blob: 8fb054428dc038c51eacbe65958d0739a427ce46 [file] [log] [blame]
/*
* ACPI implementation
*
* Copyright (c) 2006 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "vl.h"
//#define DEBUG
/* i82731AB (PIIX4) compatible power management function */
#define PM_FREQ 3579545
/* XXX: make them variable */
#define PM_IO_BASE 0xb000
#define SMI_CMD_IO_ADDR 0xb040
#define ACPI_DBG_IO_ADDR 0xb044
typedef struct PIIX4PMState {
PCIDevice dev;
uint16_t pmsts;
uint16_t pmen;
uint16_t pmcntrl;
QEMUTimer *tmr_timer;
int64_t tmr_overflow_time;
} PIIX4PMState;
#define RTC_EN (1 << 10)
#define PWRBTN_EN (1 << 8)
#define GBL_EN (1 << 5)
#define TMROF_EN (1 << 0)
#define SCI_EN (1 << 0)
#define SUS_EN (1 << 13)
/* Note: only used for ACPI bios init. Could be deleted when ACPI init
is integrated in Bochs BIOS */
static PIIX4PMState *piix4_pm_state;
static uint32_t get_pmtmr(PIIX4PMState *s)
{
uint32_t d;
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
return d & 0xffffff;
}
static int get_pmsts(PIIX4PMState *s)
{
int64_t d;
int pmsts;
pmsts = s->pmsts;
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
if (d >= s->tmr_overflow_time)
s->pmsts |= TMROF_EN;
return pmsts;
}
static void pm_update_sci(PIIX4PMState *s)
{
int sci_level, pmsts;
int64_t expire_time;
pmsts = get_pmsts(s);
sci_level = (((pmsts & s->pmen) &
(RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0);
pci_set_irq(&s->dev, 0, sci_level);
/* schedule a timer interruption if needed */
if ((s->pmen & TMROF_EN) && !(pmsts & TMROF_EN)) {
expire_time = muldiv64(s->tmr_overflow_time, ticks_per_sec, PM_FREQ);
qemu_mod_timer(s->tmr_timer, expire_time);
} else {
qemu_del_timer(s->tmr_timer);
}
}
static void pm_tmr_timer(void *opaque)
{
PIIX4PMState *s = opaque;
pm_update_sci(s);
}
static void pm_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
{
PIIX4PMState *s = opaque;
addr &= 0x3f;
switch(addr) {
case 0x00:
{
int64_t d;
int pmsts;
pmsts = get_pmsts(s);
if (pmsts & val & TMROF_EN) {
/* if TMRSTS is reset, then compute the new overflow time */
d = muldiv64(qemu_get_clock(vm_clock), PM_FREQ, ticks_per_sec);
s->tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL;
}
s->pmsts &= ~val;
pm_update_sci(s);
}
break;
case 0x02:
s->pmen = val;
pm_update_sci(s);
break;
case 0x04:
{
int sus_typ;
s->pmcntrl = val & ~(SUS_EN);
if (val & SUS_EN) {
/* change suspend type */
sus_typ = (val >> 10) & 3;
switch(sus_typ) {
case 0: /* soft power off */
qemu_system_shutdown_request();
break;
default:
break;
}
}
}
break;
default:
break;
}
#ifdef DEBUG
printf("PM writew port=0x%04x val=0x%04x\n", addr, val);
#endif
}
static uint32_t pm_ioport_readw(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 0x3f;
switch(addr) {
case 0x00:
val = get_pmsts(s);
break;
case 0x02:
val = s->pmen;
break;
case 0x04:
val = s->pmcntrl;
break;
default:
val = 0;
break;
}
#ifdef DEBUG
printf("PM readw port=0x%04x val=0x%04x\n", addr, val);
#endif
return val;
}
static void pm_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
// PIIX4PMState *s = opaque;
addr &= 0x3f;
#ifdef DEBUG
printf("PM writel port=0x%04x val=0x%08x\n", addr, val);
#endif
}
static uint32_t pm_ioport_readl(void *opaque, uint32_t addr)
{
PIIX4PMState *s = opaque;
uint32_t val;
addr &= 0x3f;
switch(addr) {
case 0x08:
val = get_pmtmr(s);
break;
default:
val = 0;
break;
}
#ifdef DEBUG
printf("PM readl port=0x%04x val=0x%08x\n", addr, val);
#endif
return val;
}
static void smi_cmd_writeb(void *opaque, uint32_t addr, uint32_t val)
{
PIIX4PMState *s = opaque;
#ifdef DEBUG
printf("SMI cmd val=0x%02x\n", val);
#endif
switch(val) {
case 0xf0: /* ACPI disable */
s->pmcntrl &= ~SCI_EN;
break;
case 0xf1: /* ACPI enable */
s->pmcntrl |= SCI_EN;
break;
}
}
static void acpi_dbg_writel(void *opaque, uint32_t addr, uint32_t val)
{
#if defined(DEBUG)
printf("ACPI: DBG: 0x%08x\n", val);
#endif
}
/* XXX: we still add it to the PIIX3 and we count on the fact that
OSes are smart enough to accept this strange configuration */
void piix4_pm_init(PCIBus *bus, int devfn)
{
PIIX4PMState *s;
uint8_t *pci_conf;
uint32_t pm_io_base;
s = (PIIX4PMState *)pci_register_device(bus,
"PM", sizeof(PIIX4PMState),
devfn, NULL, NULL);
pci_conf = s->dev.config;
pci_conf[0x00] = 0x86;
pci_conf[0x01] = 0x80;
pci_conf[0x02] = 0x13;
pci_conf[0x03] = 0x71;
pci_conf[0x08] = 0x00; // revision number
pci_conf[0x09] = 0x00;
pci_conf[0x0a] = 0x80; // other bridge device
pci_conf[0x0b] = 0x06; // bridge device
pci_conf[0x0e] = 0x00; // header_type
pci_conf[0x3d] = 0x01; // interrupt pin 1
pci_conf[0x60] = 0x10; // release number
pm_io_base = PM_IO_BASE;
pci_conf[0x40] = pm_io_base | 1;
pci_conf[0x41] = pm_io_base >> 8;
register_ioport_write(pm_io_base, 64, 2, pm_ioport_writew, s);
register_ioport_read(pm_io_base, 64, 2, pm_ioport_readw, s);
register_ioport_write(pm_io_base, 64, 4, pm_ioport_writel, s);
register_ioport_read(pm_io_base, 64, 4, pm_ioport_readl, s);
register_ioport_write(SMI_CMD_IO_ADDR, 1, 1, smi_cmd_writeb, s);
register_ioport_write(ACPI_DBG_IO_ADDR, 4, 4, acpi_dbg_writel, s);
s->tmr_timer = qemu_new_timer(vm_clock, pm_tmr_timer, s);
piix4_pm_state = s;
}
/* ACPI tables */
/* XXX: move them in the Bochs BIOS ? */
/*************************************************/
/* Table structure from Linux kernel (the ACPI tables are under the
BSD license) */
#define ACPI_TABLE_HEADER_DEF /* ACPI common table header */ \
uint8_t signature [4]; /* ACPI signature (4 ASCII characters) */\
uint32_t length; /* Length of table, in bytes, including header */\
uint8_t revision; /* ACPI Specification minor version # */\
uint8_t checksum; /* To make sum of entire table == 0 */\
uint8_t oem_id [6]; /* OEM identification */\
uint8_t oem_table_id [8]; /* OEM table identification */\
uint32_t oem_revision; /* OEM revision number */\
uint8_t asl_compiler_id [4]; /* ASL compiler vendor ID */\
uint32_t asl_compiler_revision; /* ASL compiler revision number */
struct acpi_table_header /* ACPI common table header */
{
ACPI_TABLE_HEADER_DEF
};
struct rsdp_descriptor /* Root System Descriptor Pointer */
{
uint8_t signature [8]; /* ACPI signature, contains "RSD PTR " */
uint8_t checksum; /* To make sum of struct == 0 */
uint8_t oem_id [6]; /* OEM identification */
uint8_t revision; /* Must be 0 for 1.0, 2 for 2.0 */
uint32_t rsdt_physical_address; /* 32-bit physical address of RSDT */
uint32_t length; /* XSDT Length in bytes including hdr */
uint64_t xsdt_physical_address; /* 64-bit physical address of XSDT */
uint8_t extended_checksum; /* Checksum of entire table */
uint8_t reserved [3]; /* Reserved field must be 0 */
};
/*
* ACPI 1.0 Root System Description Table (RSDT)
*/
struct rsdt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t table_offset_entry [2]; /* Array of pointers to other */
/* ACPI tables */
};
/*
* ACPI 1.0 Firmware ACPI Control Structure (FACS)
*/
struct facs_descriptor_rev1
{
uint8_t signature[4]; /* ACPI Signature */
uint32_t length; /* Length of structure, in bytes */
uint32_t hardware_signature; /* Hardware configuration signature */
uint32_t firmware_waking_vector; /* ACPI OS waking vector */
uint32_t global_lock; /* Global Lock */
uint32_t S4bios_f : 1; /* Indicates if S4BIOS support is present */
uint32_t reserved1 : 31; /* Must be 0 */
uint8_t resverved3 [40]; /* Reserved - must be zero */
};
/*
* ACPI 1.0 Fixed ACPI Description Table (FADT)
*/
struct fadt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t firmware_ctrl; /* Physical address of FACS */
uint32_t dsdt; /* Physical address of DSDT */
uint8_t model; /* System Interrupt Model */
uint8_t reserved1; /* Reserved */
uint16_t sci_int; /* System vector of SCI interrupt */
uint32_t smi_cmd; /* Port address of SMI command port */
uint8_t acpi_enable; /* Value to write to smi_cmd to enable ACPI */
uint8_t acpi_disable; /* Value to write to smi_cmd to disable ACPI */
uint8_t S4bios_req; /* Value to write to SMI CMD to enter S4BIOS state */
uint8_t reserved2; /* Reserved - must be zero */
uint32_t pm1a_evt_blk; /* Port address of Power Mgt 1a acpi_event Reg Blk */
uint32_t pm1b_evt_blk; /* Port address of Power Mgt 1b acpi_event Reg Blk */
uint32_t pm1a_cnt_blk; /* Port address of Power Mgt 1a Control Reg Blk */
uint32_t pm1b_cnt_blk; /* Port address of Power Mgt 1b Control Reg Blk */
uint32_t pm2_cnt_blk; /* Port address of Power Mgt 2 Control Reg Blk */
uint32_t pm_tmr_blk; /* Port address of Power Mgt Timer Ctrl Reg Blk */
uint32_t gpe0_blk; /* Port addr of General Purpose acpi_event 0 Reg Blk */
uint32_t gpe1_blk; /* Port addr of General Purpose acpi_event 1 Reg Blk */
uint8_t pm1_evt_len; /* Byte length of ports at pm1_x_evt_blk */
uint8_t pm1_cnt_len; /* Byte length of ports at pm1_x_cnt_blk */
uint8_t pm2_cnt_len; /* Byte Length of ports at pm2_cnt_blk */
uint8_t pm_tmr_len; /* Byte Length of ports at pm_tm_blk */
uint8_t gpe0_blk_len; /* Byte Length of ports at gpe0_blk */
uint8_t gpe1_blk_len; /* Byte Length of ports at gpe1_blk */
uint8_t gpe1_base; /* Offset in gpe model where gpe1 events start */
uint8_t reserved3; /* Reserved */
uint16_t plvl2_lat; /* Worst case HW latency to enter/exit C2 state */
uint16_t plvl3_lat; /* Worst case HW latency to enter/exit C3 state */
uint16_t flush_size; /* Size of area read to flush caches */
uint16_t flush_stride; /* Stride used in flushing caches */
uint8_t duty_offset; /* Bit location of duty cycle field in p_cnt reg */
uint8_t duty_width; /* Bit width of duty cycle field in p_cnt reg */
uint8_t day_alrm; /* Index to day-of-month alarm in RTC CMOS RAM */
uint8_t mon_alrm; /* Index to month-of-year alarm in RTC CMOS RAM */
uint8_t century; /* Index to century in RTC CMOS RAM */
uint8_t reserved4; /* Reserved */
uint8_t reserved4a; /* Reserved */
uint8_t reserved4b; /* Reserved */
#if 0
uint32_t wb_invd : 1; /* The wbinvd instruction works properly */
uint32_t wb_invd_flush : 1; /* The wbinvd flushes but does not invalidate */
uint32_t proc_c1 : 1; /* All processors support C1 state */
uint32_t plvl2_up : 1; /* C2 state works on MP system */
uint32_t pwr_button : 1; /* Power button is handled as a generic feature */
uint32_t sleep_button : 1; /* Sleep button is handled as a generic feature, or not present */
uint32_t fixed_rTC : 1; /* RTC wakeup stat not in fixed register space */
uint32_t rtcs4 : 1; /* RTC wakeup stat not possible from S4 */
uint32_t tmr_val_ext : 1; /* The tmr_val width is 32 bits (0 = 24 bits) */
uint32_t reserved5 : 23; /* Reserved - must be zero */
#else
uint32_t flags;
#endif
};
/*
* MADT values and structures
*/
/* Values for MADT PCATCompat */
#define DUAL_PIC 0
#define MULTIPLE_APIC 1
/* Master MADT */
struct multiple_apic_table
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t local_apic_address; /* Physical address of local APIC */
#if 0
uint32_t PCATcompat : 1; /* A one indicates system also has dual 8259s */
uint32_t reserved1 : 31;
#else
uint32_t flags;
#endif
};
/* Values for Type in APIC_HEADER_DEF */
#define APIC_PROCESSOR 0
#define APIC_IO 1
#define APIC_XRUPT_OVERRIDE 2
#define APIC_NMI 3
#define APIC_LOCAL_NMI 4
#define APIC_ADDRESS_OVERRIDE 5
#define APIC_IO_SAPIC 6
#define APIC_LOCAL_SAPIC 7
#define APIC_XRUPT_SOURCE 8
#define APIC_RESERVED 9 /* 9 and greater are reserved */
/*
* MADT sub-structures (Follow MULTIPLE_APIC_DESCRIPTION_TABLE)
*/
#define APIC_HEADER_DEF /* Common APIC sub-structure header */\
uint8_t type; \
uint8_t length;
/* Sub-structures for MADT */
struct madt_processor_apic
{
APIC_HEADER_DEF
uint8_t processor_id; /* ACPI processor id */
uint8_t local_apic_id; /* Processor's local APIC id */
#if 0
uint32_t processor_enabled: 1; /* Processor is usable if set */
uint32_t reserved2 : 31; /* Reserved, must be zero */
#else
uint32_t flags;
#endif
};
struct madt_io_apic
{
APIC_HEADER_DEF
uint8_t io_apic_id; /* I/O APIC ID */
uint8_t reserved; /* Reserved - must be zero */
uint32_t address; /* APIC physical address */
uint32_t interrupt; /* Global system interrupt where INTI
* lines start */
};
#include "acpi-dsdt.hex"
static int acpi_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for(i = 0; i < len; i++)
sum += data[i];
return (-sum) & 0xff;
}
static void acpi_build_table_header(struct acpi_table_header *h,
char *sig, int len)
{
memcpy(h->signature, sig, 4);
h->length = cpu_to_le32(len);
h->revision = 0;
memcpy(h->oem_id, "QEMU ", 6);
memcpy(h->oem_table_id, "QEMU", 4);
memcpy(h->oem_table_id + 4, sig, 4);
h->oem_revision = cpu_to_le32(1);
memcpy(h->asl_compiler_id, "QEMU", 4);
h->asl_compiler_revision = cpu_to_le32(1);
h->checksum = acpi_checksum((void *)h, len);
}
#define ACPI_TABLES_BASE 0x000e8000
/* base_addr must be a multiple of 4KB */
void acpi_bios_init(void)
{
struct rsdp_descriptor *rsdp;
struct rsdt_descriptor_rev1 *rsdt;
struct fadt_descriptor_rev1 *fadt;
struct facs_descriptor_rev1 *facs;
struct multiple_apic_table *madt;
uint8_t *dsdt;
uint32_t base_addr, rsdt_addr, fadt_addr, addr, facs_addr, dsdt_addr;
uint32_t pm_io_base, acpi_tables_size, madt_addr, madt_size;
int i;
/* compute PCI I/O addresses */
pm_io_base = (piix4_pm_state->dev.config[0x40] |
(piix4_pm_state->dev.config[0x41] << 8)) & ~0x3f;
base_addr = ACPI_TABLES_BASE;
/* reserve memory space for tables */
addr = base_addr;
rsdp = (void *)(phys_ram_base + addr);
addr += sizeof(*rsdp);
rsdt_addr = addr;
rsdt = (void *)(phys_ram_base + addr);
addr += sizeof(*rsdt);
fadt_addr = addr;
fadt = (void *)(phys_ram_base + addr);
addr += sizeof(*fadt);
/* XXX: FACS should be in RAM */
addr = (addr + 63) & ~63; /* 64 byte alignment for FACS */
facs_addr = addr;
facs = (void *)(phys_ram_base + addr);
addr += sizeof(*facs);
dsdt_addr = addr;
dsdt = (void *)(phys_ram_base + addr);
addr += sizeof(AmlCode);
addr = (addr + 7) & ~7;
madt_addr = addr;
madt_size = sizeof(*madt) +
sizeof(struct madt_processor_apic) * smp_cpus +
sizeof(struct madt_io_apic);
madt = (void *)(phys_ram_base + addr);
addr += madt_size;
acpi_tables_size = addr - base_addr;
cpu_register_physical_memory(base_addr, acpi_tables_size,
base_addr | IO_MEM_ROM);
/* RSDP */
memset(rsdp, 0, sizeof(*rsdp));
memcpy(rsdp->signature, "RSD PTR ", 8);
memcpy(rsdp->oem_id, "QEMU ", 6);
rsdp->rsdt_physical_address = cpu_to_le32(rsdt_addr);
rsdp->checksum = acpi_checksum((void *)rsdp, 20);
/* RSDT */
rsdt->table_offset_entry[0] = cpu_to_le32(fadt_addr);
rsdt->table_offset_entry[1] = cpu_to_le32(madt_addr);
acpi_build_table_header((struct acpi_table_header *)rsdt,
"RSDT", sizeof(*rsdt));
/* FADT */
memset(fadt, 0, sizeof(*fadt));
fadt->firmware_ctrl = cpu_to_le32(facs_addr);
fadt->dsdt = cpu_to_le32(dsdt_addr);
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(piix4_pm_state->dev.config[0x3c]);
fadt->smi_cmd = cpu_to_le32(SMI_CMD_IO_ADDR);
fadt->acpi_enable = 0xf1;
fadt->acpi_disable = 0xf0;
fadt->pm1a_evt_blk = cpu_to_le32(pm_io_base);
fadt->pm1a_cnt_blk = cpu_to_le32(pm_io_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(pm_io_base + 0x08);
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->plvl2_lat = cpu_to_le16(50);
fadt->plvl3_lat = cpu_to_le16(50);
fadt->plvl3_lat = cpu_to_le16(50);
/* WBINVD + PROC_C1 + PWR_BUTTON + SLP_BUTTON + FIX_RTC */
fadt->flags = cpu_to_le32((1 << 0) | (1 << 2) | (1 << 4) | (1 << 5) | (1 << 6));
acpi_build_table_header((struct acpi_table_header *)fadt, "FACP",
sizeof(*fadt));
/* FACS */
memset(facs, 0, sizeof(*facs));
memcpy(facs->signature, "FACS", 4);
facs->length = cpu_to_le32(sizeof(*facs));
/* DSDT */
memcpy(dsdt, AmlCode, sizeof(AmlCode));
/* MADT */
{
struct madt_processor_apic *apic;
struct madt_io_apic *io_apic;
memset(madt, 0, madt_size);
madt->local_apic_address = cpu_to_le32(0xfee00000);
madt->flags = cpu_to_le32(1);
apic = (void *)(madt + 1);
for(i=0;i<smp_cpus;i++) {
apic->type = APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = i;
apic->local_apic_id = i;
apic->flags = cpu_to_le32(1);
apic++;
}
io_apic = (void *)apic;
io_apic->type = APIC_IO;
io_apic->length = sizeof(*io_apic);
io_apic->io_apic_id = smp_cpus;
io_apic->address = cpu_to_le32(0xfec00000);
io_apic->interrupt = cpu_to_le32(0);
acpi_build_table_header((struct acpi_table_header *)madt,
"APIC", madt_size);
}
}