|  | /* | 
|  | * QEMU e1000(e) emulation - shared code | 
|  | * | 
|  | * Copyright (c) 2008 Qumranet | 
|  | * | 
|  | * Based on work done by: | 
|  | * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. | 
|  | * Copyright (c) 2007 Dan Aloni | 
|  | * Copyright (c) 2004 Antony T Curtis | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/units.h" | 
|  | #include "hw/net/mii.h" | 
|  | #include "hw/pci/pci_device.h" | 
|  | #include "net/eth.h" | 
|  | #include "net/net.h" | 
|  |  | 
|  | #include "e1000_common.h" | 
|  | #include "e1000x_common.h" | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac) | 
|  | { | 
|  | bool link_up = mac[STATUS] & E1000_STATUS_LU; | 
|  | bool rx_enabled = mac[RCTL] & E1000_RCTL_EN; | 
|  | bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER; | 
|  |  | 
|  | if (!link_up || !rx_enabled || !pci_master) { | 
|  | trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool e1000x_is_vlan_packet(const void *buf, uint16_t vet) | 
|  | { | 
|  | uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto); | 
|  | bool res = (eth_proto == vet); | 
|  |  | 
|  | trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | bool e1000x_rx_vlan_filter(uint32_t *mac, const struct vlan_header *vhdr) | 
|  | { | 
|  | if (e1000x_vlan_rx_filter_enabled(mac)) { | 
|  | uint16_t vid = lduw_be_p(&vhdr->h_tci); | 
|  | uint32_t vfta = | 
|  | ldl_le_p((uint32_t *)(mac + VFTA) + | 
|  | ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK)); | 
|  | if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) { | 
|  | trace_e1000x_rx_flt_vlan_mismatch(vid); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_e1000x_rx_flt_vlan_match(vid); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool e1000x_rx_group_filter(uint32_t *mac, const struct eth_header *ehdr) | 
|  | { | 
|  | static const int mta_shift[] = { 4, 3, 2, 0 }; | 
|  | uint32_t f, ra[2], *rp, rctl = mac[RCTL]; | 
|  |  | 
|  | if (is_broadcast_ether_addr(ehdr->h_dest)) { | 
|  | if (rctl & E1000_RCTL_BAM) { | 
|  | return true; | 
|  | } | 
|  | } else if (is_multicast_ether_addr(ehdr->h_dest)) { | 
|  | if (rctl & E1000_RCTL_MPE) { | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | if (rctl & E1000_RCTL_UPE) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (rp = mac + RA; rp < mac + RA + 32; rp += 2) { | 
|  | if (!(rp[1] & E1000_RAH_AV)) { | 
|  | continue; | 
|  | } | 
|  | ra[0] = cpu_to_le32(rp[0]); | 
|  | ra[1] = cpu_to_le32(rp[1]); | 
|  | if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { | 
|  | trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2, | 
|  | MAC_ARG(ehdr->h_dest)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(ehdr->h_dest)); | 
|  |  | 
|  | f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; | 
|  | f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; | 
|  | if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(ehdr->h_dest), | 
|  | (rctl >> E1000_RCTL_MO_SHIFT) & 3, | 
|  | f >> 5, | 
|  | mac[MTA + (f >> 5)]); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool e1000x_hw_rx_enabled(uint32_t *mac) | 
|  | { | 
|  | if (!(mac[STATUS] & E1000_STATUS_LU)) { | 
|  | trace_e1000x_rx_link_down(mac[STATUS]); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!(mac[RCTL] & E1000_RCTL_EN)) { | 
|  | trace_e1000x_rx_disabled(mac[RCTL]); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool e1000x_is_oversized(uint32_t *mac, size_t size) | 
|  | { | 
|  | size_t header_size = sizeof(struct eth_header) + sizeof(struct vlan_header); | 
|  | /* this is the size past which hardware will | 
|  | drop packets when setting LPE=0 */ | 
|  | size_t maximum_short_size = header_size + ETH_MTU; | 
|  | /* this is the size past which hardware will | 
|  | drop packets when setting LPE=1 */ | 
|  | size_t maximum_large_size = 16 * KiB - ETH_FCS_LEN; | 
|  |  | 
|  | if ((size > maximum_large_size || | 
|  | (size > maximum_short_size && !(mac[RCTL] & E1000_RCTL_LPE))) | 
|  | && !(mac[RCTL] & E1000_RCTL_SBP)) { | 
|  | e1000x_inc_reg_if_not_full(mac, ROC); | 
|  | trace_e1000x_rx_oversized(size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer) | 
|  | { | 
|  | e1000x_update_regs_on_link_down(mac, phy); | 
|  | trace_e1000x_link_negotiation_start(); | 
|  | timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); | 
|  | } | 
|  |  | 
|  | void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs, | 
|  | uint8_t *mac_addr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | mac_regs[RA] = 0; | 
|  | mac_regs[RA + 1] = E1000_RAH_AV; | 
|  | for (i = 0; i < 4; i++) { | 
|  | mac_regs[RA] |= mac_addr[i] << (8 * i); | 
|  | mac_regs[RA + 1] |= | 
|  | (i < 2) ? mac_addr[i + 4] << (8 * i) : 0; | 
|  | } | 
|  |  | 
|  | qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr); | 
|  | trace_e1000x_mac_indicate(MAC_ARG(mac_addr)); | 
|  | } | 
|  |  | 
|  | void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy) | 
|  | { | 
|  | e1000x_update_regs_on_link_up(mac, phy); | 
|  | phy[MII_ANLPAR] |= MII_ANLPAR_ACK; | 
|  | phy[MII_BMSR] |= MII_BMSR_AN_COMP; | 
|  | trace_e1000x_link_negotiation_done(); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000x_core_prepare_eeprom(uint16_t       *eeprom, | 
|  | const uint16_t *templ, | 
|  | uint32_t        templ_size, | 
|  | uint16_t        dev_id, | 
|  | const uint8_t  *macaddr) | 
|  | { | 
|  | uint16_t checksum = 0; | 
|  | int i; | 
|  |  | 
|  | memmove(eeprom, templ, templ_size); | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i]; | 
|  | } | 
|  |  | 
|  | eeprom[11] = eeprom[13] = dev_id; | 
|  |  | 
|  | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
|  | checksum += eeprom[i]; | 
|  | } | 
|  |  | 
|  | checksum = (uint16_t) EEPROM_SUM - checksum; | 
|  |  | 
|  | eeprom[EEPROM_CHECKSUM_REG] = checksum; | 
|  | } | 
|  |  | 
|  | uint32_t | 
|  | e1000x_rxbufsize(uint32_t rctl) | 
|  | { | 
|  | rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 | | 
|  | E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 | | 
|  | E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256; | 
|  | switch (rctl) { | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384: | 
|  | return 16384; | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192: | 
|  | return 8192; | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096: | 
|  | return 4096; | 
|  | case E1000_RCTL_SZ_1024: | 
|  | return 1024; | 
|  | case E1000_RCTL_SZ_512: | 
|  | return 512; | 
|  | case E1000_RCTL_SZ_256: | 
|  | return 256; | 
|  | } | 
|  | return 2048; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000x_update_rx_total_stats(uint32_t *mac, | 
|  | eth_pkt_types_e pkt_type, | 
|  | size_t pkt_size, | 
|  | size_t pkt_fcs_size) | 
|  | { | 
|  | static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511, | 
|  | PRC1023, PRC1522 }; | 
|  |  | 
|  | e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size); | 
|  | e1000x_inc_reg_if_not_full(mac, TPR); | 
|  | e1000x_inc_reg_if_not_full(mac, GPRC); | 
|  | /* TOR - Total Octets Received: | 
|  | * This register includes bytes received in a packet from the <Destination | 
|  | * Address> field through the <CRC> field, inclusively. | 
|  | * Always include FCS length (4) in size. | 
|  | */ | 
|  | e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4); | 
|  | e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4); | 
|  |  | 
|  | switch (pkt_type) { | 
|  | case ETH_PKT_BCAST: | 
|  | e1000x_inc_reg_if_not_full(mac, BPRC); | 
|  | break; | 
|  |  | 
|  | case ETH_PKT_MCAST: | 
|  | e1000x_inc_reg_if_not_full(mac, MPRC); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size) | 
|  | { | 
|  | if (size > 1023) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[5]); | 
|  | } else if (size > 511) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[4]); | 
|  | } else if (size > 255) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[3]); | 
|  | } else if (size > 127) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[2]); | 
|  | } else if (size > 64) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[1]); | 
|  | } else if (size == 64) { | 
|  | e1000x_inc_reg_if_not_full(mac, size_regs[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000x_read_tx_ctx_descr(struct e1000_context_desc *d, | 
|  | e1000x_txd_props *props) | 
|  | { | 
|  | uint32_t op = le32_to_cpu(d->cmd_and_length); | 
|  |  | 
|  | props->ipcss = d->lower_setup.ip_fields.ipcss; | 
|  | props->ipcso = d->lower_setup.ip_fields.ipcso; | 
|  | props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse); | 
|  | props->tucss = d->upper_setup.tcp_fields.tucss; | 
|  | props->tucso = d->upper_setup.tcp_fields.tucso; | 
|  | props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse); | 
|  | props->paylen = op & 0xfffff; | 
|  | props->hdr_len = d->tcp_seg_setup.fields.hdr_len; | 
|  | props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss); | 
|  | props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0; | 
|  | props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0; | 
|  | props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi) | 
|  | { | 
|  | int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | uint32_t timinca = mac[TIMINCA]; | 
|  | uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK; | 
|  | uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); | 
|  | int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16); | 
|  |  | 
|  | mac[lo] = timestamp & 0xffffffff; | 
|  | mac[hi] = timestamp >> 32; | 
|  | } | 
|  |  | 
|  | void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val) | 
|  | { | 
|  | int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | uint32_t old_val = mac[TIMINCA]; | 
|  | uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK; | 
|  | uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); | 
|  | uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK; | 
|  | uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); | 
|  |  | 
|  | mac[TIMINCA] = val; | 
|  | *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16; | 
|  | } |