRIDE(vsse64_v, int64_t, ste_d) |
| |
| /* |
| *** unit-stride: access elements stored contiguously in memory |
| */ |
| |
| /* unmasked unit-stride load and store operation*/ |
| static void |
| vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc, |
| vext_ldst_elem_fn *ldst_elem, uint32_t esz, uint32_t evl, |
| uintptr_t ra, MMUAccessType access_type) |
| { |
| uint32_t i, k; |
| uint32_t nf = vext_nf(desc); |
| uint32_t max_elems = vext_max_elems(desc, esz); |
| |
| /* load bytes from guest memory */ |
| for (i = env->vstart; i < evl; i++, env->vstart++) { |
| k = 0; |
| while (k < nf) { |
| target_ulong addr = base + ((i * nf + k) << esz); |
| ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra); |
| k++; |
| } |
| } |
| env->vstart = 0; |
| } |
| |
| /* |
| * masked unit-stride load and store operation will be a special case of stride, |
| * stride = NF * sizeof (MTYPE) |
| */ |
| |
| #define GEN_VEXT_LD_US(NAME, ETYPE, LOAD_FN) \ |
| void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \ |
| vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \ |
| } \ |
| \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_us(vd, base, env, desc, LOAD_FN, \ |
| ctzl(sizeof(ETYPE)), env->vl, GETPC(), MMU_DATA_LOAD); \ |
| } |
| |
| GEN_VEXT_LD_US(vle8_v, int8_t, lde_b) |
| GEN_VEXT_LD_US(vle16_v, int16_t, lde_h) |
| GEN_VEXT_LD_US(vle32_v, int32_t, lde_w) |
| GEN_VEXT_LD_US(vle64_v, int64_t, lde_d) |
| |
| #define GEN_VEXT_ST_US(NAME, ETYPE, STORE_FN) \ |
| void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \ |
| vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \ |
| } \ |
| \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_us(vd, base, env, desc, STORE_FN, \ |
| ctzl(sizeof(ETYPE)), env->vl, GETPC(), MMU_DATA_STORE); \ |
| } |
| |
| GEN_VEXT_ST_US(vse8_v, int8_t, ste_b) |
| GEN_VEXT_ST_US(vse16_v, int16_t, ste_h) |
| GEN_VEXT_ST_US(vse32_v, int32_t, ste_w) |
| GEN_VEXT_ST_US(vse64_v, int64_t, ste_d) |
| |
| /* |
| *** unit stride mask load and store, EEW = 1 |
| */ |
| void HELPER(vlm_v)(void *vd, void *v0, target_ulong base, |
| CPURISCVState *env, uint32_t desc) |
| { |
| /* evl = ceil(vl/8) */ |
| uint8_t evl = (env->vl + 7) >> 3; |
| vext_ldst_us(vd, base, env, desc, lde_b, |
| 0, evl, GETPC(), MMU_DATA_LOAD); |
| } |
| |
| void HELPER(vsm_v)(void *vd, void *v0, target_ulong base, |
| CPURISCVState *env, uint32_t desc) |
| { |
| /* evl = ceil(vl/8) */ |
| uint8_t evl = (env->vl + 7) >> 3; |
| vext_ldst_us(vd, base, env, desc, ste_b, |
| 0, evl, GETPC(), MMU_DATA_STORE); |
| } |
| |
| /* |
| *** index: access vector element from indexed memory |
| */ |
| typedef target_ulong vext_get_index_addr(target_ulong base, |
| uint32_t idx, void *vs2); |
| |
| #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \ |
| static target_ulong NAME(target_ulong base, \ |
| uint32_t idx, void *vs2) \ |
| { \ |
| return (base + *((ETYPE *)vs2 + H(idx))); \ |
| } |
| |
| GEN_VEXT_GET_INDEX_ADDR(idx_b, uint8_t, H1) |
| GEN_VEXT_GET_INDEX_ADDR(idx_h, uint16_t, H2) |
| GEN_VEXT_GET_INDEX_ADDR(idx_w, uint32_t, H4) |
| GEN_VEXT_GET_INDEX_ADDR(idx_d, uint64_t, H8) |
| |
| static inline void |
| vext_ldst_index(void *vd, void *v0, target_ulong base, |
| void *vs2, CPURISCVState *env, uint32_t desc, |
| vext_get_index_addr get_index_addr, |
| vext_ldst_elem_fn *ldst_elem, |
| uint32_t esz, uintptr_t ra, MMUAccessType access_type) |
| { |
| uint32_t i, k; |
| uint32_t nf = vext_nf(desc); |
| uint32_t vm = vext_vm(desc); |
| uint32_t max_elems = vext_max_elems(desc, esz); |
| |
| /* load bytes from guest memory */ |
| for (i = env->vstart; i < env->vl; i++, env->vstart++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| |
| k = 0; |
| while (k < nf) { |
| abi_ptr addr = get_index_addr(base, i, vs2) + (k << esz); |
| ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra); |
| k++; |
| } |
| } |
| env->vstart = 0; |
| } |
| |
| #define GEN_VEXT_LD_INDEX(NAME, ETYPE, INDEX_FN, LOAD_FN) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ |
| LOAD_FN, ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \ |
| } |
| |
| GEN_VEXT_LD_INDEX(vlxei8_8_v, int8_t, idx_b, lde_b) |
| GEN_VEXT_LD_INDEX(vlxei8_16_v, int16_t, idx_b, lde_h) |
| GEN_VEXT_LD_INDEX(vlxei8_32_v, int32_t, idx_b, lde_w) |
| GEN_VEXT_LD_INDEX(vlxei8_64_v, int64_t, idx_b, lde_d) |
| GEN_VEXT_LD_INDEX(vlxei16_8_v, int8_t, idx_h, lde_b) |
| GEN_VEXT_LD_INDEX(vlxei16_16_v, int16_t, idx_h, lde_h) |
| GEN_VEXT_LD_INDEX(vlxei16_32_v, int32_t, idx_h, lde_w) |
| GEN_VEXT_LD_INDEX(vlxei16_64_v, int64_t, idx_h, lde_d) |
| GEN_VEXT_LD_INDEX(vlxei32_8_v, int8_t, idx_w, lde_b) |
| GEN_VEXT_LD_INDEX(vlxei32_16_v, int16_t, idx_w, lde_h) |
| GEN_VEXT_LD_INDEX(vlxei32_32_v, int32_t, idx_w, lde_w) |
| GEN_VEXT_LD_INDEX(vlxei32_64_v, int64_t, idx_w, lde_d) |
| GEN_VEXT_LD_INDEX(vlxei64_8_v, int8_t, idx_d, lde_b) |
| GEN_VEXT_LD_INDEX(vlxei64_16_v, int16_t, idx_d, lde_h) |
| GEN_VEXT_LD_INDEX(vlxei64_32_v, int32_t, idx_d, lde_w) |
| GEN_VEXT_LD_INDEX(vlxei64_64_v, int64_t, idx_d, lde_d) |
| |
| #define GEN_VEXT_ST_INDEX(NAME, ETYPE, INDEX_FN, STORE_FN) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ |
| STORE_FN, ctzl(sizeof(ETYPE)), \ |
| GETPC(), MMU_DATA_STORE); \ |
| } |
| |
| GEN_VEXT_ST_INDEX(vsxei8_8_v, int8_t, idx_b, ste_b) |
| GEN_VEXT_ST_INDEX(vsxei8_16_v, int16_t, idx_b, ste_h) |
| GEN_VEXT_ST_INDEX(vsxei8_32_v, int32_t, idx_b, ste_w) |
| GEN_VEXT_ST_INDEX(vsxei8_64_v, int64_t, idx_b, ste_d) |
| GEN_VEXT_ST_INDEX(vsxei16_8_v, int8_t, idx_h, ste_b) |
| GEN_VEXT_ST_INDEX(vsxei16_16_v, int16_t, idx_h, ste_h) |
| GEN_VEXT_ST_INDEX(vsxei16_32_v, int32_t, idx_h, ste_w) |
| GEN_VEXT_ST_INDEX(vsxei16_64_v, int64_t, idx_h, ste_d) |
| GEN_VEXT_ST_INDEX(vsxei32_8_v, int8_t, idx_w, ste_b) |
| GEN_VEXT_ST_INDEX(vsxei32_16_v, int16_t, idx_w, ste_h) |
| GEN_VEXT_ST_INDEX(vsxei32_32_v, int32_t, idx_w, ste_w) |
| GEN_VEXT_ST_INDEX(vsxei32_64_v, int64_t, idx_w, ste_d) |
| GEN_VEXT_ST_INDEX(vsxei64_8_v, int8_t, idx_d, ste_b) |
| GEN_VEXT_ST_INDEX(vsxei64_16_v, int16_t, idx_d, ste_h) |
| GEN_VEXT_ST_INDEX(vsxei64_32_v, int32_t, idx_d, ste_w) |
| GEN_VEXT_ST_INDEX(vsxei64_64_v, int64_t, idx_d, ste_d) |
| |
| /* |
| *** unit-stride fault-only-fisrt load instructions |
| */ |
| static inline void |
| vext_ldff(void *vd, void *v0, target_ulong base, |
| CPURISCVState *env, uint32_t desc, |
| vext_ldst_elem_fn *ldst_elem, |
| uint32_t esz, uintptr_t ra) |
| { |
| void *host; |
| uint32_t i, k, vl = 0; |
| uint32_t nf = vext_nf(desc); |
| uint32_t vm = vext_vm(desc); |
| uint32_t max_elems = vext_max_elems(desc, esz); |
| target_ulong addr, offset, remain; |
| |
| /* probe every access*/ |
| for (i = env->vstart; i < env->vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| addr = adjust_addr(env, base + i * (nf << esz)); |
| if (i == 0) { |
| probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD); |
| } else { |
| /* if it triggers an exception, no need to check watchpoint */ |
| remain = nf << esz; |
| while (remain > 0) { |
| offset = -(addr | TARGET_PAGE_MASK); |
| host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, |
| cpu_mmu_index(env, false)); |
| if (host) { |
| #ifdef CONFIG_USER_ONLY |
| if (page_check_range(addr, offset, PAGE_READ) < 0) { |
| vl = i; |
| goto ProbeSuccess; |
| } |
| #else |
| probe_pages(env, addr, offset, ra, MMU_DATA_LOAD); |
| #endif |
| } else { |
| vl = i; |
| goto ProbeSuccess; |
| } |
| if (remain <= offset) { |
| break; |
| } |
| remain -= offset; |
| addr = adjust_addr(env, addr + offset); |
| } |
| } |
| } |
| ProbeSuccess: |
| /* load bytes from guest memory */ |
| if (vl != 0) { |
| env->vl = vl; |
| } |
| for (i = env->vstart; i < env->vl; i++) { |
| k = 0; |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| while (k < nf) { |
| target_ulong addr = base + ((i * nf + k) << esz); |
| ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra); |
| k++; |
| } |
| } |
| env->vstart = 0; |
| } |
| |
| #define GEN_VEXT_LDFF(NAME, ETYPE, LOAD_FN) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldff(vd, v0, base, env, desc, LOAD_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC()); \ |
| } |
| |
| GEN_VEXT_LDFF(vle8ff_v, int8_t, lde_b) |
| GEN_VEXT_LDFF(vle16ff_v, int16_t, lde_h) |
| GEN_VEXT_LDFF(vle32ff_v, int32_t, lde_w) |
| GEN_VEXT_LDFF(vle64ff_v, int64_t, lde_d) |
| |
| #define DO_SWAP(N, M) (M) |
| #define DO_AND(N, M) (N & M) |
| #define DO_XOR(N, M) (N ^ M) |
| #define DO_OR(N, M) (N | M) |
| #define DO_ADD(N, M) (N + M) |
| |
| /* Signed min/max */ |
| #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) |
| #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) |
| |
| /* Unsigned min/max */ |
| #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M) |
| #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M) |
| |
| /* |
| *** load and store whole register instructions |
| */ |
| static void |
| vext_ldst_whole(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc, |
| vext_ldst_elem_fn *ldst_elem, uint32_t esz, uintptr_t ra, |
| MMUAccessType access_type) |
| { |
| uint32_t i, k, off, pos; |
| uint32_t nf = vext_nf(desc); |
| uint32_t vlenb = env_archcpu(env)->cfg.vlen >> 3; |
| uint32_t max_elems = vlenb >> esz; |
| |
| k = env->vstart / max_elems; |
| off = env->vstart % max_elems; |
| |
| if (off) { |
| /* load/store rest of elements of current segment pointed by vstart */ |
| for (pos = off; pos < max_elems; pos++, env->vstart++) { |
| target_ulong addr = base + ((pos + k * max_elems) << esz); |
| ldst_elem(env, adjust_addr(env, addr), pos + k * max_elems, vd, ra); |
| } |
| k++; |
| } |
| |
| /* load/store elements for rest of segments */ |
| for (; k < nf; k++) { |
| for (i = 0; i < max_elems; i++, env->vstart++) { |
| target_ulong addr = base + ((i + k * max_elems) << esz); |
| ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra); |
| } |
| } |
| |
| env->vstart = 0; |
| } |
| |
| #define GEN_VEXT_LD_WHOLE(NAME, ETYPE, LOAD_FN) \ |
| void HELPER(NAME)(void *vd, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_whole(vd, base, env, desc, LOAD_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), \ |
| MMU_DATA_LOAD); \ |
| } |
| |
| GEN_VEXT_LD_WHOLE(vl1re8_v, int8_t, lde_b) |
| GEN_VEXT_LD_WHOLE(vl1re16_v, int16_t, lde_h) |
| GEN_VEXT_LD_WHOLE(vl1re32_v, int32_t, lde_w) |
| GEN_VEXT_LD_WHOLE(vl1re64_v, int64_t, lde_d) |
| GEN_VEXT_LD_WHOLE(vl2re8_v, int8_t, lde_b) |
| GEN_VEXT_LD_WHOLE(vl2re16_v, int16_t, lde_h) |
| GEN_VEXT_LD_WHOLE(vl2re32_v, int32_t, lde_w) |
| GEN_VEXT_LD_WHOLE(vl2re64_v, int64_t, lde_d) |
| GEN_VEXT_LD_WHOLE(vl4re8_v, int8_t, lde_b) |
| GEN_VEXT_LD_WHOLE(vl4re16_v, int16_t, lde_h) |
| GEN_VEXT_LD_WHOLE(vl4re32_v, int32_t, lde_w) |
| GEN_VEXT_LD_WHOLE(vl4re64_v, int64_t, lde_d) |
| GEN_VEXT_LD_WHOLE(vl8re8_v, int8_t, lde_b) |
| GEN_VEXT_LD_WHOLE(vl8re16_v, int16_t, lde_h) |
| GEN_VEXT_LD_WHOLE(vl8re32_v, int32_t, lde_w) |
| GEN_VEXT_LD_WHOLE(vl8re64_v, int64_t, lde_d) |
| |
| #define GEN_VEXT_ST_WHOLE(NAME, ETYPE, STORE_FN) \ |
| void HELPER(NAME)(void *vd, target_ulong base, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_ldst_whole(vd, base, env, desc, STORE_FN, \ |
| ctzl(sizeof(ETYPE)), GETPC(), \ |
| MMU_DATA_STORE); \ |
| } |
| |
| GEN_VEXT_ST_WHOLE(vs1r_v, int8_t, ste_b) |
| GEN_VEXT_ST_WHOLE(vs2r_v, int8_t, ste_b) |
| GEN_VEXT_ST_WHOLE(vs4r_v, int8_t, ste_b) |
| GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b) |
| |
| /* |
| *** Vector Integer Arithmetic Instructions |
| */ |
| |
| /* expand macro args before macro */ |
| #define RVVCALL(macro, ...) macro(__VA_ARGS__) |
| |
| /* (TD, T1, T2, TX1, TX2) */ |
| #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t |
| #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t |
| #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t |
| #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t |
| #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t |
| #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t |
| #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t |
| #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t |
| #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t |
| #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t |
| #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t |
| #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t |
| #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t |
| #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t |
| #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t |
| #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t |
| #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t |
| #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t |
| #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t |
| #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t |
| #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t |
| #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t |
| #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t |
| #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t |
| #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t |
| #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t |
| #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t |
| #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t |
| #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t |
| #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t |
| |
| /* operation of two vector elements */ |
| typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i); |
| |
| #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1); \ |
| } |
| #define DO_SUB(N, M) (N - M) |
| #define DO_RSUB(N, M) (M - N) |
| |
| RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD) |
| RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD) |
| RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD) |
| RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD) |
| RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB) |
| RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB) |
| RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB) |
| RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB) |
| |
| static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2, |
| CPURISCVState *env, uint32_t desc, |
| uint32_t esz, uint32_t dsz, |
| opivv2_fn *fn) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| uint32_t i; |
| |
| for (i = env->vstart; i < vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| fn(vd, vs1, vs2, i); |
| } |
| env->vstart = 0; |
| } |
| |
| /* generate the helpers for OPIVV */ |
| #define GEN_VEXT_VV(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ |
| do_##NAME); \ |
| } |
| |
| GEN_VEXT_VV(vadd_vv_b, 1, 1) |
| GEN_VEXT_VV(vadd_vv_h, 2, 2) |
| GEN_VEXT_VV(vadd_vv_w, 4, 4) |
| GEN_VEXT_VV(vadd_vv_d, 8, 8) |
| GEN_VEXT_VV(vsub_vv_b, 1, 1) |
| GEN_VEXT_VV(vsub_vv_h, 2, 2) |
| GEN_VEXT_VV(vsub_vv_w, 4, 4) |
| GEN_VEXT_VV(vsub_vv_d, 8, 8) |
| |
| typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i); |
| |
| /* |
| * (T1)s1 gives the real operator type. |
| * (TX1)(T1)s1 expands the operator type of widen or narrow operations. |
| */ |
| #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \ |
| } |
| |
| RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD) |
| RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD) |
| RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD) |
| RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD) |
| RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB) |
| RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB) |
| RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB) |
| RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB) |
| RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB) |
| RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB) |
| RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB) |
| RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB) |
| |
| static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2, |
| CPURISCVState *env, uint32_t desc, |
| uint32_t esz, uint32_t dsz, |
| opivx2_fn fn) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| uint32_t i; |
| |
| for (i = env->vstart; i < vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| fn(vd, s1, vs2, i); |
| } |
| env->vstart = 0; |
| } |
| |
| /* generate the helpers for OPIVX */ |
| #define GEN_VEXT_VX(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ |
| do_##NAME); \ |
| } |
| |
| GEN_VEXT_VX(vadd_vx_b, 1, 1) |
| GEN_VEXT_VX(vadd_vx_h, 2, 2) |
| GEN_VEXT_VX(vadd_vx_w, 4, 4) |
| GEN_VEXT_VX(vadd_vx_d, 8, 8) |
| GEN_VEXT_VX(vsub_vx_b, 1, 1) |
| GEN_VEXT_VX(vsub_vx_h, 2, 2) |
| GEN_VEXT_VX(vsub_vx_w, 4, 4) |
| GEN_VEXT_VX(vsub_vx_d, 8, 8) |
| GEN_VEXT_VX(vrsub_vx_b, 1, 1) |
| GEN_VEXT_VX(vrsub_vx_h, 2, 2) |
| GEN_VEXT_VX(vrsub_vx_w, 4, 4) |
| GEN_VEXT_VX(vrsub_vx_d, 8, 8) |
| |
| void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc) |
| { |
| intptr_t oprsz = simd_oprsz(desc); |
| intptr_t i; |
| |
| for (i = 0; i < oprsz; i += sizeof(uint8_t)) { |
| *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i); |
| } |
| } |
| |
| void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc) |
| { |
| intptr_t oprsz = simd_oprsz(desc); |
| intptr_t i; |
| |
| for (i = 0; i < oprsz; i += sizeof(uint16_t)) { |
| *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i); |
| } |
| } |
| |
| void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc) |
| { |
| intptr_t oprsz = simd_oprsz(desc); |
| intptr_t i; |
| |
| for (i = 0; i < oprsz; i += sizeof(uint32_t)) { |
| *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i); |
| } |
| } |
| |
| void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc) |
| { |
| intptr_t oprsz = simd_oprsz(desc); |
| intptr_t i; |
| |
| for (i = 0; i < oprsz; i += sizeof(uint64_t)) { |
| *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i); |
| } |
| } |
| |
| /* Vector Widening Integer Add/Subtract */ |
| #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t |
| #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t |
| #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t |
| #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t |
| #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t |
| #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t |
| #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t |
| #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t |
| #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t |
| #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t |
| #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t |
| #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t |
| RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD) |
| RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD) |
| RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD) |
| RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB) |
| RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB) |
| RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB) |
| RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD) |
| RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD) |
| RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD) |
| RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB) |
| RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB) |
| RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB) |
| RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD) |
| RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD) |
| RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD) |
| RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB) |
| RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB) |
| RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB) |
| RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD) |
| RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD) |
| RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD) |
| RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB) |
| RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB) |
| RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB) |
| GEN_VEXT_VV(vwaddu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwaddu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwaddu_vv_w, 4, 8) |
| GEN_VEXT_VV(vwsubu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwsubu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwsubu_vv_w, 4, 8) |
| GEN_VEXT_VV(vwadd_vv_b, 1, 2) |
| GEN_VEXT_VV(vwadd_vv_h, 2, 4) |
| GEN_VEXT_VV(vwadd_vv_w, 4, 8) |
| GEN_VEXT_VV(vwsub_vv_b, 1, 2) |
| GEN_VEXT_VV(vwsub_vv_h, 2, 4) |
| GEN_VEXT_VV(vwsub_vv_w, 4, 8) |
| GEN_VEXT_VV(vwaddu_wv_b, 1, 2) |
| GEN_VEXT_VV(vwaddu_wv_h, 2, 4) |
| GEN_VEXT_VV(vwaddu_wv_w, 4, 8) |
| GEN_VEXT_VV(vwsubu_wv_b, 1, 2) |
| GEN_VEXT_VV(vwsubu_wv_h, 2, 4) |
| GEN_VEXT_VV(vwsubu_wv_w, 4, 8) |
| GEN_VEXT_VV(vwadd_wv_b, 1, 2) |
| GEN_VEXT_VV(vwadd_wv_h, 2, 4) |
| GEN_VEXT_VV(vwadd_wv_w, 4, 8) |
| GEN_VEXT_VV(vwsub_wv_b, 1, 2) |
| GEN_VEXT_VV(vwsub_wv_h, 2, 4) |
| GEN_VEXT_VV(vwsub_wv_w, 4, 8) |
| |
| RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD) |
| RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD) |
| RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD) |
| RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB) |
| RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB) |
| RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB) |
| RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD) |
| RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD) |
| RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD) |
| RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB) |
| RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB) |
| RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB) |
| RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD) |
| RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD) |
| RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD) |
| RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB) |
| RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB) |
| RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB) |
| RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD) |
| RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD) |
| RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD) |
| RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB) |
| RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB) |
| RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB) |
| GEN_VEXT_VX(vwaddu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwaddu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwaddu_vx_w, 4, 8) |
| GEN_VEXT_VX(vwsubu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwsubu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwsubu_vx_w, 4, 8) |
| GEN_VEXT_VX(vwadd_vx_b, 1, 2) |
| GEN_VEXT_VX(vwadd_vx_h, 2, 4) |
| GEN_VEXT_VX(vwadd_vx_w, 4, 8) |
| GEN_VEXT_VX(vwsub_vx_b, 1, 2) |
| GEN_VEXT_VX(vwsub_vx_h, 2, 4) |
| GEN_VEXT_VX(vwsub_vx_w, 4, 8) |
| GEN_VEXT_VX(vwaddu_wx_b, 1, 2) |
| GEN_VEXT_VX(vwaddu_wx_h, 2, 4) |
| GEN_VEXT_VX(vwaddu_wx_w, 4, 8) |
| GEN_VEXT_VX(vwsubu_wx_b, 1, 2) |
| GEN_VEXT_VX(vwsubu_wx_h, 2, 4) |
| GEN_VEXT_VX(vwsubu_wx_w, 4, 8) |
| GEN_VEXT_VX(vwadd_wx_b, 1, 2) |
| GEN_VEXT_VX(vwadd_wx_h, 2, 4) |
| GEN_VEXT_VX(vwadd_wx_w, 4, 8) |
| GEN_VEXT_VX(vwsub_wx_b, 1, 2) |
| GEN_VEXT_VX(vwsub_wx_h, 2, 4) |
| GEN_VEXT_VX(vwsub_wx_w, 4, 8) |
| |
| /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ |
| #define DO_VADC(N, M, C) (N + M + C) |
| #define DO_VSBC(N, M, C) (N - M - C) |
| |
| #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| ETYPE carry = vext_elem_mask(v0, i); \ |
| \ |
| *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC) |
| GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC) |
| GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC) |
| GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC) |
| |
| GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC) |
| GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC) |
| GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC) |
| GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC) |
| |
| #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| ETYPE carry = vext_elem_mask(v0, i); \ |
| \ |
| *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC) |
| GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC) |
| GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC) |
| GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC) |
| |
| GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC) |
| GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC) |
| GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC) |
| GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC) |
| |
| #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \ |
| (__typeof(N))(N + M) < N) |
| #define DO_MSBC(N, M, C) (C ? N <= M : N < M) |
| |
| #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| ETYPE carry = !vm && vext_elem_mask(v0, i); \ |
| vext_set_elem_mask(vd, i, DO_OP(s2, s1, carry)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC) |
| GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC) |
| GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC) |
| GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC) |
| |
| GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC) |
| GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC) |
| GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC) |
| GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC) |
| |
| #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| ETYPE carry = !vm && vext_elem_mask(v0, i); \ |
| vext_set_elem_mask(vd, i, \ |
| DO_OP(s2, (ETYPE)(target_long)s1, carry)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC) |
| GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC) |
| GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC) |
| GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC) |
| |
| GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC) |
| GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC) |
| GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC) |
| GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC) |
| |
| /* Vector Bitwise Logical Instructions */ |
| RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND) |
| RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND) |
| RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND) |
| RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND) |
| RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR) |
| RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR) |
| RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR) |
| RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR) |
| RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR) |
| RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR) |
| RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR) |
| RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR) |
| GEN_VEXT_VV(vand_vv_b, 1, 1) |
| GEN_VEXT_VV(vand_vv_h, 2, 2) |
| GEN_VEXT_VV(vand_vv_w, 4, 4) |
| GEN_VEXT_VV(vand_vv_d, 8, 8) |
| GEN_VEXT_VV(vor_vv_b, 1, 1) |
| GEN_VEXT_VV(vor_vv_h, 2, 2) |
| GEN_VEXT_VV(vor_vv_w, 4, 4) |
| GEN_VEXT_VV(vor_vv_d, 8, 8) |
| GEN_VEXT_VV(vxor_vv_b, 1, 1) |
| GEN_VEXT_VV(vxor_vv_h, 2, 2) |
| GEN_VEXT_VV(vxor_vv_w, 4, 4) |
| GEN_VEXT_VV(vxor_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND) |
| RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND) |
| RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND) |
| RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND) |
| RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR) |
| RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR) |
| RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR) |
| RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR) |
| RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR) |
| RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR) |
| RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR) |
| RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR) |
| GEN_VEXT_VX(vand_vx_b, 1, 1) |
| GEN_VEXT_VX(vand_vx_h, 2, 2) |
| GEN_VEXT_VX(vand_vx_w, 4, 4) |
| GEN_VEXT_VX(vand_vx_d, 8, 8) |
| GEN_VEXT_VX(vor_vx_b, 1, 1) |
| GEN_VEXT_VX(vor_vx_h, 2, 2) |
| GEN_VEXT_VX(vor_vx_w, 4, 4) |
| GEN_VEXT_VX(vor_vx_d, 8, 8) |
| GEN_VEXT_VX(vxor_vx_b, 1, 1) |
| GEN_VEXT_VX(vxor_vx_h, 2, 2) |
| GEN_VEXT_VX(vxor_vx_w, 4, 4) |
| GEN_VEXT_VX(vxor_vx_d, 8, 8) |
| |
| /* Vector Single-Width Bit Shift Instructions */ |
| #define DO_SLL(N, M) (N << (M)) |
| #define DO_SRL(N, M) (N >> (M)) |
| |
| /* generate the helpers for shift instructions with two vector operators */ |
| #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| TS1 s1 = *((TS1 *)vs1 + HS1(i)); \ |
| TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ |
| *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7) |
| GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf) |
| GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f) |
| GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f) |
| |
| GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7) |
| GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f) |
| |
| GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7) |
| GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f) |
| |
| /* generate the helpers for shift instructions with one vector and one scalar */ |
| #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7) |
| GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf) |
| GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f) |
| GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f) |
| |
| GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7) |
| GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f) |
| |
| GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7) |
| GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f) |
| |
| /* Vector Narrowing Integer Right Shift Instructions */ |
| GEN_VEXT_SHIFT_VV(vnsrl_wv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VV(vnsrl_wv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VV(vnsrl_wv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f) |
| GEN_VEXT_SHIFT_VV(vnsra_wv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VV(vnsra_wv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VV(vnsra_wv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f) |
| GEN_VEXT_SHIFT_VX(vnsrl_wx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VX(vnsrl_wx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VX(vnsrl_wx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f) |
| GEN_VEXT_SHIFT_VX(vnsra_wx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf) |
| GEN_VEXT_SHIFT_VX(vnsra_wx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f) |
| GEN_VEXT_SHIFT_VX(vnsra_wx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f) |
| |
| /* Vector Integer Comparison Instructions */ |
| #define DO_MSEQ(N, M) (N == M) |
| #define DO_MSNE(N, M) (N != M) |
| #define DO_MSLT(N, M) (N < M) |
| #define DO_MSLE(N, M) (N <= M) |
| #define DO_MSGT(N, M) (N > M) |
| |
| #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| vext_set_elem_mask(vd, i, DO_OP(s2, s1)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ) |
| GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ) |
| GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ) |
| GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ) |
| |
| GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE) |
| GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE) |
| GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE) |
| GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE) |
| |
| GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT) |
| |
| GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT) |
| GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT) |
| |
| GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE) |
| |
| GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE) |
| GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE) |
| |
| #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| vext_set_elem_mask(vd, i, \ |
| DO_OP(s2, (ETYPE)(target_long)s1)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ) |
| GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ) |
| GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ) |
| GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ) |
| |
| GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE) |
| GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE) |
| GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE) |
| GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE) |
| |
| GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT) |
| |
| GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT) |
| GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT) |
| |
| GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE) |
| |
| GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE) |
| GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE) |
| |
| GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT) |
| |
| GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT) |
| GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT) |
| |
| /* Vector Integer Min/Max Instructions */ |
| RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN) |
| RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN) |
| RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN) |
| RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN) |
| RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN) |
| RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN) |
| RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN) |
| RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN) |
| RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX) |
| RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX) |
| RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX) |
| RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX) |
| RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX) |
| RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX) |
| RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX) |
| RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX) |
| GEN_VEXT_VV(vminu_vv_b, 1, 1) |
| GEN_VEXT_VV(vminu_vv_h, 2, 2) |
| GEN_VEXT_VV(vminu_vv_w, 4, 4) |
| GEN_VEXT_VV(vminu_vv_d, 8, 8) |
| GEN_VEXT_VV(vmin_vv_b, 1, 1) |
| GEN_VEXT_VV(vmin_vv_h, 2, 2) |
| GEN_VEXT_VV(vmin_vv_w, 4, 4) |
| GEN_VEXT_VV(vmin_vv_d, 8, 8) |
| GEN_VEXT_VV(vmaxu_vv_b, 1, 1) |
| GEN_VEXT_VV(vmaxu_vv_h, 2, 2) |
| GEN_VEXT_VV(vmaxu_vv_w, 4, 4) |
| GEN_VEXT_VV(vmaxu_vv_d, 8, 8) |
| GEN_VEXT_VV(vmax_vv_b, 1, 1) |
| GEN_VEXT_VV(vmax_vv_h, 2, 2) |
| GEN_VEXT_VV(vmax_vv_w, 4, 4) |
| GEN_VEXT_VV(vmax_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN) |
| RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN) |
| RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN) |
| RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN) |
| RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN) |
| RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN) |
| RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN) |
| RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN) |
| RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX) |
| RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX) |
| RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX) |
| RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX) |
| RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX) |
| RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX) |
| RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX) |
| RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX) |
| GEN_VEXT_VX(vminu_vx_b, 1, 1) |
| GEN_VEXT_VX(vminu_vx_h, 2, 2) |
| GEN_VEXT_VX(vminu_vx_w, 4, 4) |
| GEN_VEXT_VX(vminu_vx_d, 8, 8) |
| GEN_VEXT_VX(vmin_vx_b, 1, 1) |
| GEN_VEXT_VX(vmin_vx_h, 2, 2) |
| GEN_VEXT_VX(vmin_vx_w, 4, 4) |
| GEN_VEXT_VX(vmin_vx_d, 8, 8) |
| GEN_VEXT_VX(vmaxu_vx_b, 1, 1) |
| GEN_VEXT_VX(vmaxu_vx_h, 2, 2) |
| GEN_VEXT_VX(vmaxu_vx_w, 4, 4) |
| GEN_VEXT_VX(vmaxu_vx_d, 8, 8) |
| GEN_VEXT_VX(vmax_vx_b, 1, 1) |
| GEN_VEXT_VX(vmax_vx_h, 2, 2) |
| GEN_VEXT_VX(vmax_vx_w, 4, 4) |
| GEN_VEXT_VX(vmax_vx_d, 8, 8) |
| |
| /* Vector Single-Width Integer Multiply Instructions */ |
| #define DO_MUL(N, M) (N * M) |
| RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL) |
| RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL) |
| RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL) |
| RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL) |
| GEN_VEXT_VV(vmul_vv_b, 1, 1) |
| GEN_VEXT_VV(vmul_vv_h, 2, 2) |
| GEN_VEXT_VV(vmul_vv_w, 4, 4) |
| GEN_VEXT_VV(vmul_vv_d, 8, 8) |
| |
| static int8_t do_mulh_b(int8_t s2, int8_t s1) |
| { |
| return (int16_t)s2 * (int16_t)s1 >> 8; |
| } |
| |
| static int16_t do_mulh_h(int16_t s2, int16_t s1) |
| { |
| return (int32_t)s2 * (int32_t)s1 >> 16; |
| } |
| |
| static int32_t do_mulh_w(int32_t s2, int32_t s1) |
| { |
| return (int64_t)s2 * (int64_t)s1 >> 32; |
| } |
| |
| static int64_t do_mulh_d(int64_t s2, int64_t s1) |
| { |
| uint64_t hi_64, lo_64; |
| |
| muls64(&lo_64, &hi_64, s1, s2); |
| return hi_64; |
| } |
| |
| static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1) |
| { |
| return (uint16_t)s2 * (uint16_t)s1 >> 8; |
| } |
| |
| static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1) |
| { |
| return (uint32_t)s2 * (uint32_t)s1 >> 16; |
| } |
| |
| static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1) |
| { |
| return (uint64_t)s2 * (uint64_t)s1 >> 32; |
| } |
| |
| static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1) |
| { |
| uint64_t hi_64, lo_64; |
| |
| mulu64(&lo_64, &hi_64, s2, s1); |
| return hi_64; |
| } |
| |
| static int8_t do_mulhsu_b(int8_t s2, uint8_t s1) |
| { |
| return (int16_t)s2 * (uint16_t)s1 >> 8; |
| } |
| |
| static int16_t do_mulhsu_h(int16_t s2, uint16_t s1) |
| { |
| return (int32_t)s2 * (uint32_t)s1 >> 16; |
| } |
| |
| static int32_t do_mulhsu_w(int32_t s2, uint32_t s1) |
| { |
| return (int64_t)s2 * (uint64_t)s1 >> 32; |
| } |
| |
| /* |
| * Let A = signed operand, |
| * B = unsigned operand |
| * P = mulu64(A, B), unsigned product |
| * |
| * LET X = 2 ** 64 - A, 2's complement of A |
| * SP = signed product |
| * THEN |
| * IF A < 0 |
| * SP = -X * B |
| * = -(2 ** 64 - A) * B |
| * = A * B - 2 ** 64 * B |
| * = P - 2 ** 64 * B |
| * ELSE |
| * SP = P |
| * THEN |
| * HI_P -= (A < 0 ? B : 0) |
| */ |
| |
| static int64_t do_mulhsu_d(int64_t s2, uint64_t s1) |
| { |
| uint64_t hi_64, lo_64; |
| |
| mulu64(&lo_64, &hi_64, s2, s1); |
| |
| hi_64 -= s2 < 0 ? s1 : 0; |
| return hi_64; |
| } |
| |
| RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b) |
| RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h) |
| RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w) |
| RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d) |
| RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b) |
| RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h) |
| RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w) |
| RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d) |
| RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b) |
| RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h) |
| RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w) |
| RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d) |
| GEN_VEXT_VV(vmulh_vv_b, 1, 1) |
| GEN_VEXT_VV(vmulh_vv_h, 2, 2) |
| GEN_VEXT_VV(vmulh_vv_w, 4, 4) |
| GEN_VEXT_VV(vmulh_vv_d, 8, 8) |
| GEN_VEXT_VV(vmulhu_vv_b, 1, 1) |
| GEN_VEXT_VV(vmulhu_vv_h, 2, 2) |
| GEN_VEXT_VV(vmulhu_vv_w, 4, 4) |
| GEN_VEXT_VV(vmulhu_vv_d, 8, 8) |
| GEN_VEXT_VV(vmulhsu_vv_b, 1, 1) |
| GEN_VEXT_VV(vmulhsu_vv_h, 2, 2) |
| GEN_VEXT_VV(vmulhsu_vv_w, 4, 4) |
| GEN_VEXT_VV(vmulhsu_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL) |
| RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL) |
| RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL) |
| RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL) |
| RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b) |
| RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h) |
| RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w) |
| RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d) |
| RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b) |
| RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h) |
| RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w) |
| RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d) |
| RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b) |
| RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h) |
| RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w) |
| RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d) |
| GEN_VEXT_VX(vmul_vx_b, 1, 1) |
| GEN_VEXT_VX(vmul_vx_h, 2, 2) |
| GEN_VEXT_VX(vmul_vx_w, 4, 4) |
| GEN_VEXT_VX(vmul_vx_d, 8, 8) |
| GEN_VEXT_VX(vmulh_vx_b, 1, 1) |
| GEN_VEXT_VX(vmulh_vx_h, 2, 2) |
| GEN_VEXT_VX(vmulh_vx_w, 4, 4) |
| GEN_VEXT_VX(vmulh_vx_d, 8, 8) |
| GEN_VEXT_VX(vmulhu_vx_b, 1, 1) |
| GEN_VEXT_VX(vmulhu_vx_h, 2, 2) |
| GEN_VEXT_VX(vmulhu_vx_w, 4, 4) |
| GEN_VEXT_VX(vmulhu_vx_d, 8, 8) |
| GEN_VEXT_VX(vmulhsu_vx_b, 1, 1) |
| GEN_VEXT_VX(vmulhsu_vx_h, 2, 2) |
| GEN_VEXT_VX(vmulhsu_vx_w, 4, 4) |
| GEN_VEXT_VX(vmulhsu_vx_d, 8, 8) |
| |
| /* Vector Integer Divide Instructions */ |
| #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M) |
| #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M) |
| #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\ |
| unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M) |
| #define DO_REM(N, M) (unlikely(M == 0) ? N :\ |
| unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M) |
| |
| RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU) |
| RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU) |
| RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU) |
| RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU) |
| RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV) |
| RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV) |
| RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV) |
| RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV) |
| RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU) |
| RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU) |
| RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU) |
| RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU) |
| RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM) |
| RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM) |
| RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM) |
| RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM) |
| GEN_VEXT_VV(vdivu_vv_b, 1, 1) |
| GEN_VEXT_VV(vdivu_vv_h, 2, 2) |
| GEN_VEXT_VV(vdivu_vv_w, 4, 4) |
| GEN_VEXT_VV(vdivu_vv_d, 8, 8) |
| GEN_VEXT_VV(vdiv_vv_b, 1, 1) |
| GEN_VEXT_VV(vdiv_vv_h, 2, 2) |
| GEN_VEXT_VV(vdiv_vv_w, 4, 4) |
| GEN_VEXT_VV(vdiv_vv_d, 8, 8) |
| GEN_VEXT_VV(vremu_vv_b, 1, 1) |
| GEN_VEXT_VV(vremu_vv_h, 2, 2) |
| GEN_VEXT_VV(vremu_vv_w, 4, 4) |
| GEN_VEXT_VV(vremu_vv_d, 8, 8) |
| GEN_VEXT_VV(vrem_vv_b, 1, 1) |
| GEN_VEXT_VV(vrem_vv_h, 2, 2) |
| GEN_VEXT_VV(vrem_vv_w, 4, 4) |
| GEN_VEXT_VV(vrem_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU) |
| RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU) |
| RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU) |
| RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU) |
| RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV) |
| RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV) |
| RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV) |
| RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV) |
| RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU) |
| RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU) |
| RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU) |
| RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU) |
| RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM) |
| RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM) |
| RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM) |
| RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM) |
| GEN_VEXT_VX(vdivu_vx_b, 1, 1) |
| GEN_VEXT_VX(vdivu_vx_h, 2, 2) |
| GEN_VEXT_VX(vdivu_vx_w, 4, 4) |
| GEN_VEXT_VX(vdivu_vx_d, 8, 8) |
| GEN_VEXT_VX(vdiv_vx_b, 1, 1) |
| GEN_VEXT_VX(vdiv_vx_h, 2, 2) |
| GEN_VEXT_VX(vdiv_vx_w, 4, 4) |
| GEN_VEXT_VX(vdiv_vx_d, 8, 8) |
| GEN_VEXT_VX(vremu_vx_b, 1, 1) |
| GEN_VEXT_VX(vremu_vx_h, 2, 2) |
| GEN_VEXT_VX(vremu_vx_w, 4, 4) |
| GEN_VEXT_VX(vremu_vx_d, 8, 8) |
| GEN_VEXT_VX(vrem_vx_b, 1, 1) |
| GEN_VEXT_VX(vrem_vx_h, 2, 2) |
| GEN_VEXT_VX(vrem_vx_w, 4, 4) |
| GEN_VEXT_VX(vrem_vx_d, 8, 8) |
| |
| /* Vector Widening Integer Multiply Instructions */ |
| RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL) |
| RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL) |
| RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL) |
| RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL) |
| RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL) |
| RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL) |
| RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL) |
| RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL) |
| RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL) |
| GEN_VEXT_VV(vwmul_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmul_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmul_vv_w, 4, 8) |
| GEN_VEXT_VV(vwmulu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmulu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmulu_vv_w, 4, 8) |
| GEN_VEXT_VV(vwmulsu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmulsu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmulsu_vv_w, 4, 8) |
| |
| RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL) |
| RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL) |
| RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL) |
| RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL) |
| RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL) |
| RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL) |
| RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL) |
| RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL) |
| RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL) |
| GEN_VEXT_VX(vwmul_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmul_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmul_vx_w, 4, 8) |
| GEN_VEXT_VX(vwmulu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmulu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmulu_vx_w, 4, 8) |
| GEN_VEXT_VX(vwmulsu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmulsu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmulsu_vx_w, 4, 8) |
| |
| /* Vector Single-Width Integer Multiply-Add Instructions */ |
| #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| TD d = *((TD *)vd + HD(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1, d); \ |
| } |
| |
| #define DO_MACC(N, M, D) (M * N + D) |
| #define DO_NMSAC(N, M, D) (-(M * N) + D) |
| #define DO_MADD(N, M, D) (M * D + N) |
| #define DO_NMSUB(N, M, D) (-(M * D) + N) |
| RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC) |
| RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC) |
| RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC) |
| RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC) |
| RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC) |
| RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC) |
| RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC) |
| RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC) |
| RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD) |
| RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD) |
| RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD) |
| RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD) |
| RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB) |
| RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB) |
| RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB) |
| RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB) |
| GEN_VEXT_VV(vmacc_vv_b, 1, 1) |
| GEN_VEXT_VV(vmacc_vv_h, 2, 2) |
| GEN_VEXT_VV(vmacc_vv_w, 4, 4) |
| GEN_VEXT_VV(vmacc_vv_d, 8, 8) |
| GEN_VEXT_VV(vnmsac_vv_b, 1, 1) |
| GEN_VEXT_VV(vnmsac_vv_h, 2, 2) |
| GEN_VEXT_VV(vnmsac_vv_w, 4, 4) |
| GEN_VEXT_VV(vnmsac_vv_d, 8, 8) |
| GEN_VEXT_VV(vmadd_vv_b, 1, 1) |
| GEN_VEXT_VV(vmadd_vv_h, 2, 2) |
| GEN_VEXT_VV(vmadd_vv_w, 4, 4) |
| GEN_VEXT_VV(vmadd_vv_d, 8, 8) |
| GEN_VEXT_VV(vnmsub_vv_b, 1, 1) |
| GEN_VEXT_VV(vnmsub_vv_h, 2, 2) |
| GEN_VEXT_VV(vnmsub_vv_w, 4, 4) |
| GEN_VEXT_VV(vnmsub_vv_d, 8, 8) |
| |
| #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| TD d = *((TD *)vd + HD(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \ |
| } |
| |
| RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC) |
| RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC) |
| RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC) |
| RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC) |
| RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC) |
| RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC) |
| RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC) |
| RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC) |
| RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD) |
| RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD) |
| RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD) |
| RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD) |
| RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB) |
| RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB) |
| RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB) |
| RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB) |
| GEN_VEXT_VX(vmacc_vx_b, 1, 1) |
| GEN_VEXT_VX(vmacc_vx_h, 2, 2) |
| GEN_VEXT_VX(vmacc_vx_w, 4, 4) |
| GEN_VEXT_VX(vmacc_vx_d, 8, 8) |
| GEN_VEXT_VX(vnmsac_vx_b, 1, 1) |
| GEN_VEXT_VX(vnmsac_vx_h, 2, 2) |
| GEN_VEXT_VX(vnmsac_vx_w, 4, 4) |
| GEN_VEXT_VX(vnmsac_vx_d, 8, 8) |
| GEN_VEXT_VX(vmadd_vx_b, 1, 1) |
| GEN_VEXT_VX(vmadd_vx_h, 2, 2) |
| GEN_VEXT_VX(vmadd_vx_w, 4, 4) |
| GEN_VEXT_VX(vmadd_vx_d, 8, 8) |
| GEN_VEXT_VX(vnmsub_vx_b, 1, 1) |
| GEN_VEXT_VX(vnmsub_vx_h, 2, 2) |
| GEN_VEXT_VX(vnmsub_vx_w, 4, 4) |
| GEN_VEXT_VX(vnmsub_vx_d, 8, 8) |
| |
| /* Vector Widening Integer Multiply-Add Instructions */ |
| RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC) |
| RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC) |
| RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC) |
| RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC) |
| RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC) |
| RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC) |
| RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC) |
| RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC) |
| RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC) |
| GEN_VEXT_VV(vwmaccu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmaccu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmaccu_vv_w, 4, 8) |
| GEN_VEXT_VV(vwmacc_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmacc_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmacc_vv_w, 4, 8) |
| GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2) |
| GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4) |
| GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8) |
| |
| RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC) |
| RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC) |
| RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC) |
| RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC) |
| RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC) |
| GEN_VEXT_VX(vwmaccu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmaccu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmaccu_vx_w, 4, 8) |
| GEN_VEXT_VX(vwmacc_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmacc_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmacc_vx_w, 4, 8) |
| GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8) |
| GEN_VEXT_VX(vwmaccus_vx_b, 1, 2) |
| GEN_VEXT_VX(vwmaccus_vx_h, 2, 4) |
| GEN_VEXT_VX(vwmaccus_vx_w, 4, 8) |
| |
| /* Vector Integer Merge and Move Instructions */ |
| #define GEN_VEXT_VMV_VV(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ |
| *((ETYPE *)vd + H(i)) = s1; \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1) |
| GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2) |
| GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4) |
| GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8) |
| |
| #define GEN_VEXT_VMV_VX(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| *((ETYPE *)vd + H(i)) = (ETYPE)s1; \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1) |
| GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2) |
| GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4) |
| GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8) |
| |
| #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE *vt = (!vext_elem_mask(v0, i) ? vs2 : vs1); \ |
| *((ETYPE *)vd + H(i)) = *(vt + H(i)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1) |
| GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2) |
| GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4) |
| GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8) |
| |
| #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| ETYPE d = (!vext_elem_mask(v0, i) ? s2 : \ |
| (ETYPE)(target_long)s1); \ |
| *((ETYPE *)vd + H(i)) = d; \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1) |
| GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2) |
| GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4) |
| GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8) |
| |
| /* |
| *** Vector Fixed-Point Arithmetic Instructions |
| */ |
| |
| /* Vector Single-Width Saturating Add and Subtract */ |
| |
| /* |
| * As fixed point instructions probably have round mode and saturation, |
| * define common macros for fixed point here. |
| */ |
| typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i, |
| CPURISCVState *env, int vxrm); |
| |
| #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static inline void \ |
| do_##NAME(void *vd, void *vs1, void *vs2, int i, \ |
| CPURISCVState *env, int vxrm) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \ |
| } |
| |
| static inline void |
| vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2, |
| CPURISCVState *env, |
| uint32_t vl, uint32_t vm, int vxrm, |
| opivv2_rm_fn *fn) |
| { |
| for (uint32_t i = env->vstart; i < vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| fn(vd, vs1, vs2, i, env, vxrm); |
| } |
| env->vstart = 0; |
| } |
| |
| static inline void |
| vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2, |
| CPURISCVState *env, |
| uint32_t desc, uint32_t esz, uint32_t dsz, |
| opivv2_rm_fn *fn) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| |
| switch (env->vxrm) { |
| case 0: /* rnu */ |
| vext_vv_rm_1(vd, v0, vs1, vs2, |
| env, vl, vm, 0, fn); |
| break; |
| case 1: /* rne */ |
| vext_vv_rm_1(vd, v0, vs1, vs2, |
| env, vl, vm, 1, fn); |
| break; |
| case 2: /* rdn */ |
| vext_vv_rm_1(vd, v0, vs1, vs2, |
| env, vl, vm, 2, fn); |
| break; |
| default: /* rod */ |
| vext_vv_rm_1(vd, v0, vs1, vs2, |
| env, vl, vm, 3, fn); |
| break; |
| } |
| } |
| |
| /* generate helpers for fixed point instructions with OPIVV format */ |
| #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ |
| do_##NAME); \ |
| } |
| |
| static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) |
| { |
| uint8_t res = a + b; |
| if (res < a) { |
| res = UINT8_MAX; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a, |
| uint16_t b) |
| { |
| uint16_t res = a + b; |
| if (res < a) { |
| res = UINT16_MAX; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a, |
| uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (res < a) { |
| res = UINT32_MAX; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a, |
| uint64_t b) |
| { |
| uint64_t res = a + b; |
| if (res < a) { |
| res = UINT64_MAX; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8) |
| RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16) |
| RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32) |
| RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64) |
| GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8) |
| |
| typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i, |
| CPURISCVState *env, int vxrm); |
| |
| #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static inline void \ |
| do_##NAME(void *vd, target_long s1, void *vs2, int i, \ |
| CPURISCVState *env, int vxrm) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \ |
| } |
| |
| static inline void |
| vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2, |
| CPURISCVState *env, |
| uint32_t vl, uint32_t vm, int vxrm, |
| opivx2_rm_fn *fn) |
| { |
| for (uint32_t i = env->vstart; i < vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| fn(vd, s1, vs2, i, env, vxrm); |
| } |
| env->vstart = 0; |
| } |
| |
| static inline void |
| vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2, |
| CPURISCVState *env, |
| uint32_t desc, uint32_t esz, uint32_t dsz, |
| opivx2_rm_fn *fn) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| |
| switch (env->vxrm) { |
| case 0: /* rnu */ |
| vext_vx_rm_1(vd, v0, s1, vs2, |
| env, vl, vm, 0, fn); |
| break; |
| case 1: /* rne */ |
| vext_vx_rm_1(vd, v0, s1, vs2, |
| env, vl, vm, 1, fn); |
| break; |
| case 2: /* rdn */ |
| vext_vx_rm_1(vd, v0, s1, vs2, |
| env, vl, vm, 2, fn); |
| break; |
| default: /* rod */ |
| vext_vx_rm_1(vd, v0, s1, vs2, |
| env, vl, vm, 3, fn); |
| break; |
| } |
| } |
| |
| /* generate helpers for fixed point instructions with OPIVX format */ |
| #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ |
| do_##NAME); \ |
| } |
| |
| RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8) |
| RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16) |
| RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32) |
| RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64) |
| GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8) |
| |
| static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) |
| { |
| int8_t res = a + b; |
| if ((res ^ a) & (res ^ b) & INT8_MIN) { |
| res = a > 0 ? INT8_MAX : INT8_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) |
| { |
| int16_t res = a + b; |
| if ((res ^ a) & (res ^ b) & INT16_MIN) { |
| res = a > 0 ? INT16_MAX : INT16_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| int32_t res = a + b; |
| if ((res ^ a) & (res ^ b) & INT32_MIN) { |
| res = a > 0 ? INT32_MAX : INT32_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| int64_t res = a + b; |
| if ((res ^ a) & (res ^ b) & INT64_MIN) { |
| res = a > 0 ? INT64_MAX : INT64_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8) |
| RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16) |
| RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32) |
| RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64) |
| GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8) |
| RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16) |
| RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32) |
| RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64) |
| GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8) |
| |
| static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) |
| { |
| uint8_t res = a - b; |
| if (res > a) { |
| res = 0; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a, |
| uint16_t b) |
| { |
| uint16_t res = a - b; |
| if (res > a) { |
| res = 0; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a, |
| uint32_t b) |
| { |
| uint32_t res = a - b; |
| if (res > a) { |
| res = 0; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a, |
| uint64_t b) |
| { |
| uint64_t res = a - b; |
| if (res > a) { |
| res = 0; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8) |
| RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16) |
| RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32) |
| RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64) |
| GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8) |
| RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16) |
| RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32) |
| RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64) |
| GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8) |
| |
| static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) |
| { |
| int8_t res = a - b; |
| if ((res ^ a) & (a ^ b) & INT8_MIN) { |
| res = a >= 0 ? INT8_MAX : INT8_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) |
| { |
| int16_t res = a - b; |
| if ((res ^ a) & (a ^ b) & INT16_MIN) { |
| res = a >= 0 ? INT16_MAX : INT16_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| int32_t res = a - b; |
| if ((res ^ a) & (a ^ b) & INT32_MIN) { |
| res = a >= 0 ? INT32_MAX : INT32_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| int64_t res = a - b; |
| if ((res ^ a) & (a ^ b) & INT64_MIN) { |
| res = a >= 0 ? INT64_MAX : INT64_MIN; |
| env->vxsat = 0x1; |
| } |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8) |
| RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16) |
| RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32) |
| RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64) |
| GEN_VEXT_VV_RM(vssub_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vssub_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vssub_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vssub_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8) |
| RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16) |
| RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32) |
| RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64) |
| GEN_VEXT_VX_RM(vssub_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vssub_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vssub_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vssub_vx_d, 8, 8) |
| |
| /* Vector Single-Width Averaging Add and Subtract */ |
| static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift) |
| { |
| uint8_t d = extract64(v, shift, 1); |
| uint8_t d1; |
| uint64_t D1, D2; |
| |
| if (shift == 0 || shift > 64) { |
| return 0; |
| } |
| |
| d1 = extract64(v, shift - 1, 1); |
| D1 = extract64(v, 0, shift); |
| if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */ |
| return d1; |
| } else if (vxrm == 1) { /* round-to-nearest-even */ |
| if (shift > 1) { |
| D2 = extract64(v, 0, shift - 1); |
| return d1 & ((D2 != 0) | d); |
| } else { |
| return d1 & d; |
| } |
| } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */ |
| return !d & (D1 != 0); |
| } |
| return 0; /* round-down (truncate) */ |
| } |
| |
| static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| int64_t res = (int64_t)a + b; |
| uint8_t round = get_round(vxrm, res, 1); |
| |
| return (res >> 1) + round; |
| } |
| |
| static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| int64_t res = a + b; |
| uint8_t round = get_round(vxrm, res, 1); |
| int64_t over = (res ^ a) & (res ^ b) & INT64_MIN; |
| |
| /* With signed overflow, bit 64 is inverse of bit 63. */ |
| return ((res >> 1) ^ over) + round; |
| } |
| |
| RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32) |
| RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32) |
| RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32) |
| RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64) |
| GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32) |
| RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32) |
| RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32) |
| RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64) |
| GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8) |
| |
| static inline uint32_t aaddu32(CPURISCVState *env, int vxrm, |
| uint32_t a, uint32_t b) |
| { |
| uint64_t res = (uint64_t)a + b; |
| uint8_t round = get_round(vxrm, res, 1); |
| |
| return (res >> 1) + round; |
| } |
| |
| static inline uint64_t aaddu64(CPURISCVState *env, int vxrm, |
| uint64_t a, uint64_t b) |
| { |
| uint64_t res = a + b; |
| uint8_t round = get_round(vxrm, res, 1); |
| uint64_t over = (uint64_t)(res < a) << 63; |
| |
| return ((res >> 1) | over) + round; |
| } |
| |
| RVVCALL(OPIVV2_RM, vaaddu_vv_b, OP_UUU_B, H1, H1, H1, aaddu32) |
| RVVCALL(OPIVV2_RM, vaaddu_vv_h, OP_UUU_H, H2, H2, H2, aaddu32) |
| RVVCALL(OPIVV2_RM, vaaddu_vv_w, OP_UUU_W, H4, H4, H4, aaddu32) |
| RVVCALL(OPIVV2_RM, vaaddu_vv_d, OP_UUU_D, H8, H8, H8, aaddu64) |
| GEN_VEXT_VV_RM(vaaddu_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vaaddu_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vaaddu_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vaaddu_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vaaddu_vx_b, OP_UUU_B, H1, H1, aaddu32) |
| RVVCALL(OPIVX2_RM, vaaddu_vx_h, OP_UUU_H, H2, H2, aaddu32) |
| RVVCALL(OPIVX2_RM, vaaddu_vx_w, OP_UUU_W, H4, H4, aaddu32) |
| RVVCALL(OPIVX2_RM, vaaddu_vx_d, OP_UUU_D, H8, H8, aaddu64) |
| GEN_VEXT_VX_RM(vaaddu_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vaaddu_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vaaddu_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vaaddu_vx_d, 8, 8) |
| |
| static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| int64_t res = (int64_t)a - b; |
| uint8_t round = get_round(vxrm, res, 1); |
| |
| return (res >> 1) + round; |
| } |
| |
| static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| int64_t res = (int64_t)a - b; |
| uint8_t round = get_round(vxrm, res, 1); |
| int64_t over = (res ^ a) & (a ^ b) & INT64_MIN; |
| |
| /* With signed overflow, bit 64 is inverse of bit 63. */ |
| return ((res >> 1) ^ over) + round; |
| } |
| |
| RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32) |
| RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32) |
| RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32) |
| RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64) |
| GEN_VEXT_VV_RM(vasub_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vasub_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vasub_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vasub_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32) |
| RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32) |
| RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32) |
| RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64) |
| GEN_VEXT_VX_RM(vasub_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vasub_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vasub_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vasub_vx_d, 8, 8) |
| |
| static inline uint32_t asubu32(CPURISCVState *env, int vxrm, |
| uint32_t a, uint32_t b) |
| { |
| int64_t res = (int64_t)a - b; |
| uint8_t round = get_round(vxrm, res, 1); |
| |
| return (res >> 1) + round; |
| } |
| |
| static inline uint64_t asubu64(CPURISCVState *env, int vxrm, |
| uint64_t a, uint64_t b) |
| { |
| uint64_t res = (uint64_t)a - b; |
| uint8_t round = get_round(vxrm, res, 1); |
| uint64_t over = (uint64_t)(res > a) << 63; |
| |
| return ((res >> 1) | over) + round; |
| } |
| |
| RVVCALL(OPIVV2_RM, vasubu_vv_b, OP_UUU_B, H1, H1, H1, asubu32) |
| RVVCALL(OPIVV2_RM, vasubu_vv_h, OP_UUU_H, H2, H2, H2, asubu32) |
| RVVCALL(OPIVV2_RM, vasubu_vv_w, OP_UUU_W, H4, H4, H4, asubu32) |
| RVVCALL(OPIVV2_RM, vasubu_vv_d, OP_UUU_D, H8, H8, H8, asubu64) |
| GEN_VEXT_VV_RM(vasubu_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vasubu_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vasubu_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vasubu_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vasubu_vx_b, OP_UUU_B, H1, H1, asubu32) |
| RVVCALL(OPIVX2_RM, vasubu_vx_h, OP_UUU_H, H2, H2, asubu32) |
| RVVCALL(OPIVX2_RM, vasubu_vx_w, OP_UUU_W, H4, H4, asubu32) |
| RVVCALL(OPIVX2_RM, vasubu_vx_d, OP_UUU_D, H8, H8, asubu64) |
| GEN_VEXT_VX_RM(vasubu_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vasubu_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vasubu_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vasubu_vx_d, 8, 8) |
| |
| /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ |
| static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) |
| { |
| uint8_t round; |
| int16_t res; |
| |
| res = (int16_t)a * (int16_t)b; |
| round = get_round(vxrm, res, 7); |
| res = (res >> 7) + round; |
| |
| if (res > INT8_MAX) { |
| env->vxsat = 0x1; |
| return INT8_MAX; |
| } else if (res < INT8_MIN) { |
| env->vxsat = 0x1; |
| return INT8_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) |
| { |
| uint8_t round; |
| int32_t res; |
| |
| res = (int32_t)a * (int32_t)b; |
| round = get_round(vxrm, res, 15); |
| res = (res >> 15) + round; |
| |
| if (res > INT16_MAX) { |
| env->vxsat = 0x1; |
| return INT16_MAX; |
| } else if (res < INT16_MIN) { |
| env->vxsat = 0x1; |
| return INT16_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| uint8_t round; |
| int64_t res; |
| |
| res = (int64_t)a * (int64_t)b; |
| round = get_round(vxrm, res, 31); |
| res = (res >> 31) + round; |
| |
| if (res > INT32_MAX) { |
| env->vxsat = 0x1; |
| return INT32_MAX; |
| } else if (res < INT32_MIN) { |
| env->vxsat = 0x1; |
| return INT32_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| uint8_t round; |
| uint64_t hi_64, lo_64; |
| int64_t res; |
| |
| if (a == INT64_MIN && b == INT64_MIN) { |
| env->vxsat = 1; |
| return INT64_MAX; |
| } |
| |
| muls64(&lo_64, &hi_64, a, b); |
| round = get_round(vxrm, lo_64, 63); |
| /* |
| * Cannot overflow, as there are always |
| * 2 sign bits after multiply. |
| */ |
| res = (hi_64 << 1) | (lo_64 >> 63); |
| if (round) { |
| if (res == INT64_MAX) { |
| env->vxsat = 1; |
| } else { |
| res += 1; |
| } |
| } |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8) |
| RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16) |
| RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32) |
| RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64) |
| GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8) |
| RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16) |
| RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32) |
| RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64) |
| GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8) |
| |
| /* Vector Single-Width Scaling Shift Instructions */ |
| static inline uint8_t |
| vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) |
| { |
| uint8_t round, shift = b & 0x7; |
| uint8_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline uint16_t |
| vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b) |
| { |
| uint8_t round, shift = b & 0xf; |
| uint16_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline uint32_t |
| vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b) |
| { |
| uint8_t round, shift = b & 0x1f; |
| uint32_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline uint64_t |
| vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b) |
| { |
| uint8_t round, shift = b & 0x3f; |
| uint64_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8) |
| RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16) |
| RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32) |
| RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64) |
| GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8) |
| RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16) |
| RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32) |
| RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64) |
| GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8) |
| |
| static inline int8_t |
| vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) |
| { |
| uint8_t round, shift = b & 0x7; |
| int8_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline int16_t |
| vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) |
| { |
| uint8_t round, shift = b & 0xf; |
| int16_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline int32_t |
| vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) |
| { |
| uint8_t round, shift = b & 0x1f; |
| int32_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| static inline int64_t |
| vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) |
| { |
| uint8_t round, shift = b & 0x3f; |
| int64_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| return res; |
| } |
| |
| RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8) |
| RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16) |
| RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32) |
| RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64) |
| GEN_VEXT_VV_RM(vssra_vv_b, 1, 1) |
| GEN_VEXT_VV_RM(vssra_vv_h, 2, 2) |
| GEN_VEXT_VV_RM(vssra_vv_w, 4, 4) |
| GEN_VEXT_VV_RM(vssra_vv_d, 8, 8) |
| |
| RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8) |
| RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16) |
| RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32) |
| RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64) |
| GEN_VEXT_VX_RM(vssra_vx_b, 1, 1) |
| GEN_VEXT_VX_RM(vssra_vx_h, 2, 2) |
| GEN_VEXT_VX_RM(vssra_vx_w, 4, 4) |
| GEN_VEXT_VX_RM(vssra_vx_d, 8, 8) |
| |
| /* Vector Narrowing Fixed-Point Clip Instructions */ |
| static inline int8_t |
| vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b) |
| { |
| uint8_t round, shift = b & 0xf; |
| int16_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > INT8_MAX) { |
| env->vxsat = 0x1; |
| return INT8_MAX; |
| } else if (res < INT8_MIN) { |
| env->vxsat = 0x1; |
| return INT8_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| static inline int16_t |
| vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b) |
| { |
| uint8_t round, shift = b & 0x1f; |
| int32_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > INT16_MAX) { |
| env->vxsat = 0x1; |
| return INT16_MAX; |
| } else if (res < INT16_MIN) { |
| env->vxsat = 0x1; |
| return INT16_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| static inline int32_t |
| vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b) |
| { |
| uint8_t round, shift = b & 0x3f; |
| int64_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > INT32_MAX) { |
| env->vxsat = 0x1; |
| return INT32_MAX; |
| } else if (res < INT32_MIN) { |
| env->vxsat = 0x1; |
| return INT32_MIN; |
| } else { |
| return res; |
| } |
| } |
| |
| RVVCALL(OPIVV2_RM, vnclip_wv_b, NOP_SSS_B, H1, H2, H1, vnclip8) |
| RVVCALL(OPIVV2_RM, vnclip_wv_h, NOP_SSS_H, H2, H4, H2, vnclip16) |
| RVVCALL(OPIVV2_RM, vnclip_wv_w, NOP_SSS_W, H4, H8, H4, vnclip32) |
| GEN_VEXT_VV_RM(vnclip_wv_b, 1, 1) |
| GEN_VEXT_VV_RM(vnclip_wv_h, 2, 2) |
| GEN_VEXT_VV_RM(vnclip_wv_w, 4, 4) |
| |
| RVVCALL(OPIVX2_RM, vnclip_wx_b, NOP_SSS_B, H1, H2, vnclip8) |
| RVVCALL(OPIVX2_RM, vnclip_wx_h, NOP_SSS_H, H2, H4, vnclip16) |
| RVVCALL(OPIVX2_RM, vnclip_wx_w, NOP_SSS_W, H4, H8, vnclip32) |
| GEN_VEXT_VX_RM(vnclip_wx_b, 1, 1) |
| GEN_VEXT_VX_RM(vnclip_wx_h, 2, 2) |
| GEN_VEXT_VX_RM(vnclip_wx_w, 4, 4) |
| |
| static inline uint8_t |
| vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b) |
| { |
| uint8_t round, shift = b & 0xf; |
| uint16_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > UINT8_MAX) { |
| env->vxsat = 0x1; |
| return UINT8_MAX; |
| } else { |
| return res; |
| } |
| } |
| |
| static inline uint16_t |
| vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b) |
| { |
| uint8_t round, shift = b & 0x1f; |
| uint32_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > UINT16_MAX) { |
| env->vxsat = 0x1; |
| return UINT16_MAX; |
| } else { |
| return res; |
| } |
| } |
| |
| static inline uint32_t |
| vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b) |
| { |
| uint8_t round, shift = b & 0x3f; |
| uint64_t res; |
| |
| round = get_round(vxrm, a, shift); |
| res = (a >> shift) + round; |
| if (res > UINT32_MAX) { |
| env->vxsat = 0x1; |
| return UINT32_MAX; |
| } else { |
| return res; |
| } |
| } |
| |
| RVVCALL(OPIVV2_RM, vnclipu_wv_b, NOP_UUU_B, H1, H2, H1, vnclipu8) |
| RVVCALL(OPIVV2_RM, vnclipu_wv_h, NOP_UUU_H, H2, H4, H2, vnclipu16) |
| RVVCALL(OPIVV2_RM, vnclipu_wv_w, NOP_UUU_W, H4, H8, H4, vnclipu32) |
| GEN_VEXT_VV_RM(vnclipu_wv_b, 1, 1) |
| GEN_VEXT_VV_RM(vnclipu_wv_h, 2, 2) |
| GEN_VEXT_VV_RM(vnclipu_wv_w, 4, 4) |
| |
| RVVCALL(OPIVX2_RM, vnclipu_wx_b, NOP_UUU_B, H1, H2, vnclipu8) |
| RVVCALL(OPIVX2_RM, vnclipu_wx_h, NOP_UUU_H, H2, H4, vnclipu16) |
| RVVCALL(OPIVX2_RM, vnclipu_wx_w, NOP_UUU_W, H4, H8, vnclipu32) |
| GEN_VEXT_VX_RM(vnclipu_wx_b, 1, 1) |
| GEN_VEXT_VX_RM(vnclipu_wx_h, 2, 2) |
| GEN_VEXT_VX_RM(vnclipu_wx_w, 4, 4) |
| |
| /* |
| *** Vector Float Point Arithmetic Instructions |
| */ |
| /* Vector Single-Width Floating-Point Add/Subtract Instructions */ |
| #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \ |
| CPURISCVState *env) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \ |
| } |
| |
| #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| do_##NAME(vd, vs1, vs2, i, env); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add) |
| RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add) |
| RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add) |
| GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8) |
| |
| #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \ |
| CPURISCVState *env) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\ |
| } |
| |
| #define GEN_VEXT_VF(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| do_##NAME(vd, s1, vs2, i, env); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add) |
| RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add) |
| RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add) |
| GEN_VEXT_VF(vfadd_vf_h, 2, 2) |
| GEN_VEXT_VF(vfadd_vf_w, 4, 4) |
| GEN_VEXT_VF(vfadd_vf_d, 8, 8) |
| |
| RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub) |
| RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub) |
| RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub) |
| GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub) |
| RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub) |
| RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub) |
| GEN_VEXT_VF(vfsub_vf_h, 2, 2) |
| GEN_VEXT_VF(vfsub_vf_w, 4, 4) |
| GEN_VEXT_VF(vfsub_vf_d, 8, 8) |
| |
| static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s) |
| { |
| return float16_sub(b, a, s); |
| } |
| |
| static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s) |
| { |
| return float32_sub(b, a, s); |
| } |
| |
| static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s) |
| { |
| return float64_sub(b, a, s); |
| } |
| |
| RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub) |
| RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub) |
| RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub) |
| GEN_VEXT_VF(vfrsub_vf_h, 2, 2) |
| GEN_VEXT_VF(vfrsub_vf_w, 4, 4) |
| GEN_VEXT_VF(vfrsub_vf_d, 8, 8) |
| |
| /* Vector Widening Floating-Point Add/Subtract Instructions */ |
| static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return float32_add(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), s); |
| } |
| |
| static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return float64_add(float32_to_float64(a, s), |
| float32_to_float64(b, s), s); |
| |
| } |
| |
| RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16) |
| RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32) |
| GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8) |
| RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16) |
| RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32) |
| GEN_VEXT_VF(vfwadd_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwadd_vf_w, 4, 8) |
| |
| static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return float32_sub(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), s); |
| } |
| |
| static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return float64_sub(float32_to_float64(a, s), |
| float32_to_float64(b, s), s); |
| |
| } |
| |
| RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16) |
| RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32) |
| GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8) |
| RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16) |
| RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32) |
| GEN_VEXT_VF(vfwsub_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwsub_vf_w, 4, 8) |
| |
| static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s) |
| { |
| return float32_add(a, float16_to_float32(b, true, s), s); |
| } |
| |
| static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s) |
| { |
| return float64_add(a, float32_to_float64(b, s), s); |
| } |
| |
| RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16) |
| RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32) |
| GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8) |
| RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16) |
| RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32) |
| GEN_VEXT_VF(vfwadd_wf_h, 2, 4) |
| GEN_VEXT_VF(vfwadd_wf_w, 4, 8) |
| |
| static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s) |
| { |
| return float32_sub(a, float16_to_float32(b, true, s), s); |
| } |
| |
| static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s) |
| { |
| return float64_sub(a, float32_to_float64(b, s), s); |
| } |
| |
| RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16) |
| RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32) |
| GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8) |
| RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16) |
| RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32) |
| GEN_VEXT_VF(vfwsub_wf_h, 2, 4) |
| GEN_VEXT_VF(vfwsub_wf_w, 4, 8) |
| |
| /* Vector Single-Width Floating-Point Multiply/Divide Instructions */ |
| RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul) |
| RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul) |
| RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul) |
| GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul) |
| RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul) |
| RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul) |
| GEN_VEXT_VF(vfmul_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmul_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmul_vf_d, 8, 8) |
| |
| RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div) |
| RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div) |
| RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div) |
| GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div) |
| RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div) |
| RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div) |
| GEN_VEXT_VF(vfdiv_vf_h, 2, 2) |
| GEN_VEXT_VF(vfdiv_vf_w, 4, 4) |
| GEN_VEXT_VF(vfdiv_vf_d, 8, 8) |
| |
| static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s) |
| { |
| return float16_div(b, a, s); |
| } |
| |
| static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s) |
| { |
| return float32_div(b, a, s); |
| } |
| |
| static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s) |
| { |
| return float64_div(b, a, s); |
| } |
| |
| RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv) |
| RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv) |
| RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv) |
| GEN_VEXT_VF(vfrdiv_vf_h, 2, 2) |
| GEN_VEXT_VF(vfrdiv_vf_w, 4, 4) |
| GEN_VEXT_VF(vfrdiv_vf_d, 8, 8) |
| |
| /* Vector Widening Floating-Point Multiply */ |
| static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return float32_mul(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), s); |
| } |
| |
| static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return float64_mul(float32_to_float64(a, s), |
| float32_to_float64(b, s), s); |
| |
| } |
| RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16) |
| RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32) |
| GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8) |
| RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16) |
| RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32) |
| GEN_VEXT_VF(vfwmul_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwmul_vf_w, 4, 8) |
| |
| /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ |
| #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \ |
| CPURISCVState *env) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| TD d = *((TD *)vd + HD(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \ |
| } |
| |
| static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(a, b, d, 0, s); |
| } |
| |
| static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(a, b, d, 0, s); |
| } |
| |
| static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(a, b, d, 0, s); |
| } |
| |
| RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16) |
| RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32) |
| RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64) |
| GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8) |
| |
| #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \ |
| CPURISCVState *env) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| TD d = *((TD *)vd + HD(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\ |
| } |
| |
| RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16) |
| RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32) |
| RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64) |
| GEN_VEXT_VF(vfmacc_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmacc_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmacc_vf_d, 8, 8) |
| |
| static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(a, b, d, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(a, b, d, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(a, b, d, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16) |
| RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32) |
| RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64) |
| GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16) |
| RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32) |
| RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64) |
| GEN_VEXT_VF(vfnmacc_vf_h, 2, 2) |
| GEN_VEXT_VF(vfnmacc_vf_w, 4, 4) |
| GEN_VEXT_VF(vfnmacc_vf_d, 8, 8) |
| |
| static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(a, b, d, float_muladd_negate_c, s); |
| } |
| |
| static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(a, b, d, float_muladd_negate_c, s); |
| } |
| |
| static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(a, b, d, float_muladd_negate_c, s); |
| } |
| |
| RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16) |
| RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32) |
| RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64) |
| GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16) |
| RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32) |
| RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64) |
| GEN_VEXT_VF(vfmsac_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmsac_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmsac_vf_d, 8, 8) |
| |
| static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(a, b, d, float_muladd_negate_product, s); |
| } |
| |
| static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(a, b, d, float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(a, b, d, float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16) |
| RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32) |
| RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64) |
| GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16) |
| RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32) |
| RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64) |
| GEN_VEXT_VF(vfnmsac_vf_h, 2, 2) |
| GEN_VEXT_VF(vfnmsac_vf_w, 4, 4) |
| GEN_VEXT_VF(vfnmsac_vf_d, 8, 8) |
| |
| static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(d, b, a, 0, s); |
| } |
| |
| static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(d, b, a, 0, s); |
| } |
| |
| static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(d, b, a, 0, s); |
| } |
| |
| RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16) |
| RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32) |
| RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64) |
| GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16) |
| RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32) |
| RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64) |
| GEN_VEXT_VF(vfmadd_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmadd_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmadd_vf_d, 8, 8) |
| |
| static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(d, b, a, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(d, b, a, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(d, b, a, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16) |
| RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32) |
| RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64) |
| GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16) |
| RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32) |
| RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64) |
| GEN_VEXT_VF(vfnmadd_vf_h, 2, 2) |
| GEN_VEXT_VF(vfnmadd_vf_w, 4, 4) |
| GEN_VEXT_VF(vfnmadd_vf_d, 8, 8) |
| |
| static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(d, b, a, float_muladd_negate_c, s); |
| } |
| |
| static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(d, b, a, float_muladd_negate_c, s); |
| } |
| |
| static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(d, b, a, float_muladd_negate_c, s); |
| } |
| |
| RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16) |
| RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32) |
| RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64) |
| GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16) |
| RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32) |
| RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64) |
| GEN_VEXT_VF(vfmsub_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmsub_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmsub_vf_d, 8, 8) |
| |
| static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s) |
| { |
| return float16_muladd(d, b, a, float_muladd_negate_product, s); |
| } |
| |
| static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(d, b, a, float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(d, b, a, float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16) |
| RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32) |
| RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64) |
| GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8) |
| RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16) |
| RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32) |
| RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64) |
| GEN_VEXT_VF(vfnmsub_vf_h, 2, 2) |
| GEN_VEXT_VF(vfnmsub_vf_w, 4, 4) |
| GEN_VEXT_VF(vfnmsub_vf_d, 8, 8) |
| |
| /* Vector Widening Floating-Point Fused Multiply-Add Instructions */ |
| static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), d, 0, s); |
| } |
| |
| static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(float32_to_float64(a, s), |
| float32_to_float64(b, s), d, 0, s); |
| } |
| |
| RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16) |
| RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32) |
| GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8) |
| RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16) |
| RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32) |
| GEN_VEXT_VF(vfwmacc_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwmacc_vf_w, 4, 8) |
| |
| static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), d, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(float32_to_float64(a, s), |
| float32_to_float64(b, s), d, |
| float_muladd_negate_c | float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16) |
| RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32) |
| GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8) |
| RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16) |
| RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32) |
| GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8) |
| |
| static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), d, |
| float_muladd_negate_c, s); |
| } |
| |
| static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(float32_to_float64(a, s), |
| float32_to_float64(b, s), d, |
| float_muladd_negate_c, s); |
| } |
| |
| RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16) |
| RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32) |
| GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8) |
| RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16) |
| RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32) |
| GEN_VEXT_VF(vfwmsac_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwmsac_vf_w, 4, 8) |
| |
| static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s) |
| { |
| return float32_muladd(float16_to_float32(a, true, s), |
| float16_to_float32(b, true, s), d, |
| float_muladd_negate_product, s); |
| } |
| |
| static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s) |
| { |
| return float64_muladd(float32_to_float64(a, s), |
| float32_to_float64(b, s), d, |
| float_muladd_negate_product, s); |
| } |
| |
| RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16) |
| RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32) |
| GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4) |
| GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8) |
| RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16) |
| RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32) |
| GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4) |
| GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8) |
| |
| /* Vector Floating-Point Square-Root Instruction */ |
| /* (TD, T2, TX2) */ |
| #define OP_UU_H uint16_t, uint16_t, uint16_t |
| #define OP_UU_W uint32_t, uint32_t, uint32_t |
| #define OP_UU_D uint64_t, uint64_t, uint64_t |
| |
| #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs2, int i, \ |
| CPURISCVState *env) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \ |
| } |
| |
| #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| if (vl == 0) { \ |
| return; \ |
| } \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| do_##NAME(vd, vs2, i, env); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt) |
| RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt) |
| RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt) |
| GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8) |
| |
| /* |
| * Vector Floating-Point Reciprocal Square-Root Estimate Instruction |
| * |
| * Adapted from riscv-v-spec recip.c: |
| * https://github.com/riscv/riscv-v-spec/blob/master/recip.c |
| */ |
| static uint64_t frsqrt7(uint64_t f, int exp_size, int frac_size) |
| { |
| uint64_t sign = extract64(f, frac_size + exp_size, 1); |
| uint64_t exp = extract64(f, frac_size, exp_size); |
| uint64_t frac = extract64(f, 0, frac_size); |
| |
| const uint8_t lookup_table[] = { |
| 52, 51, 50, 48, 47, 46, 44, 43, |
| 42, 41, 40, 39, 38, 36, 35, 34, |
| 33, 32, 31, 30, 30, 29, 28, 27, |
| 26, 25, 24, 23, 23, 22, 21, 20, |
| 19, 19, 18, 17, 16, 16, 15, 14, |
| 14, 13, 12, 12, 11, 10, 10, 9, |
| 9, 8, 7, 7, 6, 6, 5, 4, |
| 4, 3, 3, 2, 2, 1, 1, 0, |
| 127, 125, 123, 121, 119, 118, 116, 114, |
| 113, 111, 109, 108, 106, 105, 103, 102, |
| 100, 99, 97, 96, 95, 93, 92, 91, |
| 90, 88, 87, 86, 85, 84, 83, 82, |
| 80, 79, 78, 77, 76, 75, 74, 73, |
| 72, 71, 70, 70, 69, 68, 67, 66, |
| 65, 64, 63, 63, 62, 61, 60, 59, |
| 59, 58, 57, 56, 56, 55, 54, 53 |
| }; |
| const int precision = 7; |
| |
| if (exp == 0 && frac != 0) { /* subnormal */ |
| /* Normalize the subnormal. */ |
| while (extract64(frac, frac_size - 1, 1) == 0) { |
| exp--; |
| frac <<= 1; |
| } |
| |
| frac = (frac << 1) & MAKE_64BIT_MASK(0, frac_size); |
| } |
| |
| int idx = ((exp & 1) << (precision - 1)) | |
| (frac >> (frac_size - precision + 1)); |
| uint64_t out_frac = (uint64_t)(lookup_table[idx]) << |
| (frac_size - precision); |
| uint64_t out_exp = (3 * MAKE_64BIT_MASK(0, exp_size - 1) + ~exp) / 2; |
| |
| uint64_t val = 0; |
| val = deposit64(val, 0, frac_size, out_frac); |
| val = deposit64(val, frac_size, exp_size, out_exp); |
| val = deposit64(val, frac_size + exp_size, 1, sign); |
| return val; |
| } |
| |
| static float16 frsqrt7_h(float16 f, float_status *s) |
| { |
| int exp_size = 5, frac_size = 10; |
| bool sign = float16_is_neg(f); |
| |
| /* |
| * frsqrt7(sNaN) = canonical NaN |
| * frsqrt7(-inf) = canonical NaN |
| * frsqrt7(-normal) = canonical NaN |
| * frsqrt7(-subnormal) = canonical NaN |
| */ |
| if (float16_is_signaling_nan(f, s) || |
| (float16_is_infinity(f) && sign) || |
| (float16_is_normal(f) && sign) || |
| (float16_is_zero_or_denormal(f) && !float16_is_zero(f) && sign)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float16_default_nan(s); |
| } |
| |
| /* frsqrt7(qNaN) = canonical NaN */ |
| if (float16_is_quiet_nan(f, s)) { |
| return float16_default_nan(s); |
| } |
| |
| /* frsqrt7(+-0) = +-inf */ |
| if (float16_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float16_set_sign(float16_infinity, sign); |
| } |
| |
| /* frsqrt7(+inf) = +0 */ |
| if (float16_is_infinity(f) && !sign) { |
| return float16_set_sign(float16_zero, sign); |
| } |
| |
| /* +normal, +subnormal */ |
| uint64_t val = frsqrt7(f, exp_size, frac_size); |
| return make_float16(val); |
| } |
| |
| static float32 frsqrt7_s(float32 f, float_status *s) |
| { |
| int exp_size = 8, frac_size = 23; |
| bool sign = float32_is_neg(f); |
| |
| /* |
| * frsqrt7(sNaN) = canonical NaN |
| * frsqrt7(-inf) = canonical NaN |
| * frsqrt7(-normal) = canonical NaN |
| * frsqrt7(-subnormal) = canonical NaN |
| */ |
| if (float32_is_signaling_nan(f, s) || |
| (float32_is_infinity(f) && sign) || |
| (float32_is_normal(f) && sign) || |
| (float32_is_zero_or_denormal(f) && !float32_is_zero(f) && sign)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float32_default_nan(s); |
| } |
| |
| /* frsqrt7(qNaN) = canonical NaN */ |
| if (float32_is_quiet_nan(f, s)) { |
| return float32_default_nan(s); |
| } |
| |
| /* frsqrt7(+-0) = +-inf */ |
| if (float32_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float32_set_sign(float32_infinity, sign); |
| } |
| |
| /* frsqrt7(+inf) = +0 */ |
| if (float32_is_infinity(f) && !sign) { |
| return float32_set_sign(float32_zero, sign); |
| } |
| |
| /* +normal, +subnormal */ |
| uint64_t val = frsqrt7(f, exp_size, frac_size); |
| return make_float32(val); |
| } |
| |
| static float64 frsqrt7_d(float64 f, float_status *s) |
| { |
| int exp_size = 11, frac_size = 52; |
| bool sign = float64_is_neg(f); |
| |
| /* |
| * frsqrt7(sNaN) = canonical NaN |
| * frsqrt7(-inf) = canonical NaN |
| * frsqrt7(-normal) = canonical NaN |
| * frsqrt7(-subnormal) = canonical NaN |
| */ |
| if (float64_is_signaling_nan(f, s) || |
| (float64_is_infinity(f) && sign) || |
| (float64_is_normal(f) && sign) || |
| (float64_is_zero_or_denormal(f) && !float64_is_zero(f) && sign)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float64_default_nan(s); |
| } |
| |
| /* frsqrt7(qNaN) = canonical NaN */ |
| if (float64_is_quiet_nan(f, s)) { |
| return float64_default_nan(s); |
| } |
| |
| /* frsqrt7(+-0) = +-inf */ |
| if (float64_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float64_set_sign(float64_infinity, sign); |
| } |
| |
| /* frsqrt7(+inf) = +0 */ |
| if (float64_is_infinity(f) && !sign) { |
| return float64_set_sign(float64_zero, sign); |
| } |
| |
| /* +normal, +subnormal */ |
| uint64_t val = frsqrt7(f, exp_size, frac_size); |
| return make_float64(val); |
| } |
| |
| RVVCALL(OPFVV1, vfrsqrt7_v_h, OP_UU_H, H2, H2, frsqrt7_h) |
| RVVCALL(OPFVV1, vfrsqrt7_v_w, OP_UU_W, H4, H4, frsqrt7_s) |
| RVVCALL(OPFVV1, vfrsqrt7_v_d, OP_UU_D, H8, H8, frsqrt7_d) |
| GEN_VEXT_V_ENV(vfrsqrt7_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfrsqrt7_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfrsqrt7_v_d, 8, 8) |
| |
| /* |
| * Vector Floating-Point Reciprocal Estimate Instruction |
| * |
| * Adapted from riscv-v-spec recip.c: |
| * https://github.com/riscv/riscv-v-spec/blob/master/recip.c |
| */ |
| static uint64_t frec7(uint64_t f, int exp_size, int frac_size, |
| float_status *s) |
| { |
| uint64_t sign = extract64(f, frac_size + exp_size, 1); |
| uint64_t exp = extract64(f, frac_size, exp_size); |
| uint64_t frac = extract64(f, 0, frac_size); |
| |
| const uint8_t lookup_table[] = { |
| 127, 125, 123, 121, 119, 117, 116, 114, |
| 112, 110, 109, 107, 105, 104, 102, 100, |
| 99, 97, 96, 94, 93, 91, 90, 88, |
| 87, 85, 84, 83, 81, 80, 79, 77, |
| 76, 75, 74, 72, 71, 70, 69, 68, |
| 66, 65, 64, 63, 62, 61, 60, 59, |
| 58, 57, 56, 55, 54, 53, 52, 51, |
| 50, 49, 48, 47, 46, 45, 44, 43, |
| 42, 41, 40, 40, 39, 38, 37, 36, |
| 35, 35, 34, 33, 32, 31, 31, 30, |
| 29, 28, 28, 27, 26, 25, 25, 24, |
| 23, 23, 22, 21, 21, 20, 19, 19, |
| 18, 17, 17, 16, 15, 15, 14, 14, |
| 13, 12, 12, 11, 11, 10, 9, 9, |
| 8, 8, 7, 7, 6, 5, 5, 4, |
| 4, 3, 3, 2, 2, 1, 1, 0 |
| }; |
| const int precision = 7; |
| |
| if (exp == 0 && frac != 0) { /* subnormal */ |
| /* Normalize the subnormal. */ |
| while (extract64(frac, frac_size - 1, 1) == 0) { |
| exp--; |
| frac <<= 1; |
| } |
| |
| frac = (frac << 1) & MAKE_64BIT_MASK(0, frac_size); |
| |
| if (exp != 0 && exp != UINT64_MAX) { |
| /* |
| * Overflow to inf or max value of same sign, |
| * depending on sign and rounding mode. |
| */ |
| s->float_exception_flags |= (float_flag_inexact | |
| float_flag_overflow); |
| |
| if ((s->float_rounding_mode == float_round_to_zero) || |
| ((s->float_rounding_mode == float_round_down) && !sign) || |
| ((s->float_rounding_mode == float_round_up) && sign)) { |
| /* Return greatest/negative finite value. */ |
| return (sign << (exp_size + frac_size)) | |
| (MAKE_64BIT_MASK(frac_size, exp_size) - 1); |
| } else { |
| /* Return +-inf. */ |
| return (sign << (exp_size + frac_size)) | |
| MAKE_64BIT_MASK(frac_size, exp_size); |
| } |
| } |
| } |
| |
| int idx = frac >> (frac_size - precision); |
| uint64_t out_frac = (uint64_t)(lookup_table[idx]) << |
| (frac_size - precision); |
| uint64_t out_exp = 2 * MAKE_64BIT_MASK(0, exp_size - 1) + ~exp; |
| |
| if (out_exp == 0 || out_exp == UINT64_MAX) { |
| /* |
| * The result is subnormal, but don't raise the underflow exception, |
| * because there's no additional loss of precision. |
| */ |
| out_frac = (out_frac >> 1) | MAKE_64BIT_MASK(frac_size - 1, 1); |
| if (out_exp == UINT64_MAX) { |
| out_frac >>= 1; |
| out_exp = 0; |
| } |
| } |
| |
| uint64_t val = 0; |
| val = deposit64(val, 0, frac_size, out_frac); |
| val = deposit64(val, frac_size, exp_size, out_exp); |
| val = deposit64(val, frac_size + exp_size, 1, sign); |
| return val; |
| } |
| |
| static float16 frec7_h(float16 f, float_status *s) |
| { |
| int exp_size = 5, frac_size = 10; |
| bool sign = float16_is_neg(f); |
| |
| /* frec7(+-inf) = +-0 */ |
| if (float16_is_infinity(f)) { |
| return float16_set_sign(float16_zero, sign); |
| } |
| |
| /* frec7(+-0) = +-inf */ |
| if (float16_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float16_set_sign(float16_infinity, sign); |
| } |
| |
| /* frec7(sNaN) = canonical NaN */ |
| if (float16_is_signaling_nan(f, s)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float16_default_nan(s); |
| } |
| |
| /* frec7(qNaN) = canonical NaN */ |
| if (float16_is_quiet_nan(f, s)) { |
| return float16_default_nan(s); |
| } |
| |
| /* +-normal, +-subnormal */ |
| uint64_t val = frec7(f, exp_size, frac_size, s); |
| return make_float16(val); |
| } |
| |
| static float32 frec7_s(float32 f, float_status *s) |
| { |
| int exp_size = 8, frac_size = 23; |
| bool sign = float32_is_neg(f); |
| |
| /* frec7(+-inf) = +-0 */ |
| if (float32_is_infinity(f)) { |
| return float32_set_sign(float32_zero, sign); |
| } |
| |
| /* frec7(+-0) = +-inf */ |
| if (float32_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float32_set_sign(float32_infinity, sign); |
| } |
| |
| /* frec7(sNaN) = canonical NaN */ |
| if (float32_is_signaling_nan(f, s)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float32_default_nan(s); |
| } |
| |
| /* frec7(qNaN) = canonical NaN */ |
| if (float32_is_quiet_nan(f, s)) { |
| return float32_default_nan(s); |
| } |
| |
| /* +-normal, +-subnormal */ |
| uint64_t val = frec7(f, exp_size, frac_size, s); |
| return make_float32(val); |
| } |
| |
| static float64 frec7_d(float64 f, float_status *s) |
| { |
| int exp_size = 11, frac_size = 52; |
| bool sign = float64_is_neg(f); |
| |
| /* frec7(+-inf) = +-0 */ |
| if (float64_is_infinity(f)) { |
| return float64_set_sign(float64_zero, sign); |
| } |
| |
| /* frec7(+-0) = +-inf */ |
| if (float64_is_zero(f)) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| return float64_set_sign(float64_infinity, sign); |
| } |
| |
| /* frec7(sNaN) = canonical NaN */ |
| if (float64_is_signaling_nan(f, s)) { |
| s->float_exception_flags |= float_flag_invalid; |
| return float64_default_nan(s); |
| } |
| |
| /* frec7(qNaN) = canonical NaN */ |
| if (float64_is_quiet_nan(f, s)) { |
| return float64_default_nan(s); |
| } |
| |
| /* +-normal, +-subnormal */ |
| uint64_t val = frec7(f, exp_size, frac_size, s); |
| return make_float64(val); |
| } |
| |
| RVVCALL(OPFVV1, vfrec7_v_h, OP_UU_H, H2, H2, frec7_h) |
| RVVCALL(OPFVV1, vfrec7_v_w, OP_UU_W, H4, H4, frec7_s) |
| RVVCALL(OPFVV1, vfrec7_v_d, OP_UU_D, H8, H8, frec7_d) |
| GEN_VEXT_V_ENV(vfrec7_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfrec7_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfrec7_v_d, 8, 8) |
| |
| /* Vector Floating-Point MIN/MAX Instructions */ |
| RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minimum_number) |
| RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minimum_number) |
| RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minimum_number) |
| GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minimum_number) |
| RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minimum_number) |
| RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minimum_number) |
| GEN_VEXT_VF(vfmin_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmin_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmin_vf_d, 8, 8) |
| |
| RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maximum_number) |
| RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maximum_number) |
| RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maximum_number) |
| GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maximum_number) |
| RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maximum_number) |
| RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maximum_number) |
| GEN_VEXT_VF(vfmax_vf_h, 2, 2) |
| GEN_VEXT_VF(vfmax_vf_w, 4, 4) |
| GEN_VEXT_VF(vfmax_vf_d, 8, 8) |
| |
| /* Vector Floating-Point Sign-Injection Instructions */ |
| static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return deposit64(b, 0, 15, a); |
| } |
| |
| static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return deposit64(b, 0, 31, a); |
| } |
| |
| static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s) |
| { |
| return deposit64(b, 0, 63, a); |
| } |
| |
| RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16) |
| RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32) |
| RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64) |
| GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16) |
| RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32) |
| RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64) |
| GEN_VEXT_VF(vfsgnj_vf_h, 2, 2) |
| GEN_VEXT_VF(vfsgnj_vf_w, 4, 4) |
| GEN_VEXT_VF(vfsgnj_vf_d, 8, 8) |
| |
| static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return deposit64(~b, 0, 15, a); |
| } |
| |
| static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return deposit64(~b, 0, 31, a); |
| } |
| |
| static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s) |
| { |
| return deposit64(~b, 0, 63, a); |
| } |
| |
| RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16) |
| RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32) |
| RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64) |
| GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16) |
| RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32) |
| RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64) |
| GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2) |
| GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4) |
| GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8) |
| |
| static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s) |
| { |
| return deposit64(b ^ a, 0, 15, a); |
| } |
| |
| static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s) |
| { |
| return deposit64(b ^ a, 0, 31, a); |
| } |
| |
| static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s) |
| { |
| return deposit64(b ^ a, 0, 63, a); |
| } |
| |
| RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16) |
| RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32) |
| RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64) |
| GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2) |
| GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4) |
| GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8) |
| RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16) |
| RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32) |
| RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64) |
| GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2) |
| GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4) |
| GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8) |
| |
| /* Vector Floating-Point Compare Instructions */ |
| #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| vext_set_elem_mask(vd, i, \ |
| DO_OP(s2, s1, &env->fp_status)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet) |
| GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet) |
| GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet) |
| |
| #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \ |
| void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| vext_set_elem_mask(vd, i, \ |
| DO_OP(s2, (ETYPE)s1, &env->fp_status)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet) |
| GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet) |
| GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet) |
| |
| static bool vmfne16(uint16_t a, uint16_t b, float_status *s) |
| { |
| FloatRelation compare = float16_compare_quiet(a, b, s); |
| return compare != float_relation_equal; |
| } |
| |
| static bool vmfne32(uint32_t a, uint32_t b, float_status *s) |
| { |
| FloatRelation compare = float32_compare_quiet(a, b, s); |
| return compare != float_relation_equal; |
| } |
| |
| static bool vmfne64(uint64_t a, uint64_t b, float_status *s) |
| { |
| FloatRelation compare = float64_compare_quiet(a, b, s); |
| return compare != float_relation_equal; |
| } |
| |
| GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16) |
| GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32) |
| GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64) |
| GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16) |
| GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32) |
| GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64) |
| |
| GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt) |
| GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt) |
| GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt) |
| GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt) |
| GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt) |
| GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt) |
| |
| GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le) |
| GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le) |
| GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le) |
| GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le) |
| GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le) |
| GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le) |
| |
| static bool vmfgt16(uint16_t a, uint16_t b, float_status *s) |
| { |
| FloatRelation compare = float16_compare(a, b, s); |
| return compare == float_relation_greater; |
| } |
| |
| static bool vmfgt32(uint32_t a, uint32_t b, float_status *s) |
| { |
| FloatRelation compare = float32_compare(a, b, s); |
| return compare == float_relation_greater; |
| } |
| |
| static bool vmfgt64(uint64_t a, uint64_t b, float_status *s) |
| { |
| FloatRelation compare = float64_compare(a, b, s); |
| return compare == float_relation_greater; |
| } |
| |
| GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16) |
| GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32) |
| GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64) |
| |
| static bool vmfge16(uint16_t a, uint16_t b, float_status *s) |
| { |
| FloatRelation compare = float16_compare(a, b, s); |
| return compare == float_relation_greater || |
| compare == float_relation_equal; |
| } |
| |
| static bool vmfge32(uint32_t a, uint32_t b, float_status *s) |
| { |
| FloatRelation compare = float32_compare(a, b, s); |
| return compare == float_relation_greater || |
| compare == float_relation_equal; |
| } |
| |
| static bool vmfge64(uint64_t a, uint64_t b, float_status *s) |
| { |
| FloatRelation compare = float64_compare(a, b, s); |
| return compare == float_relation_greater || |
| compare == float_relation_equal; |
| } |
| |
| GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16) |
| GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32) |
| GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64) |
| |
| /* Vector Floating-Point Classify Instruction */ |
| #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs2, int i) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2); \ |
| } |
| |
| #define GEN_VEXT_V(NAME, ESZ, DSZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| do_##NAME(vd, vs2, i); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| target_ulong fclass_h(uint64_t frs1) |
| { |
| float16 f = frs1; |
| bool sign = float16_is_neg(f); |
| |
| if (float16_is_infinity(f)) { |
| return sign ? 1 << 0 : 1 << 7; |
| } else if (float16_is_zero(f)) { |
| return sign ? 1 << 3 : 1 << 4; |
| } else if (float16_is_zero_or_denormal(f)) { |
| return sign ? 1 << 2 : 1 << 5; |
| } else if (float16_is_any_nan(f)) { |
| float_status s = { }; /* for snan_bit_is_one */ |
| return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; |
| } else { |
| return sign ? 1 << 1 : 1 << 6; |
| } |
| } |
| |
| target_ulong fclass_s(uint64_t frs1) |
| { |
| float32 f = frs1; |
| bool sign = float32_is_neg(f); |
| |
| if (float32_is_infinity(f)) { |
| return sign ? 1 << 0 : 1 << 7; |
| } else if (float32_is_zero(f)) { |
| return sign ? 1 << 3 : 1 << 4; |
| } else if (float32_is_zero_or_denormal(f)) { |
| return sign ? 1 << 2 : 1 << 5; |
| } else if (float32_is_any_nan(f)) { |
| float_status s = { }; /* for snan_bit_is_one */ |
| return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; |
| } else { |
| return sign ? 1 << 1 : 1 << 6; |
| } |
| } |
| |
| target_ulong fclass_d(uint64_t frs1) |
| { |
| float64 f = frs1; |
| bool sign = float64_is_neg(f); |
| |
| if (float64_is_infinity(f)) { |
| return sign ? 1 << 0 : 1 << 7; |
| } else if (float64_is_zero(f)) { |
| return sign ? 1 << 3 : 1 << 4; |
| } else if (float64_is_zero_or_denormal(f)) { |
| return sign ? 1 << 2 : 1 << 5; |
| } else if (float64_is_any_nan(f)) { |
| float_status s = { }; /* for snan_bit_is_one */ |
| return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; |
| } else { |
| return sign ? 1 << 1 : 1 << 6; |
| } |
| } |
| |
| RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h) |
| RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s) |
| RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d) |
| GEN_VEXT_V(vfclass_v_h, 2, 2) |
| GEN_VEXT_V(vfclass_v_w, 4, 4) |
| GEN_VEXT_V(vfclass_v_d, 8, 8) |
| |
| /* Vector Floating-Point Merge Instruction */ |
| #define GEN_VFMERGE_VF(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ |
| *((ETYPE *)vd + H(i)) \ |
| = (!vm && !vext_elem_mask(v0, i) ? s2 : s1); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2) |
| GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4) |
| GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8) |
| |
| /* Single-Width Floating-Point/Integer Type-Convert Instructions */ |
| /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */ |
| RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16) |
| RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32) |
| RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64) |
| GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8) |
| |
| /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */ |
| RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16) |
| RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32) |
| RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64) |
| GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8) |
| |
| /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */ |
| RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16) |
| RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32) |
| RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64) |
| GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8) |
| |
| /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */ |
| RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16) |
| RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32) |
| RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64) |
| GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2) |
| GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4) |
| GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8) |
| |
| /* Widening Floating-Point/Integer Type-Convert Instructions */ |
| /* (TD, T2, TX2) */ |
| #define WOP_UU_B uint16_t, uint8_t, uint8_t |
| #define WOP_UU_H uint32_t, uint16_t, uint16_t |
| #define WOP_UU_W uint64_t, uint32_t, uint32_t |
| /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/ |
| RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32) |
| RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64) |
| GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4) |
| GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8) |
| |
| /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */ |
| RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32) |
| RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64) |
| GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4) |
| GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8) |
| |
| /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */ |
| RVVCALL(OPFVV1, vfwcvt_f_xu_v_b, WOP_UU_B, H2, H1, uint8_to_float16) |
| RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32) |
| RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64) |
| GEN_VEXT_V_ENV(vfwcvt_f_xu_v_b, 1, 2) |
| GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4) |
| GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8) |
| |
| /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */ |
| RVVCALL(OPFVV1, vfwcvt_f_x_v_b, WOP_UU_B, H2, H1, int8_to_float16) |
| RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32) |
| RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64) |
| GEN_VEXT_V_ENV(vfwcvt_f_x_v_b, 1, 2) |
| GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4) |
| GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8) |
| |
| /* |
| * vfwcvt.f.f.v vd, vs2, vm |
| * Convert single-width float to double-width float. |
| */ |
| static uint32_t vfwcvtffv16(uint16_t a, float_status *s) |
| { |
| return float16_to_float32(a, true, s); |
| } |
| |
| RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16) |
| RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64) |
| GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4) |
| GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8) |
| |
| /* Narrowing Floating-Point/Integer Type-Convert Instructions */ |
| /* (TD, T2, TX2) */ |
| #define NOP_UU_B uint8_t, uint16_t, uint32_t |
| #define NOP_UU_H uint16_t, uint32_t, uint32_t |
| #define NOP_UU_W uint32_t, uint64_t, uint64_t |
| /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */ |
| RVVCALL(OPFVV1, vfncvt_xu_f_w_b, NOP_UU_B, H1, H2, float16_to_uint8) |
| RVVCALL(OPFVV1, vfncvt_xu_f_w_h, NOP_UU_H, H2, H4, float32_to_uint16) |
| RVVCALL(OPFVV1, vfncvt_xu_f_w_w, NOP_UU_W, H4, H8, float64_to_uint32) |
| GEN_VEXT_V_ENV(vfncvt_xu_f_w_b, 1, 1) |
| GEN_VEXT_V_ENV(vfncvt_xu_f_w_h, 2, 2) |
| GEN_VEXT_V_ENV(vfncvt_xu_f_w_w, 4, 4) |
| |
| /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */ |
| RVVCALL(OPFVV1, vfncvt_x_f_w_b, NOP_UU_B, H1, H2, float16_to_int8) |
| RVVCALL(OPFVV1, vfncvt_x_f_w_h, NOP_UU_H, H2, H4, float32_to_int16) |
| RVVCALL(OPFVV1, vfncvt_x_f_w_w, NOP_UU_W, H4, H8, float64_to_int32) |
| GEN_VEXT_V_ENV(vfncvt_x_f_w_b, 1, 1) |
| GEN_VEXT_V_ENV(vfncvt_x_f_w_h, 2, 2) |
| GEN_VEXT_V_ENV(vfncvt_x_f_w_w, 4, 4) |
| |
| /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */ |
| RVVCALL(OPFVV1, vfncvt_f_xu_w_h, NOP_UU_H, H2, H4, uint32_to_float16) |
| RVVCALL(OPFVV1, vfncvt_f_xu_w_w, NOP_UU_W, H4, H8, uint64_to_float32) |
| GEN_VEXT_V_ENV(vfncvt_f_xu_w_h, 2, 2) |
| GEN_VEXT_V_ENV(vfncvt_f_xu_w_w, 4, 4) |
| |
| /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */ |
| RVVCALL(OPFVV1, vfncvt_f_x_w_h, NOP_UU_H, H2, H4, int32_to_float16) |
| RVVCALL(OPFVV1, vfncvt_f_x_w_w, NOP_UU_W, H4, H8, int64_to_float32) |
| GEN_VEXT_V_ENV(vfncvt_f_x_w_h, 2, 2) |
| GEN_VEXT_V_ENV(vfncvt_f_x_w_w, 4, 4) |
| |
| /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */ |
| static uint16_t vfncvtffv16(uint32_t a, float_status *s) |
| { |
| return float32_to_float16(a, true, s); |
| } |
| |
| RVVCALL(OPFVV1, vfncvt_f_f_w_h, NOP_UU_H, H2, H4, vfncvtffv16) |
| RVVCALL(OPFVV1, vfncvt_f_f_w_w, NOP_UU_W, H4, H8, float64_to_float32) |
| GEN_VEXT_V_ENV(vfncvt_f_f_w_h, 2, 2) |
| GEN_VEXT_V_ENV(vfncvt_f_f_w_w, 4, 4) |
| |
| /* |
| *** Vector Reduction Operations |
| */ |
| /* Vector Single-Width Integer Reduction Instructions */ |
| #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| TD s1 = *((TD *)vs1 + HD(0)); \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| s1 = OP(s1, (TD)s2); \ |
| } \ |
| *((TD *)vd + HD(0)) = s1; \ |
| env->vstart = 0; \ |
| } |
| |
| /* vd[0] = sum(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD) |
| GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD) |
| GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD) |
| GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD) |
| |
| /* vd[0] = maxu(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX) |
| GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX) |
| GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX) |
| GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX) |
| |
| /* vd[0] = max(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX) |
| GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX) |
| GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX) |
| GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX) |
| |
| /* vd[0] = minu(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN) |
| GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN) |
| GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN) |
| GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN) |
| |
| /* vd[0] = min(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN) |
| GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN) |
| GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN) |
| GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN) |
| |
| /* vd[0] = and(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND) |
| GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND) |
| GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND) |
| GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND) |
| |
| /* vd[0] = or(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR) |
| GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR) |
| GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR) |
| GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR) |
| |
| /* vd[0] = xor(vs1[0], vs2[*]) */ |
| GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR) |
| GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR) |
| GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR) |
| GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR) |
| |
| /* Vector Widening Integer Reduction Instructions */ |
| /* signed sum reduction into double-width accumulator */ |
| GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD) |
| GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD) |
| GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD) |
| |
| /* Unsigned sum reduction into double-width accumulator */ |
| GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD) |
| GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD) |
| GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD) |
| |
| /* Vector Single-Width Floating-Point Reduction Instructions */ |
| #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| TD s1 = *((TD *)vs1 + HD(0)); \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| s1 = OP(s1, (TD)s2, &env->fp_status); \ |
| } \ |
| *((TD *)vd + HD(0)) = s1; \ |
| env->vstart = 0; \ |
| } |
| |
| /* Unordered sum */ |
| GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add) |
| GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add) |
| GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add) |
| |
| /* Maximum value */ |
| GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maximum_number) |
| GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maximum_number) |
| GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maximum_number) |
| |
| /* Minimum value */ |
| GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minimum_number) |
| GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minimum_number) |
| GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minimum_number) |
| |
| /* Vector Widening Floating-Point Reduction Instructions */ |
| /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */ |
| void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1, |
| void *vs2, CPURISCVState *env, uint32_t desc) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| uint32_t i; |
| uint32_t s1 = *((uint32_t *)vs1 + H4(0)); |
| |
| for (i = env->vstart; i < vl; i++) { |
| uint16_t s2 = *((uint16_t *)vs2 + H2(i)); |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status), |
| &env->fp_status); |
| } |
| *((uint32_t *)vd + H4(0)) = s1; |
| env->vstart = 0; |
| } |
| |
| void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1, |
| void *vs2, CPURISCVState *env, uint32_t desc) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| uint32_t i; |
| uint64_t s1 = *((uint64_t *)vs1); |
| |
| for (i = env->vstart; i < vl; i++) { |
| uint32_t s2 = *((uint32_t *)vs2 + H4(i)); |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status), |
| &env->fp_status); |
| } |
| *((uint64_t *)vd) = s1; |
| env->vstart = 0; |
| } |
| |
| /* |
| *** Vector Mask Operations |
| */ |
| /* Vector Mask-Register Logical Instructions */ |
| #define GEN_VEXT_MASK_VV(NAME, OP) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| int a, b; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| a = vext_elem_mask(vs1, i); \ |
| b = vext_elem_mask(vs2, i); \ |
| vext_set_elem_mask(vd, i, OP(b, a)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| #define DO_NAND(N, M) (!(N & M)) |
| #define DO_ANDNOT(N, M) (N & !M) |
| #define DO_NOR(N, M) (!(N | M)) |
| #define DO_ORNOT(N, M) (N | !M) |
| #define DO_XNOR(N, M) (!(N ^ M)) |
| |
| GEN_VEXT_MASK_VV(vmand_mm, DO_AND) |
| GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND) |
| GEN_VEXT_MASK_VV(vmandn_mm, DO_ANDNOT) |
| GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR) |
| GEN_VEXT_MASK_VV(vmor_mm, DO_OR) |
| GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR) |
| GEN_VEXT_MASK_VV(vmorn_mm, DO_ORNOT) |
| GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR) |
| |
| /* Vector count population in mask vcpop */ |
| target_ulong HELPER(vcpop_m)(void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc) |
| { |
| target_ulong cnt = 0; |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| int i; |
| |
| for (i = env->vstart; i < vl; i++) { |
| if (vm || vext_elem_mask(v0, i)) { |
| if (vext_elem_mask(vs2, i)) { |
| cnt++; |
| } |
| } |
| } |
| env->vstart = 0; |
| return cnt; |
| } |
| |
| /* vfirst find-first-set mask bit*/ |
| target_ulong HELPER(vfirst_m)(void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| int i; |
| |
| for (i = env->vstart; i < vl; i++) { |
| if (vm || vext_elem_mask(v0, i)) { |
| if (vext_elem_mask(vs2, i)) { |
| return i; |
| } |
| } |
| } |
| env->vstart = 0; |
| return -1LL; |
| } |
| |
| enum set_mask_type { |
| ONLY_FIRST = 1, |
| INCLUDE_FIRST, |
| BEFORE_FIRST, |
| }; |
| |
| static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc, enum set_mask_type type) |
| { |
| uint32_t vm = vext_vm(desc); |
| uint32_t vl = env->vl; |
| int i; |
| bool first_mask_bit = false; |
| |
| for (i = env->vstart; i < vl; i++) { |
| if (!vm && !vext_elem_mask(v0, i)) { |
| continue; |
| } |
| /* write a zero to all following active elements */ |
| if (first_mask_bit) { |
| vext_set_elem_mask(vd, i, 0); |
| continue; |
| } |
| if (vext_elem_mask(vs2, i)) { |
| first_mask_bit = true; |
| if (type == BEFORE_FIRST) { |
| vext_set_elem_mask(vd, i, 0); |
| } else { |
| vext_set_elem_mask(vd, i, 1); |
| } |
| } else { |
| if (type == ONLY_FIRST) { |
| vext_set_elem_mask(vd, i, 0); |
| } else { |
| vext_set_elem_mask(vd, i, 1); |
| } |
| } |
| } |
| env->vstart = 0; |
| } |
| |
| void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc) |
| { |
| vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST); |
| } |
| |
| void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc) |
| { |
| vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST); |
| } |
| |
| void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env, |
| uint32_t desc) |
| { |
| vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST); |
| } |
| |
| /* Vector Iota Instruction */ |
| #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t sum = 0; \ |
| int i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| *((ETYPE *)vd + H(i)) = sum; \ |
| if (vext_elem_mask(vs2, i)) { \ |
| sum++; \ |
| } \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1) |
| GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2) |
| GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4) |
| GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8) |
| |
| /* Vector Element Index Instruction */ |
| #define GEN_VEXT_VID_V(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| int i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| *((ETYPE *)vd + H(i)) = i; \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VID_V(vid_v_b, uint8_t, H1) |
| GEN_VEXT_VID_V(vid_v_h, uint16_t, H2) |
| GEN_VEXT_VID_V(vid_v_w, uint32_t, H4) |
| GEN_VEXT_VID_V(vid_v_d, uint64_t, H8) |
| |
| /* |
| *** Vector Permutation Instructions |
| */ |
| |
| /* Vector Slide Instructions */ |
| #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| target_ulong offset = s1, i_min, i; \ |
| \ |
| i_min = MAX(env->vstart, offset); \ |
| for (i = i_min; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \ |
| } \ |
| } |
| |
| /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */ |
| GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1) |
| GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2) |
| GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4) |
| GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8) |
| |
| #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| target_ulong i_max, i; \ |
| \ |
| i_max = MAX(MIN(s1 < vlmax ? vlmax - s1 : 0, vl), env->vstart); \ |
| for (i = env->vstart; i < i_max; ++i) { \ |
| if (vm || vext_elem_mask(v0, i)) { \ |
| *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + s1)); \ |
| } \ |
| } \ |
| \ |
| for (i = i_max; i < vl; ++i) { \ |
| if (vm || vext_elem_mask(v0, i)) { \ |
| *((ETYPE *)vd + H(i)) = 0; \ |
| } \ |
| } \ |
| \ |
| env->vstart = 0; \ |
| } |
| |
| /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */ |
| GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1) |
| GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2) |
| GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4) |
| GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8) |
| |
| #define GEN_VEXT_VSLIE1UP(ESZ, H) \ |
| static void vslide1up_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| typedef uint##ESZ##_t ETYPE; \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| if (i == 0) { \ |
| *((ETYPE *)vd + H(i)) = s1; \ |
| } else { \ |
| *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \ |
| } \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VSLIE1UP(8, H1) |
| GEN_VEXT_VSLIE1UP(16, H2) |
| GEN_VEXT_VSLIE1UP(32, H4) |
| GEN_VEXT_VSLIE1UP(64, H8) |
| |
| #define GEN_VEXT_VSLIDE1UP_VX(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vslide1up_##ESZ(vd, v0, s1, vs2, env, desc); \ |
| } |
| |
| /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */ |
| GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, 8) |
| GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, 16) |
| GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, 32) |
| GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, 64) |
| |
| #define GEN_VEXT_VSLIDE1DOWN(ESZ, H) \ |
| static void vslide1down_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| typedef uint##ESZ##_t ETYPE; \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| if (i == vl - 1) { \ |
| *((ETYPE *)vd + H(i)) = s1; \ |
| } else { \ |
| *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \ |
| } \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_VSLIDE1DOWN(8, H1) |
| GEN_VEXT_VSLIDE1DOWN(16, H2) |
| GEN_VEXT_VSLIDE1DOWN(32, H4) |
| GEN_VEXT_VSLIDE1DOWN(64, H8) |
| |
| #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vslide1down_##ESZ(vd, v0, s1, vs2, env, desc); \ |
| } |
| |
| /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */ |
| GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, 8) |
| GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, 16) |
| GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, 32) |
| GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, 64) |
| |
| /* Vector Floating-Point Slide Instructions */ |
| #define GEN_VEXT_VFSLIDE1UP_VF(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vslide1up_##ESZ(vd, v0, s1, vs2, env, desc); \ |
| } |
| |
| /* vfslide1up.vf vd, vs2, rs1, vm # vd[0]=f[rs1], vd[i+1] = vs2[i] */ |
| GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_h, 16) |
| GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_w, 32) |
| GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_d, 64) |
| |
| #define GEN_VEXT_VFSLIDE1DOWN_VF(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| vslide1down_##ESZ(vd, v0, s1, vs2, env, desc); \ |
| } |
| |
| /* vfslide1down.vf vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=f[rs1] */ |
| GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_h, 16) |
| GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_w, 32) |
| GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_d, 64) |
| |
| /* Vector Register Gather Instruction */ |
| #define GEN_VEXT_VRGATHER_VV(NAME, TS1, TS2, HS1, HS2) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(TS2))); \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint64_t index; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| index = *((TS1 *)vs1 + HS1(i)); \ |
| if (index >= vlmax) { \ |
| *((TS2 *)vd + HS2(i)) = 0; \ |
| } else { \ |
| *((TS2 *)vd + HS2(i)) = *((TS2 *)vs2 + HS2(index)); \ |
| } \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */ |
| GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, uint8_t, H1, H1) |
| GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, uint16_t, H2, H2) |
| GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, uint32_t, H4, H4) |
| GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, uint64_t, H8, H8) |
| |
| GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_b, uint16_t, uint8_t, H2, H1) |
| GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_h, uint16_t, uint16_t, H2, H2) |
| GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_w, uint16_t, uint32_t, H2, H4) |
| GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_d, uint16_t, uint64_t, H2, H8) |
| |
| #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint64_t index = s1; \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| if (index >= vlmax) { \ |
| *((ETYPE *)vd + H(i)) = 0; \ |
| } else { \ |
| *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \ |
| } \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ |
| GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1) |
| GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2) |
| GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4) |
| GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8) |
| |
| /* Vector Compress Instruction */ |
| #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t num = 0, i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vext_elem_mask(vs1, i)) { \ |
| continue; \ |
| } \ |
| *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \ |
| num++; \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| /* Compress into vd elements of vs2 where vs1 is enabled */ |
| GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1) |
| GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2) |
| GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4) |
| GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8) |
| |
| /* Vector Whole Register Move */ |
| void HELPER(vmvr_v)(void *vd, void *vs2, CPURISCVState *env, uint32_t desc) |
| { |
| /* EEW = SEW */ |
| uint32_t maxsz = simd_maxsz(desc); |
| uint32_t sewb = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW); |
| uint32_t startb = env->vstart * sewb; |
| uint32_t i = startb; |
| |
| memcpy((uint8_t *)vd + H1(i), |
| (uint8_t *)vs2 + H1(i), |
| maxsz - startb); |
| |
| env->vstart = 0; |
| } |
| |
| /* Vector Integer Extension */ |
| #define GEN_VEXT_INT_EXT(NAME, ETYPE, DTYPE, HD, HS1) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vl = env->vl; \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| continue; \ |
| } \ |
| *((ETYPE *)vd + HD(i)) = *((DTYPE *)vs2 + HS1(i)); \ |
| } \ |
| env->vstart = 0; \ |
| } |
| |
| GEN_VEXT_INT_EXT(vzext_vf2_h, uint16_t, uint8_t, H2, H1) |
| GEN_VEXT_INT_EXT(vzext_vf2_w, uint32_t, uint16_t, H4, H2) |
| GEN_VEXT_INT_EXT(vzext_vf2_d, uint64_t, uint32_t, H8, H4) |
| GEN_VEXT_INT_EXT(vzext_vf4_w, uint32_t, uint8_t, H4, H1) |
| GEN_VEXT_INT_EXT(vzext_vf4_d, uint64_t, uint16_t, H8, H2) |
| GEN_VEXT_INT_EXT(vzext_vf8_d, uint64_t, uint8_t, H8, H1) |
| |
| GEN_VEXT_INT_EXT(vsext_vf2_h, int16_t, int8_t, H2, H1) |
| GEN_VEXT_INT_EXT(vsext_vf2_w, int32_t, int16_t, H4, H2) |
| GEN_VEXT_INT_EXT(vsext_vf2_d, int64_t, int32_t, H8, H4) |
| GEN_VEXT_INT_EXT(vsext_vf4_w, int32_t, int8_t, H4, H1) |
| GEN_VEXT_INT_EXT(vsext_vf4_d, int64_t, int16_t, H8, H2) |
| GEN_VEXT_INT_EXT(vsext_vf8_d, int64_t, int8_t, H8, H1) |