| /* |
| * RISC-V ACLINT (Advanced Core Local Interruptor) |
| * URL: https://github.com/riscv/riscv-aclint |
| * |
| * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu |
| * Copyright (c) 2017 SiFive, Inc. |
| * Copyright (c) 2021 Western Digital Corporation or its affiliates. |
| * |
| * This provides real-time clock, timer and interprocessor interrupts. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "hw/sysbus.h" |
| #include "target/riscv/cpu.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/intc/riscv_aclint.h" |
| #include "qemu/timer.h" |
| #include "hw/irq.h" |
| |
| typedef struct riscv_aclint_mtimer_callback { |
| RISCVAclintMTimerState *s; |
| int num; |
| } riscv_aclint_mtimer_callback; |
| |
| static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq) |
| { |
| return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| timebase_freq, NANOSECONDS_PER_SECOND); |
| } |
| |
| static uint64_t cpu_riscv_read_rtc(void *opaque) |
| { |
| RISCVAclintMTimerState *mtimer = opaque; |
| return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta; |
| } |
| |
| /* |
| * Called when timecmp is written to update the QEMU timer or immediately |
| * trigger timer interrupt if mtimecmp <= current timer value. |
| */ |
| static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer, |
| RISCVCPU *cpu, |
| int hartid, |
| uint64_t value) |
| { |
| uint32_t timebase_freq = mtimer->timebase_freq; |
| uint64_t next; |
| uint64_t diff; |
| |
| uint64_t rtc_r = cpu_riscv_read_rtc(mtimer); |
| |
| cpu->env.timecmp = value; |
| if (cpu->env.timecmp <= rtc_r) { |
| /* |
| * If we're setting an MTIMECMP value in the "past", |
| * immediately raise the timer interrupt |
| */ |
| qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]); |
| return; |
| } |
| |
| /* otherwise, set up the future timer interrupt */ |
| qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]); |
| diff = cpu->env.timecmp - rtc_r; |
| /* back to ns (note args switched in muldiv64) */ |
| uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq); |
| |
| /* |
| * check if ns_diff overflowed and check if the addition would potentially |
| * overflow |
| */ |
| if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) || |
| ns_diff > INT64_MAX) { |
| next = INT64_MAX; |
| } else { |
| /* |
| * as it is very unlikely qemu_clock_get_ns will return a value |
| * greater than INT64_MAX, no additional check is needed for an |
| * unsigned integer overflow. |
| */ |
| next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff; |
| /* |
| * if ns_diff is INT64_MAX next may still be outside the range |
| * of a signed integer. |
| */ |
| next = MIN(next, INT64_MAX); |
| } |
| |
| timer_mod(cpu->env.timer, next); |
| } |
| |
| /* |
| * Callback used when the timer set using timer_mod expires. |
| * Should raise the timer interrupt line |
| */ |
| static void riscv_aclint_mtimer_cb(void *opaque) |
| { |
| riscv_aclint_mtimer_callback *state = opaque; |
| |
| qemu_irq_raise(state->s->timer_irqs[state->num]); |
| } |
| |
| /* CPU read MTIMER register */ |
| static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| RISCVAclintMTimerState *mtimer = opaque; |
| |
| if (addr >= mtimer->timecmp_base && |
| addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { |
| size_t hartid = mtimer->hartid_base + |
| ((addr - mtimer->timecmp_base) >> 3); |
| CPUState *cpu = qemu_get_cpu(hartid); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| if (!env) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-mtimer: invalid hartid: %zu", hartid); |
| } else if ((addr & 0x7) == 0) { |
| /* timecmp_lo for RV32/RV64 or timecmp for RV64 */ |
| uint64_t timecmp = env->timecmp; |
| return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp; |
| } else if ((addr & 0x7) == 4) { |
| /* timecmp_hi */ |
| uint64_t timecmp = env->timecmp; |
| return (timecmp >> 32) & 0xFFFFFFFF; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-mtimer: invalid read: %08x", (uint32_t)addr); |
| return 0; |
| } |
| } else if (addr == mtimer->time_base) { |
| /* time_lo for RV32/RV64 or timecmp for RV64 */ |
| uint64_t rtc = cpu_riscv_read_rtc(mtimer); |
| return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc; |
| } else if (addr == mtimer->time_base + 4) { |
| /* time_hi */ |
| return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF; |
| } |
| |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-mtimer: invalid read: %08x", (uint32_t)addr); |
| return 0; |
| } |
| |
| /* CPU write MTIMER register */ |
| static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| RISCVAclintMTimerState *mtimer = opaque; |
| int i; |
| |
| if (addr >= mtimer->timecmp_base && |
| addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { |
| size_t hartid = mtimer->hartid_base + |
| ((addr - mtimer->timecmp_base) >> 3); |
| CPUState *cpu = qemu_get_cpu(hartid); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| if (!env) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-mtimer: invalid hartid: %zu", hartid); |
| } else if ((addr & 0x7) == 0) { |
| if (size == 4) { |
| /* timecmp_lo for RV32/RV64 */ |
| uint64_t timecmp_hi = env->timecmp >> 32; |
| riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, |
| timecmp_hi << 32 | (value & 0xFFFFFFFF)); |
| } else { |
| /* timecmp for RV64 */ |
| riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, |
| value); |
| } |
| } else if ((addr & 0x7) == 4) { |
| if (size == 4) { |
| /* timecmp_hi for RV32/RV64 */ |
| uint64_t timecmp_lo = env->timecmp; |
| riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, |
| value << 32 | (timecmp_lo & 0xFFFFFFFF)); |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-mtimer: invalid timecmp_hi write: %08x", |
| (uint32_t)addr); |
| } |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-mtimer: invalid timecmp write: %08x", |
| (uint32_t)addr); |
| } |
| return; |
| } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) { |
| uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq); |
| |
| if (addr == mtimer->time_base) { |
| if (size == 4) { |
| /* time_lo for RV32/RV64 */ |
| mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r; |
| } else { |
| /* time for RV64 */ |
| mtimer->time_delta = value - rtc_r; |
| } |
| } else { |
| if (size == 4) { |
| /* time_hi for RV32/RV64 */ |
| mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r; |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-mtimer: invalid time_hi write: %08x", |
| (uint32_t)addr); |
| return; |
| } |
| } |
| |
| /* Check if timer interrupt is triggered for each hart. */ |
| for (i = 0; i < mtimer->num_harts; i++) { |
| CPUState *cpu = qemu_get_cpu(mtimer->hartid_base + i); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| if (!env) { |
| continue; |
| } |
| riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), |
| mtimer->hartid_base + i, |
| env->timecmp); |
| } |
| return; |
| } |
| |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-mtimer: invalid write: %08x", (uint32_t)addr); |
| } |
| |
| static const MemoryRegionOps riscv_aclint_mtimer_ops = { |
| .read = riscv_aclint_mtimer_read, |
| .write = riscv_aclint_mtimer_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 8 |
| }, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 8, |
| } |
| }; |
| |
| static Property riscv_aclint_mtimer_properties[] = { |
| DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState, |
| hartid_base, 0), |
| DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1), |
| DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState, |
| timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP), |
| DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState, |
| time_base, RISCV_ACLINT_DEFAULT_MTIME), |
| DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState, |
| aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE), |
| DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState, |
| timebase_freq, 0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp) |
| { |
| RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); |
| int i; |
| |
| memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops, |
| s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size); |
| sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); |
| |
| s->timer_irqs = g_new(qemu_irq, s->num_harts); |
| qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts); |
| |
| /* Claim timer interrupt bits */ |
| for (i = 0; i < s->num_harts; i++) { |
| RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i)); |
| if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) { |
| error_report("MTIP already claimed"); |
| exit(1); |
| } |
| } |
| } |
| |
| static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type) |
| { |
| /* |
| * According to RISC-V ACLINT spec: |
| * - On MTIMER device reset, the MTIME register is cleared to zero. |
| * - On MTIMER device reset, the MTIMECMP registers are in unknown state. |
| */ |
| RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj); |
| |
| /* |
| * Clear mtime register by writing to 0 it. |
| * Pending mtime interrupts will also be cleared at the same time. |
| */ |
| riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8); |
| } |
| |
| static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| dc->realize = riscv_aclint_mtimer_realize; |
| device_class_set_props(dc, riscv_aclint_mtimer_properties); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| rc->phases.enter = riscv_aclint_mtimer_reset_enter; |
| } |
| |
| static const TypeInfo riscv_aclint_mtimer_info = { |
| .name = TYPE_RISCV_ACLINT_MTIMER, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(RISCVAclintMTimerState), |
| .class_init = riscv_aclint_mtimer_class_init, |
| }; |
| |
| /* |
| * Create ACLINT MTIMER device. |
| */ |
| DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size, |
| uint32_t hartid_base, uint32_t num_harts, |
| uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq, |
| bool provide_rdtime) |
| { |
| int i; |
| DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER); |
| |
| assert(num_harts <= RISCV_ACLINT_MAX_HARTS); |
| assert(!(addr & 0x7)); |
| assert(!(timecmp_base & 0x7)); |
| assert(!(time_base & 0x7)); |
| |
| qdev_prop_set_uint32(dev, "hartid-base", hartid_base); |
| qdev_prop_set_uint32(dev, "num-harts", num_harts); |
| qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base); |
| qdev_prop_set_uint32(dev, "time-base", time_base); |
| qdev_prop_set_uint32(dev, "aperture-size", size); |
| qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); |
| |
| for (i = 0; i < num_harts; i++) { |
| CPUState *cpu = qemu_get_cpu(hartid_base + i); |
| RISCVCPU *rvcpu = RISCV_CPU(cpu); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| riscv_aclint_mtimer_callback *cb = |
| g_new0(riscv_aclint_mtimer_callback, 1); |
| |
| if (!env) { |
| g_free(cb); |
| continue; |
| } |
| if (provide_rdtime) { |
| riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev); |
| } |
| |
| cb->s = RISCV_ACLINT_MTIMER(dev); |
| cb->num = i; |
| env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| &riscv_aclint_mtimer_cb, cb); |
| env->timecmp = 0; |
| |
| qdev_connect_gpio_out(dev, i, |
| qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER)); |
| } |
| |
| return dev; |
| } |
| |
| /* CPU read [M|S]SWI register */ |
| static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| RISCVAclintSwiState *swi = opaque; |
| |
| if (addr < (swi->num_harts << 2)) { |
| size_t hartid = swi->hartid_base + (addr >> 2); |
| CPUState *cpu = qemu_get_cpu(hartid); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| if (!env) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-swi: invalid hartid: %zu", hartid); |
| } else if ((addr & 0x3) == 0) { |
| return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0); |
| } |
| } |
| |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-swi: invalid read: %08x", (uint32_t)addr); |
| return 0; |
| } |
| |
| /* CPU write [M|S]SWI register */ |
| static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value, |
| unsigned size) |
| { |
| RISCVAclintSwiState *swi = opaque; |
| |
| if (addr < (swi->num_harts << 2)) { |
| size_t hartid = swi->hartid_base + (addr >> 2); |
| CPUState *cpu = qemu_get_cpu(hartid); |
| CPURISCVState *env = cpu ? cpu->env_ptr : NULL; |
| if (!env) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "aclint-swi: invalid hartid: %zu", hartid); |
| } else if ((addr & 0x3) == 0) { |
| if (value & 0x1) { |
| qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]); |
| } else { |
| if (!swi->sswi) { |
| qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]); |
| } |
| } |
| return; |
| } |
| } |
| |
| qemu_log_mask(LOG_UNIMP, |
| "aclint-swi: invalid write: %08x", (uint32_t)addr); |
| } |
| |
| static const MemoryRegionOps riscv_aclint_swi_ops = { |
| .read = riscv_aclint_swi_read, |
| .write = riscv_aclint_swi_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4 |
| } |
| }; |
| |
| static Property riscv_aclint_swi_properties[] = { |
| DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0), |
| DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1), |
| DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp) |
| { |
| RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev); |
| int i; |
| |
| memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi, |
| TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE); |
| sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio); |
| |
| swi->soft_irqs = g_new(qemu_irq, swi->num_harts); |
| qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts); |
| |
| /* Claim software interrupt bits */ |
| for (i = 0; i < swi->num_harts; i++) { |
| RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i)); |
| /* We don't claim mip.SSIP because it is writeable by software */ |
| if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) { |
| error_report("MSIP already claimed"); |
| exit(1); |
| } |
| } |
| } |
| |
| static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type) |
| { |
| /* |
| * According to RISC-V ACLINT spec: |
| * - On MSWI device reset, each MSIP register is cleared to zero. |
| * |
| * p.s. SSWI device reset does nothing since SETSIP register always reads 0. |
| */ |
| RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj); |
| int i; |
| |
| if (!swi->sswi) { |
| for (i = 0; i < swi->num_harts; i++) { |
| /* Clear MSIP registers by lowering software interrupts. */ |
| qemu_irq_lower(swi->soft_irqs[i]); |
| } |
| } |
| } |
| |
| static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| dc->realize = riscv_aclint_swi_realize; |
| device_class_set_props(dc, riscv_aclint_swi_properties); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| rc->phases.enter = riscv_aclint_swi_reset_enter; |
| } |
| |
| static const TypeInfo riscv_aclint_swi_info = { |
| .name = TYPE_RISCV_ACLINT_SWI, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(RISCVAclintSwiState), |
| .class_init = riscv_aclint_swi_class_init, |
| }; |
| |
| /* |
| * Create ACLINT [M|S]SWI device. |
| */ |
| DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base, |
| uint32_t num_harts, bool sswi) |
| { |
| int i; |
| DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI); |
| |
| assert(num_harts <= RISCV_ACLINT_MAX_HARTS); |
| assert(!(addr & 0x3)); |
| |
| qdev_prop_set_uint32(dev, "hartid-base", hartid_base); |
| qdev_prop_set_uint32(dev, "num-harts", num_harts); |
| qdev_prop_set_uint32(dev, "sswi", sswi ? true : false); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); |
| |
| for (i = 0; i < num_harts; i++) { |
| CPUState *cpu = qemu_get_cpu(hartid_base + i); |
| RISCVCPU *rvcpu = RISCV_CPU(cpu); |
| |
| qdev_connect_gpio_out(dev, i, |
| qdev_get_gpio_in(DEVICE(rvcpu), |
| (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT)); |
| } |
| |
| return dev; |
| } |
| |
| static void riscv_aclint_register_types(void) |
| { |
| type_register_static(&riscv_aclint_mtimer_info); |
| type_register_static(&riscv_aclint_swi_info); |
| } |
| |
| type_init(riscv_aclint_register_types) |