| /* |
| * Copyright (C) 2010 Citrix Ltd. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Contributions after 2012-01-13 are licensed under the terms of the |
| * GNU GPL, version 2 or (at your option) any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "hw/pci/pci.h" |
| #include "hw/i386/pc.h" |
| #include "hw/i386/apic-msidef.h" |
| #include "hw/xen/xen_common.h" |
| #include "hw/xen/xen_backend.h" |
| #include "qmp-commands.h" |
| |
| #include "sysemu/char.h" |
| #include "qemu/error-report.h" |
| #include "qemu/range.h" |
| #include "sysemu/xen-mapcache.h" |
| #include "trace.h" |
| #include "exec/address-spaces.h" |
| |
| #include <xen/hvm/ioreq.h> |
| #include <xen/hvm/params.h> |
| #include <xen/hvm/e820.h> |
| |
| //#define DEBUG_XEN_HVM |
| |
| #ifdef DEBUG_XEN_HVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; |
| static MemoryRegion *framebuffer; |
| static bool xen_in_migration; |
| |
| /* Compatibility with older version */ |
| |
| /* This allows QEMU to build on a system that has Xen 4.5 or earlier |
| * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h |
| * needs to be included before this block and hw/xen/xen_common.h needs to |
| * be included before xen/hvm/ioreq.h |
| */ |
| #ifndef IOREQ_TYPE_VMWARE_PORT |
| #define IOREQ_TYPE_VMWARE_PORT 3 |
| struct vmware_regs { |
| uint32_t esi; |
| uint32_t edi; |
| uint32_t ebx; |
| uint32_t ecx; |
| uint32_t edx; |
| }; |
| typedef struct vmware_regs vmware_regs_t; |
| |
| struct shared_vmport_iopage { |
| struct vmware_regs vcpu_vmport_regs[1]; |
| }; |
| typedef struct shared_vmport_iopage shared_vmport_iopage_t; |
| #endif |
| |
| static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) |
| { |
| return shared_page->vcpu_ioreq[i].vp_eport; |
| } |
| static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) |
| { |
| return &shared_page->vcpu_ioreq[vcpu]; |
| } |
| |
| #define BUFFER_IO_MAX_DELAY 100 |
| |
| typedef struct XenPhysmap { |
| hwaddr start_addr; |
| ram_addr_t size; |
| const char *name; |
| hwaddr phys_offset; |
| |
| QLIST_ENTRY(XenPhysmap) list; |
| } XenPhysmap; |
| |
| typedef struct XenIOState { |
| ioservid_t ioservid; |
| shared_iopage_t *shared_page; |
| shared_vmport_iopage_t *shared_vmport_page; |
| buffered_iopage_t *buffered_io_page; |
| QEMUTimer *buffered_io_timer; |
| CPUState **cpu_by_vcpu_id; |
| /* the evtchn port for polling the notification, */ |
| evtchn_port_t *ioreq_local_port; |
| /* evtchn local port for buffered io */ |
| evtchn_port_t bufioreq_local_port; |
| /* the evtchn fd for polling */ |
| xenevtchn_handle *xce_handle; |
| /* which vcpu we are serving */ |
| int send_vcpu; |
| |
| struct xs_handle *xenstore; |
| MemoryListener memory_listener; |
| MemoryListener io_listener; |
| DeviceListener device_listener; |
| QLIST_HEAD(, XenPhysmap) physmap; |
| hwaddr free_phys_offset; |
| const XenPhysmap *log_for_dirtybit; |
| |
| Notifier exit; |
| Notifier suspend; |
| Notifier wakeup; |
| } XenIOState; |
| |
| /* Xen specific function for piix pci */ |
| |
| int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) |
| { |
| return irq_num + ((pci_dev->devfn >> 3) << 2); |
| } |
| |
| void xen_piix3_set_irq(void *opaque, int irq_num, int level) |
| { |
| xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2, |
| irq_num & 3, level); |
| } |
| |
| void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) |
| { |
| int i; |
| |
| /* Scan for updates to PCI link routes (0x60-0x63). */ |
| for (i = 0; i < len; i++) { |
| uint8_t v = (val >> (8 * i)) & 0xff; |
| if (v & 0x80) { |
| v = 0; |
| } |
| v &= 0xf; |
| if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { |
| xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v); |
| } |
| } |
| } |
| |
| int xen_is_pirq_msi(uint32_t msi_data) |
| { |
| /* If vector is 0, the msi is remapped into a pirq, passed as |
| * dest_id. |
| */ |
| return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; |
| } |
| |
| void xen_hvm_inject_msi(uint64_t addr, uint32_t data) |
| { |
| xc_hvm_inject_msi(xen_xc, xen_domid, addr, data); |
| } |
| |
| static void xen_suspend_notifier(Notifier *notifier, void *data) |
| { |
| xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); |
| } |
| |
| /* Xen Interrupt Controller */ |
| |
| static void xen_set_irq(void *opaque, int irq, int level) |
| { |
| xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level); |
| } |
| |
| qemu_irq *xen_interrupt_controller_init(void) |
| { |
| return qemu_allocate_irqs(xen_set_irq, NULL, 16); |
| } |
| |
| /* Memory Ops */ |
| |
| static void xen_ram_init(PCMachineState *pcms, |
| ram_addr_t ram_size, MemoryRegion **ram_memory_p) |
| { |
| MemoryRegion *sysmem = get_system_memory(); |
| ram_addr_t block_len; |
| uint64_t user_lowmem = object_property_get_int(qdev_get_machine(), |
| PC_MACHINE_MAX_RAM_BELOW_4G, |
| &error_abort); |
| |
| /* Handle the machine opt max-ram-below-4g. It is basically doing |
| * min(xen limit, user limit). |
| */ |
| if (!user_lowmem) { |
| user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ |
| } |
| if (HVM_BELOW_4G_RAM_END <= user_lowmem) { |
| user_lowmem = HVM_BELOW_4G_RAM_END; |
| } |
| |
| if (ram_size >= user_lowmem) { |
| pcms->above_4g_mem_size = ram_size - user_lowmem; |
| pcms->below_4g_mem_size = user_lowmem; |
| } else { |
| pcms->above_4g_mem_size = 0; |
| pcms->below_4g_mem_size = ram_size; |
| } |
| if (!pcms->above_4g_mem_size) { |
| block_len = ram_size; |
| } else { |
| /* |
| * Xen does not allocate the memory continuously, it keeps a |
| * hole of the size computed above or passed in. |
| */ |
| block_len = (1ULL << 32) + pcms->above_4g_mem_size; |
| } |
| memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, |
| &error_fatal); |
| *ram_memory_p = &ram_memory; |
| vmstate_register_ram_global(&ram_memory); |
| |
| memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", |
| &ram_memory, 0, 0xa0000); |
| memory_region_add_subregion(sysmem, 0, &ram_640k); |
| /* Skip of the VGA IO memory space, it will be registered later by the VGA |
| * emulated device. |
| * |
| * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load |
| * the Options ROM, so it is registered here as RAM. |
| */ |
| memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", |
| &ram_memory, 0xc0000, |
| pcms->below_4g_mem_size - 0xc0000); |
| memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); |
| if (pcms->above_4g_mem_size > 0) { |
| memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", |
| &ram_memory, 0x100000000ULL, |
| pcms->above_4g_mem_size); |
| memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); |
| } |
| } |
| |
| void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, |
| Error **errp) |
| { |
| unsigned long nr_pfn; |
| xen_pfn_t *pfn_list; |
| int i; |
| |
| if (runstate_check(RUN_STATE_INMIGRATE)) { |
| /* RAM already populated in Xen */ |
| fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT |
| " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", |
| __func__, size, ram_addr); |
| return; |
| } |
| |
| if (mr == &ram_memory) { |
| return; |
| } |
| |
| trace_xen_ram_alloc(ram_addr, size); |
| |
| nr_pfn = size >> TARGET_PAGE_BITS; |
| pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); |
| |
| for (i = 0; i < nr_pfn; i++) { |
| pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; |
| } |
| |
| if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { |
| error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, |
| ram_addr); |
| } |
| |
| g_free(pfn_list); |
| } |
| |
| static XenPhysmap *get_physmapping(XenIOState *state, |
| hwaddr start_addr, ram_addr_t size) |
| { |
| XenPhysmap *physmap = NULL; |
| |
| start_addr &= TARGET_PAGE_MASK; |
| |
| QLIST_FOREACH(physmap, &state->physmap, list) { |
| if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { |
| return physmap; |
| } |
| } |
| return NULL; |
| } |
| |
| static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, |
| ram_addr_t size, void *opaque) |
| { |
| hwaddr addr = start_addr & TARGET_PAGE_MASK; |
| XenIOState *xen_io_state = opaque; |
| XenPhysmap *physmap = NULL; |
| |
| QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { |
| if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { |
| return physmap->start_addr; |
| } |
| } |
| |
| return start_addr; |
| } |
| |
| static int xen_add_to_physmap(XenIOState *state, |
| hwaddr start_addr, |
| ram_addr_t size, |
| MemoryRegion *mr, |
| hwaddr offset_within_region) |
| { |
| unsigned long i = 0; |
| int rc = 0; |
| XenPhysmap *physmap = NULL; |
| hwaddr pfn, start_gpfn; |
| hwaddr phys_offset = memory_region_get_ram_addr(mr); |
| char path[80], value[17]; |
| const char *mr_name; |
| |
| if (get_physmapping(state, start_addr, size)) { |
| return 0; |
| } |
| if (size <= 0) { |
| return -1; |
| } |
| |
| /* Xen can only handle a single dirty log region for now and we want |
| * the linear framebuffer to be that region. |
| * Avoid tracking any regions that is not videoram and avoid tracking |
| * the legacy vga region. */ |
| if (mr == framebuffer && start_addr > 0xbffff) { |
| goto go_physmap; |
| } |
| return -1; |
| |
| go_physmap: |
| DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", |
| start_addr, start_addr + size); |
| |
| pfn = phys_offset >> TARGET_PAGE_BITS; |
| start_gpfn = start_addr >> TARGET_PAGE_BITS; |
| for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { |
| unsigned long idx = pfn + i; |
| xen_pfn_t gpfn = start_gpfn + i; |
| |
| rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); |
| if (rc) { |
| DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" |
| PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); |
| return -rc; |
| } |
| } |
| |
| mr_name = memory_region_name(mr); |
| |
| physmap = g_malloc(sizeof (XenPhysmap)); |
| |
| physmap->start_addr = start_addr; |
| physmap->size = size; |
| physmap->name = mr_name; |
| physmap->phys_offset = phys_offset; |
| |
| QLIST_INSERT_HEAD(&state->physmap, physmap, list); |
| |
| xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, |
| start_addr >> TARGET_PAGE_BITS, |
| (start_addr + size - 1) >> TARGET_PAGE_BITS, |
| XEN_DOMCTL_MEM_CACHEATTR_WB); |
| |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", |
| xen_domid, (uint64_t)phys_offset); |
| snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); |
| if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { |
| return -1; |
| } |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", |
| xen_domid, (uint64_t)phys_offset); |
| snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); |
| if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { |
| return -1; |
| } |
| if (mr_name) { |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", |
| xen_domid, (uint64_t)phys_offset); |
| if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) { |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int xen_remove_from_physmap(XenIOState *state, |
| hwaddr start_addr, |
| ram_addr_t size) |
| { |
| unsigned long i = 0; |
| int rc = 0; |
| XenPhysmap *physmap = NULL; |
| hwaddr phys_offset = 0; |
| |
| physmap = get_physmapping(state, start_addr, size); |
| if (physmap == NULL) { |
| return -1; |
| } |
| |
| phys_offset = physmap->phys_offset; |
| size = physmap->size; |
| |
| DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " |
| "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); |
| |
| size >>= TARGET_PAGE_BITS; |
| start_addr >>= TARGET_PAGE_BITS; |
| phys_offset >>= TARGET_PAGE_BITS; |
| for (i = 0; i < size; i++) { |
| xen_pfn_t idx = start_addr + i; |
| xen_pfn_t gpfn = phys_offset + i; |
| |
| rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); |
| if (rc) { |
| fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" |
| PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); |
| return -rc; |
| } |
| } |
| |
| QLIST_REMOVE(physmap, list); |
| if (state->log_for_dirtybit == physmap) { |
| state->log_for_dirtybit = NULL; |
| } |
| g_free(physmap); |
| |
| return 0; |
| } |
| |
| static void xen_set_memory(struct MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool add) |
| { |
| XenIOState *state = container_of(listener, XenIOState, memory_listener); |
| hwaddr start_addr = section->offset_within_address_space; |
| ram_addr_t size = int128_get64(section->size); |
| bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); |
| hvmmem_type_t mem_type; |
| |
| if (section->mr == &ram_memory) { |
| return; |
| } else { |
| if (add) { |
| xen_map_memory_section(xen_xc, xen_domid, state->ioservid, |
| section); |
| } else { |
| xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid, |
| section); |
| } |
| } |
| |
| if (!memory_region_is_ram(section->mr)) { |
| return; |
| } |
| |
| if (log_dirty != add) { |
| return; |
| } |
| |
| trace_xen_client_set_memory(start_addr, size, log_dirty); |
| |
| start_addr &= TARGET_PAGE_MASK; |
| size = TARGET_PAGE_ALIGN(size); |
| |
| if (add) { |
| if (!memory_region_is_rom(section->mr)) { |
| xen_add_to_physmap(state, start_addr, size, |
| section->mr, section->offset_within_region); |
| } else { |
| mem_type = HVMMEM_ram_ro; |
| if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type, |
| start_addr >> TARGET_PAGE_BITS, |
| size >> TARGET_PAGE_BITS)) { |
| DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n", |
| start_addr); |
| } |
| } |
| } else { |
| if (xen_remove_from_physmap(state, start_addr, size) < 0) { |
| DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); |
| } |
| } |
| } |
| |
| static void xen_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| memory_region_ref(section->mr); |
| xen_set_memory(listener, section, true); |
| } |
| |
| static void xen_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| xen_set_memory(listener, section, false); |
| memory_region_unref(section->mr); |
| } |
| |
| static void xen_io_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| XenIOState *state = container_of(listener, XenIOState, io_listener); |
| MemoryRegion *mr = section->mr; |
| |
| if (mr->ops == &unassigned_io_ops) { |
| return; |
| } |
| |
| memory_region_ref(mr); |
| |
| xen_map_io_section(xen_xc, xen_domid, state->ioservid, section); |
| } |
| |
| static void xen_io_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| XenIOState *state = container_of(listener, XenIOState, io_listener); |
| MemoryRegion *mr = section->mr; |
| |
| if (mr->ops == &unassigned_io_ops) { |
| return; |
| } |
| |
| xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section); |
| |
| memory_region_unref(mr); |
| } |
| |
| static void xen_device_realize(DeviceListener *listener, |
| DeviceState *dev) |
| { |
| XenIOState *state = container_of(listener, XenIOState, device_listener); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { |
| PCIDevice *pci_dev = PCI_DEVICE(dev); |
| |
| xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); |
| } |
| } |
| |
| static void xen_device_unrealize(DeviceListener *listener, |
| DeviceState *dev) |
| { |
| XenIOState *state = container_of(listener, XenIOState, device_listener); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { |
| PCIDevice *pci_dev = PCI_DEVICE(dev); |
| |
| xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev); |
| } |
| } |
| |
| static void xen_sync_dirty_bitmap(XenIOState *state, |
| hwaddr start_addr, |
| ram_addr_t size) |
| { |
| hwaddr npages = size >> TARGET_PAGE_BITS; |
| const int width = sizeof(unsigned long) * 8; |
| unsigned long bitmap[DIV_ROUND_UP(npages, width)]; |
| int rc, i, j; |
| const XenPhysmap *physmap = NULL; |
| |
| physmap = get_physmapping(state, start_addr, size); |
| if (physmap == NULL) { |
| /* not handled */ |
| return; |
| } |
| |
| if (state->log_for_dirtybit == NULL) { |
| state->log_for_dirtybit = physmap; |
| } else if (state->log_for_dirtybit != physmap) { |
| /* Only one range for dirty bitmap can be tracked. */ |
| return; |
| } |
| |
| rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid, |
| start_addr >> TARGET_PAGE_BITS, npages, |
| bitmap); |
| if (rc < 0) { |
| #ifndef ENODATA |
| #define ENODATA ENOENT |
| #endif |
| if (errno == ENODATA) { |
| memory_region_set_dirty(framebuffer, 0, size); |
| DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx |
| ", 0x" TARGET_FMT_plx "): %s\n", |
| start_addr, start_addr + size, strerror(errno)); |
| } |
| return; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(bitmap); i++) { |
| unsigned long map = bitmap[i]; |
| while (map != 0) { |
| j = ctzl(map); |
| map &= ~(1ul << j); |
| memory_region_set_dirty(framebuffer, |
| (i * width + j) * TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| }; |
| } |
| } |
| |
| static void xen_log_start(MemoryListener *listener, |
| MemoryRegionSection *section, |
| int old, int new) |
| { |
| XenIOState *state = container_of(listener, XenIOState, memory_listener); |
| |
| if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { |
| xen_sync_dirty_bitmap(state, section->offset_within_address_space, |
| int128_get64(section->size)); |
| } |
| } |
| |
| static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, |
| int old, int new) |
| { |
| XenIOState *state = container_of(listener, XenIOState, memory_listener); |
| |
| if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { |
| state->log_for_dirtybit = NULL; |
| /* Disable dirty bit tracking */ |
| xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL); |
| } |
| } |
| |
| static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) |
| { |
| XenIOState *state = container_of(listener, XenIOState, memory_listener); |
| |
| xen_sync_dirty_bitmap(state, section->offset_within_address_space, |
| int128_get64(section->size)); |
| } |
| |
| static void xen_log_global_start(MemoryListener *listener) |
| { |
| if (xen_enabled()) { |
| xen_in_migration = true; |
| } |
| } |
| |
| static void xen_log_global_stop(MemoryListener *listener) |
| { |
| xen_in_migration = false; |
| } |
| |
| static MemoryListener xen_memory_listener = { |
| .region_add = xen_region_add, |
| .region_del = xen_region_del, |
| .log_start = xen_log_start, |
| .log_stop = xen_log_stop, |
| .log_sync = xen_log_sync, |
| .log_global_start = xen_log_global_start, |
| .log_global_stop = xen_log_global_stop, |
| .priority = 10, |
| }; |
| |
| static MemoryListener xen_io_listener = { |
| .region_add = xen_io_add, |
| .region_del = xen_io_del, |
| .priority = 10, |
| }; |
| |
| static DeviceListener xen_device_listener = { |
| .realize = xen_device_realize, |
| .unrealize = xen_device_unrealize, |
| }; |
| |
| /* get the ioreq packets from share mem */ |
| static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) |
| { |
| ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); |
| |
| if (req->state != STATE_IOREQ_READY) { |
| DPRINTF("I/O request not ready: " |
| "%x, ptr: %x, port: %"PRIx64", " |
| "data: %"PRIx64", count: %u, size: %u\n", |
| req->state, req->data_is_ptr, req->addr, |
| req->data, req->count, req->size); |
| return NULL; |
| } |
| |
| xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ |
| |
| req->state = STATE_IOREQ_INPROCESS; |
| return req; |
| } |
| |
| /* use poll to get the port notification */ |
| /* ioreq_vec--out,the */ |
| /* retval--the number of ioreq packet */ |
| static ioreq_t *cpu_get_ioreq(XenIOState *state) |
| { |
| int i; |
| evtchn_port_t port; |
| |
| port = xenevtchn_pending(state->xce_handle); |
| if (port == state->bufioreq_local_port) { |
| timer_mod(state->buffered_io_timer, |
| BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); |
| return NULL; |
| } |
| |
| if (port != -1) { |
| for (i = 0; i < max_cpus; i++) { |
| if (state->ioreq_local_port[i] == port) { |
| break; |
| } |
| } |
| |
| if (i == max_cpus) { |
| hw_error("Fatal error while trying to get io event!\n"); |
| } |
| |
| /* unmask the wanted port again */ |
| xenevtchn_unmask(state->xce_handle, port); |
| |
| /* get the io packet from shared memory */ |
| state->send_vcpu = i; |
| return cpu_get_ioreq_from_shared_memory(state, i); |
| } |
| |
| /* read error or read nothing */ |
| return NULL; |
| } |
| |
| static uint32_t do_inp(uint32_t addr, unsigned long size) |
| { |
| switch (size) { |
| case 1: |
| return cpu_inb(addr); |
| case 2: |
| return cpu_inw(addr); |
| case 4: |
| return cpu_inl(addr); |
| default: |
| hw_error("inp: bad size: %04x %lx", addr, size); |
| } |
| } |
| |
| static void do_outp(uint32_t addr, |
| unsigned long size, uint32_t val) |
| { |
| switch (size) { |
| case 1: |
| return cpu_outb(addr, val); |
| case 2: |
| return cpu_outw(addr, val); |
| case 4: |
| return cpu_outl(addr, val); |
| default: |
| hw_error("outp: bad size: %04x %lx", addr, size); |
| } |
| } |
| |
| /* |
| * Helper functions which read/write an object from/to physical guest |
| * memory, as part of the implementation of an ioreq. |
| * |
| * Equivalent to |
| * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, |
| * val, req->size, 0/1) |
| * except without the integer overflow problems. |
| */ |
| static void rw_phys_req_item(hwaddr addr, |
| ioreq_t *req, uint32_t i, void *val, int rw) |
| { |
| /* Do everything unsigned so overflow just results in a truncated result |
| * and accesses to undesired parts of guest memory, which is up |
| * to the guest */ |
| hwaddr offset = (hwaddr)req->size * i; |
| if (req->df) { |
| addr -= offset; |
| } else { |
| addr += offset; |
| } |
| cpu_physical_memory_rw(addr, val, req->size, rw); |
| } |
| |
| static inline void read_phys_req_item(hwaddr addr, |
| ioreq_t *req, uint32_t i, void *val) |
| { |
| rw_phys_req_item(addr, req, i, val, 0); |
| } |
| static inline void write_phys_req_item(hwaddr addr, |
| ioreq_t *req, uint32_t i, void *val) |
| { |
| rw_phys_req_item(addr, req, i, val, 1); |
| } |
| |
| |
| static void cpu_ioreq_pio(ioreq_t *req) |
| { |
| uint32_t i; |
| |
| trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, |
| req->data, req->count, req->size); |
| |
| if (req->dir == IOREQ_READ) { |
| if (!req->data_is_ptr) { |
| req->data = do_inp(req->addr, req->size); |
| trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, |
| req->size); |
| } else { |
| uint32_t tmp; |
| |
| for (i = 0; i < req->count; i++) { |
| tmp = do_inp(req->addr, req->size); |
| write_phys_req_item(req->data, req, i, &tmp); |
| } |
| } |
| } else if (req->dir == IOREQ_WRITE) { |
| if (!req->data_is_ptr) { |
| trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, |
| req->size); |
| do_outp(req->addr, req->size, req->data); |
| } else { |
| for (i = 0; i < req->count; i++) { |
| uint32_t tmp = 0; |
| |
| read_phys_req_item(req->data, req, i, &tmp); |
| do_outp(req->addr, req->size, tmp); |
| } |
| } |
| } |
| } |
| |
| static void cpu_ioreq_move(ioreq_t *req) |
| { |
| uint32_t i; |
| |
| trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, |
| req->data, req->count, req->size); |
| |
| if (!req->data_is_ptr) { |
| if (req->dir == IOREQ_READ) { |
| for (i = 0; i < req->count; i++) { |
| read_phys_req_item(req->addr, req, i, &req->data); |
| } |
| } else if (req->dir == IOREQ_WRITE) { |
| for (i = 0; i < req->count; i++) { |
| write_phys_req_item(req->addr, req, i, &req->data); |
| } |
| } |
| } else { |
| uint64_t tmp; |
| |
| if (req->dir == IOREQ_READ) { |
| for (i = 0; i < req->count; i++) { |
| read_phys_req_item(req->addr, req, i, &tmp); |
| write_phys_req_item(req->data, req, i, &tmp); |
| } |
| } else if (req->dir == IOREQ_WRITE) { |
| for (i = 0; i < req->count; i++) { |
| read_phys_req_item(req->data, req, i, &tmp); |
| write_phys_req_item(req->addr, req, i, &tmp); |
| } |
| } |
| } |
| } |
| |
| static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) |
| { |
| X86CPU *cpu; |
| CPUX86State *env; |
| |
| cpu = X86_CPU(current_cpu); |
| env = &cpu->env; |
| env->regs[R_EAX] = req->data; |
| env->regs[R_EBX] = vmport_regs->ebx; |
| env->regs[R_ECX] = vmport_regs->ecx; |
| env->regs[R_EDX] = vmport_regs->edx; |
| env->regs[R_ESI] = vmport_regs->esi; |
| env->regs[R_EDI] = vmport_regs->edi; |
| } |
| |
| static void regs_from_cpu(vmware_regs_t *vmport_regs) |
| { |
| X86CPU *cpu = X86_CPU(current_cpu); |
| CPUX86State *env = &cpu->env; |
| |
| vmport_regs->ebx = env->regs[R_EBX]; |
| vmport_regs->ecx = env->regs[R_ECX]; |
| vmport_regs->edx = env->regs[R_EDX]; |
| vmport_regs->esi = env->regs[R_ESI]; |
| vmport_regs->edi = env->regs[R_EDI]; |
| } |
| |
| static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) |
| { |
| vmware_regs_t *vmport_regs; |
| |
| assert(state->shared_vmport_page); |
| vmport_regs = |
| &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; |
| QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); |
| |
| current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; |
| regs_to_cpu(vmport_regs, req); |
| cpu_ioreq_pio(req); |
| regs_from_cpu(vmport_regs); |
| current_cpu = NULL; |
| } |
| |
| static void handle_ioreq(XenIOState *state, ioreq_t *req) |
| { |
| trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, |
| req->addr, req->data, req->count, req->size); |
| |
| if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && |
| (req->size < sizeof (target_ulong))) { |
| req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; |
| } |
| |
| if (req->dir == IOREQ_WRITE) |
| trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, |
| req->addr, req->data, req->count, req->size); |
| |
| switch (req->type) { |
| case IOREQ_TYPE_PIO: |
| cpu_ioreq_pio(req); |
| break; |
| case IOREQ_TYPE_COPY: |
| cpu_ioreq_move(req); |
| break; |
| case IOREQ_TYPE_VMWARE_PORT: |
| handle_vmport_ioreq(state, req); |
| break; |
| case IOREQ_TYPE_TIMEOFFSET: |
| break; |
| case IOREQ_TYPE_INVALIDATE: |
| xen_invalidate_map_cache(); |
| break; |
| case IOREQ_TYPE_PCI_CONFIG: { |
| uint32_t sbdf = req->addr >> 32; |
| uint32_t val; |
| |
| /* Fake a write to port 0xCF8 so that |
| * the config space access will target the |
| * correct device model. |
| */ |
| val = (1u << 31) | |
| ((req->addr & 0x0f00) << 16) | |
| ((sbdf & 0xffff) << 8) | |
| (req->addr & 0xfc); |
| do_outp(0xcf8, 4, val); |
| |
| /* Now issue the config space access via |
| * port 0xCFC |
| */ |
| req->addr = 0xcfc | (req->addr & 0x03); |
| cpu_ioreq_pio(req); |
| break; |
| } |
| default: |
| hw_error("Invalid ioreq type 0x%x\n", req->type); |
| } |
| if (req->dir == IOREQ_READ) { |
| trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, |
| req->addr, req->data, req->count, req->size); |
| } |
| } |
| |
| static int handle_buffered_iopage(XenIOState *state) |
| { |
| buffered_iopage_t *buf_page = state->buffered_io_page; |
| buf_ioreq_t *buf_req = NULL; |
| ioreq_t req; |
| int qw; |
| |
| if (!buf_page) { |
| return 0; |
| } |
| |
| memset(&req, 0x00, sizeof(req)); |
| |
| for (;;) { |
| uint32_t rdptr = buf_page->read_pointer, wrptr; |
| |
| xen_rmb(); |
| wrptr = buf_page->write_pointer; |
| xen_rmb(); |
| if (rdptr != buf_page->read_pointer) { |
| continue; |
| } |
| if (rdptr == wrptr) { |
| break; |
| } |
| buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; |
| req.size = 1UL << buf_req->size; |
| req.count = 1; |
| req.addr = buf_req->addr; |
| req.data = buf_req->data; |
| req.state = STATE_IOREQ_READY; |
| req.dir = buf_req->dir; |
| req.df = 1; |
| req.type = buf_req->type; |
| req.data_is_ptr = 0; |
| qw = (req.size == 8); |
| if (qw) { |
| buf_req = &buf_page->buf_ioreq[(rdptr + 1) % |
| IOREQ_BUFFER_SLOT_NUM]; |
| req.data |= ((uint64_t)buf_req->data) << 32; |
| } |
| |
| handle_ioreq(state, &req); |
| |
| atomic_add(&buf_page->read_pointer, qw + 1); |
| } |
| |
| return req.count; |
| } |
| |
| static void handle_buffered_io(void *opaque) |
| { |
| XenIOState *state = opaque; |
| |
| if (handle_buffered_iopage(state)) { |
| timer_mod(state->buffered_io_timer, |
| BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); |
| } else { |
| timer_del(state->buffered_io_timer); |
| xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); |
| } |
| } |
| |
| static void cpu_handle_ioreq(void *opaque) |
| { |
| XenIOState *state = opaque; |
| ioreq_t *req = cpu_get_ioreq(state); |
| |
| handle_buffered_iopage(state); |
| if (req) { |
| handle_ioreq(state, req); |
| |
| if (req->state != STATE_IOREQ_INPROCESS) { |
| fprintf(stderr, "Badness in I/O request ... not in service?!: " |
| "%x, ptr: %x, port: %"PRIx64", " |
| "data: %"PRIx64", count: %u, size: %u, type: %u\n", |
| req->state, req->data_is_ptr, req->addr, |
| req->data, req->count, req->size, req->type); |
| destroy_hvm_domain(false); |
| return; |
| } |
| |
| xen_wmb(); /* Update ioreq contents /then/ update state. */ |
| |
| /* |
| * We do this before we send the response so that the tools |
| * have the opportunity to pick up on the reset before the |
| * guest resumes and does a hlt with interrupts disabled which |
| * causes Xen to powerdown the domain. |
| */ |
| if (runstate_is_running()) { |
| if (qemu_shutdown_requested_get()) { |
| destroy_hvm_domain(false); |
| } |
| if (qemu_reset_requested_get()) { |
| qemu_system_reset(VMRESET_REPORT); |
| destroy_hvm_domain(true); |
| } |
| } |
| |
| req->state = STATE_IORESP_READY; |
| xenevtchn_notify(state->xce_handle, |
| state->ioreq_local_port[state->send_vcpu]); |
| } |
| } |
| |
| static void xen_main_loop_prepare(XenIOState *state) |
| { |
| int evtchn_fd = -1; |
| |
| if (state->xce_handle != NULL) { |
| evtchn_fd = xenevtchn_fd(state->xce_handle); |
| } |
| |
| state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, |
| state); |
| |
| if (evtchn_fd != -1) { |
| CPUState *cpu_state; |
| |
| DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); |
| CPU_FOREACH(cpu_state) { |
| DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", |
| __func__, cpu_state->cpu_index, cpu_state); |
| state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; |
| } |
| qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); |
| } |
| } |
| |
| |
| static void xen_hvm_change_state_handler(void *opaque, int running, |
| RunState rstate) |
| { |
| XenIOState *state = opaque; |
| |
| if (running) { |
| xen_main_loop_prepare(state); |
| } |
| |
| xen_set_ioreq_server_state(xen_xc, xen_domid, |
| state->ioservid, |
| (rstate == RUN_STATE_RUNNING)); |
| } |
| |
| static void xen_exit_notifier(Notifier *n, void *data) |
| { |
| XenIOState *state = container_of(n, XenIOState, exit); |
| |
| xenevtchn_close(state->xce_handle); |
| xs_daemon_close(state->xenstore); |
| } |
| |
| static void xen_read_physmap(XenIOState *state) |
| { |
| XenPhysmap *physmap = NULL; |
| unsigned int len, num, i; |
| char path[80], *value = NULL; |
| char **entries = NULL; |
| |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap", xen_domid); |
| entries = xs_directory(state->xenstore, 0, path, &num); |
| if (entries == NULL) |
| return; |
| |
| for (i = 0; i < num; i++) { |
| physmap = g_malloc(sizeof (XenPhysmap)); |
| physmap->phys_offset = strtoull(entries[i], NULL, 16); |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%s/start_addr", |
| xen_domid, entries[i]); |
| value = xs_read(state->xenstore, 0, path, &len); |
| if (value == NULL) { |
| g_free(physmap); |
| continue; |
| } |
| physmap->start_addr = strtoull(value, NULL, 16); |
| free(value); |
| |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%s/size", |
| xen_domid, entries[i]); |
| value = xs_read(state->xenstore, 0, path, &len); |
| if (value == NULL) { |
| g_free(physmap); |
| continue; |
| } |
| physmap->size = strtoull(value, NULL, 16); |
| free(value); |
| |
| snprintf(path, sizeof(path), |
| "/local/domain/0/device-model/%d/physmap/%s/name", |
| xen_domid, entries[i]); |
| physmap->name = xs_read(state->xenstore, 0, path, &len); |
| |
| QLIST_INSERT_HEAD(&state->physmap, physmap, list); |
| } |
| free(entries); |
| } |
| |
| static void xen_wakeup_notifier(Notifier *notifier, void *data) |
| { |
| xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); |
| } |
| |
| void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) |
| { |
| int i, rc; |
| xen_pfn_t ioreq_pfn; |
| xen_pfn_t bufioreq_pfn; |
| evtchn_port_t bufioreq_evtchn; |
| XenIOState *state; |
| |
| state = g_malloc0(sizeof (XenIOState)); |
| |
| state->xce_handle = xenevtchn_open(NULL, 0); |
| if (state->xce_handle == NULL) { |
| perror("xen: event channel open"); |
| goto err; |
| } |
| |
| state->xenstore = xs_daemon_open(); |
| if (state->xenstore == NULL) { |
| perror("xen: xenstore open"); |
| goto err; |
| } |
| |
| rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid); |
| if (rc < 0) { |
| perror("xen: ioreq server create"); |
| goto err; |
| } |
| |
| state->exit.notify = xen_exit_notifier; |
| qemu_add_exit_notifier(&state->exit); |
| |
| state->suspend.notify = xen_suspend_notifier; |
| qemu_register_suspend_notifier(&state->suspend); |
| |
| state->wakeup.notify = xen_wakeup_notifier; |
| qemu_register_wakeup_notifier(&state->wakeup); |
| |
| rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid, |
| &ioreq_pfn, &bufioreq_pfn, |
| &bufioreq_evtchn); |
| if (rc < 0) { |
| error_report("failed to get ioreq server info: error %d handle=%p", |
| errno, xen_xc); |
| goto err; |
| } |
| |
| DPRINTF("shared page at pfn %lx\n", ioreq_pfn); |
| DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); |
| DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); |
| |
| state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, |
| PROT_READ|PROT_WRITE, |
| 1, &ioreq_pfn, NULL); |
| if (state->shared_page == NULL) { |
| error_report("map shared IO page returned error %d handle=%p", |
| errno, xen_xc); |
| goto err; |
| } |
| |
| rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); |
| if (!rc) { |
| DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); |
| state->shared_vmport_page = |
| xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, |
| 1, &ioreq_pfn, NULL); |
| if (state->shared_vmport_page == NULL) { |
| error_report("map shared vmport IO page returned error %d handle=%p", |
| errno, xen_xc); |
| goto err; |
| } |
| } else if (rc != -ENOSYS) { |
| error_report("get vmport regs pfn returned error %d, rc=%d", |
| errno, rc); |
| goto err; |
| } |
| |
| state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, |
| PROT_READ|PROT_WRITE, |
| 1, &bufioreq_pfn, NULL); |
| if (state->buffered_io_page == NULL) { |
| error_report("map buffered IO page returned error %d", errno); |
| goto err; |
| } |
| |
| /* Note: cpus is empty at this point in init */ |
| state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); |
| |
| rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true); |
| if (rc < 0) { |
| error_report("failed to enable ioreq server info: error %d handle=%p", |
| errno, xen_xc); |
| goto err; |
| } |
| |
| state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); |
| |
| /* FIXME: how about if we overflow the page here? */ |
| for (i = 0; i < max_cpus; i++) { |
| rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, |
| xen_vcpu_eport(state->shared_page, i)); |
| if (rc == -1) { |
| error_report("shared evtchn %d bind error %d", i, errno); |
| goto err; |
| } |
| state->ioreq_local_port[i] = rc; |
| } |
| |
| rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, |
| bufioreq_evtchn); |
| if (rc == -1) { |
| error_report("buffered evtchn bind error %d", errno); |
| goto err; |
| } |
| state->bufioreq_local_port = rc; |
| |
| /* Init RAM management */ |
| xen_map_cache_init(xen_phys_offset_to_gaddr, state); |
| xen_ram_init(pcms, ram_size, ram_memory); |
| |
| qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); |
| |
| state->memory_listener = xen_memory_listener; |
| QLIST_INIT(&state->physmap); |
| memory_listener_register(&state->memory_listener, &address_space_memory); |
| state->log_for_dirtybit = NULL; |
| |
| state->io_listener = xen_io_listener; |
| memory_listener_register(&state->io_listener, &address_space_io); |
| |
| state->device_listener = xen_device_listener; |
| device_listener_register(&state->device_listener); |
| |
| /* Initialize backend core & drivers */ |
| if (xen_be_init() != 0) { |
| error_report("xen backend core setup failed"); |
| goto err; |
| } |
| xen_be_register_common(); |
| xen_read_physmap(state); |
| return; |
| |
| err: |
| error_report("xen hardware virtual machine initialisation failed"); |
| exit(1); |
| } |
| |
| void destroy_hvm_domain(bool reboot) |
| { |
| xc_interface *xc_handle; |
| int sts; |
| |
| xc_handle = xc_interface_open(0, 0, 0); |
| if (xc_handle == NULL) { |
| fprintf(stderr, "Cannot acquire xenctrl handle\n"); |
| } else { |
| sts = xc_domain_shutdown(xc_handle, xen_domid, |
| reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); |
| if (sts != 0) { |
| fprintf(stderr, "xc_domain_shutdown failed to issue %s, " |
| "sts %d, %s\n", reboot ? "reboot" : "poweroff", |
| sts, strerror(errno)); |
| } else { |
| fprintf(stderr, "Issued domain %d %s\n", xen_domid, |
| reboot ? "reboot" : "poweroff"); |
| } |
| xc_interface_close(xc_handle); |
| } |
| } |
| |
| void xen_register_framebuffer(MemoryRegion *mr) |
| { |
| framebuffer = mr; |
| } |
| |
| void xen_shutdown_fatal_error(const char *fmt, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, fmt); |
| vfprintf(stderr, fmt, ap); |
| va_end(ap); |
| fprintf(stderr, "Will destroy the domain.\n"); |
| /* destroy the domain */ |
| qemu_system_shutdown_request(); |
| } |
| |
| void xen_modified_memory(ram_addr_t start, ram_addr_t length) |
| { |
| if (unlikely(xen_in_migration)) { |
| int rc; |
| ram_addr_t start_pfn, nb_pages; |
| |
| if (length == 0) { |
| length = TARGET_PAGE_SIZE; |
| } |
| start_pfn = start >> TARGET_PAGE_BITS; |
| nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) |
| - start_pfn; |
| rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages); |
| if (rc) { |
| fprintf(stderr, |
| "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", |
| __func__, start, nb_pages, rc, strerror(-rc)); |
| } |
| } |
| } |
| |
| void qmp_xen_set_global_dirty_log(bool enable, Error **errp) |
| { |
| if (enable) { |
| memory_global_dirty_log_start(); |
| } else { |
| memory_global_dirty_log_stop(); |
| } |
| } |