| /* |
| * QEMU Leon3 System Emulator |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright (c) 2010-2024 AdaCore |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "qemu/datadir.h" |
| #include "cpu.h" |
| #include "hw/irq.h" |
| #include "qemu/timer.h" |
| #include "hw/ptimer.h" |
| #include "hw/qdev-properties.h" |
| #include "system/system.h" |
| #include "system/qtest.h" |
| #include "system/reset.h" |
| #include "hw/boards.h" |
| #include "hw/loader.h" |
| #include "elf.h" |
| #include "trace.h" |
| |
| #include "hw/timer/grlib_gptimer.h" |
| #include "hw/char/grlib_uart.h" |
| #include "hw/intc/grlib_irqmp.h" |
| #include "hw/misc/grlib_ahb_apb_pnp.h" |
| |
| /* Default system clock. */ |
| #define CPU_CLK (40 * 1000 * 1000) |
| |
| #define LEON3_PROM_FILENAME "u-boot.bin" |
| #define LEON3_PROM_OFFSET (0x00000000) |
| #define LEON3_RAM_OFFSET (0x40000000) |
| |
| #define MAX_CPUS 4 |
| |
| #define LEON3_UART_OFFSET (0x80000100) |
| #define LEON3_UART_IRQ (3) |
| |
| #define LEON3_IRQMP_OFFSET (0x80000200) |
| |
| #define LEON3_TIMER_OFFSET (0x80000300) |
| #define LEON3_TIMER_IRQ (6) |
| #define LEON3_TIMER_COUNT (2) |
| |
| #define LEON3_APB_PNP_OFFSET (0x800FF000) |
| #define LEON3_AHB_PNP_OFFSET (0xFFFFF000) |
| |
| typedef struct ResetData { |
| struct CPUResetData { |
| int id; |
| SPARCCPU *cpu; |
| } info[MAX_CPUS]; |
| uint32_t entry; /* save kernel entry in case of reset */ |
| } ResetData; |
| |
| static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val) |
| { |
| stl_p(code++, 0x82100000); /* mov %g0, %g1 */ |
| stl_p(code++, 0x84100000); /* mov %g0, %g2 */ |
| stl_p(code++, 0x03000000 + |
| extract32(addr, 10, 22)); |
| /* sethi %hi(addr), %g1 */ |
| stl_p(code++, 0x82106000 + |
| extract32(addr, 0, 10)); |
| /* or %g1, addr, %g1 */ |
| stl_p(code++, 0x05000000 + |
| extract32(val, 10, 22)); |
| /* sethi %hi(val), %g2 */ |
| stl_p(code++, 0x8410a000 + |
| extract32(val, 0, 10)); |
| /* or %g2, val, %g2 */ |
| stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */ |
| |
| return code; |
| } |
| |
| /* |
| * When loading a kernel in RAM the machine is expected to be in a different |
| * state (eg: initialized by the bootloader). This little code reproduces |
| * this behavior. Also this code can be executed by the secondary cpus as |
| * well since it looks at the %asr17 register before doing any |
| * initialization, it allows to use the same reset address for all the |
| * cpus. |
| */ |
| static void write_bootloader(void *ptr, hwaddr kernel_addr) |
| { |
| uint32_t *p = ptr; |
| uint32_t *sec_cpu_branch_p = NULL; |
| |
| /* If we are running on a secondary CPU, jump directly to the kernel. */ |
| |
| stl_p(p++, 0x85444000); /* rd %asr17, %g2 */ |
| stl_p(p++, 0x8530a01c); /* srl %g2, 0x1c, %g2 */ |
| stl_p(p++, 0x80908000); /* tst %g2 */ |
| /* Filled below. */ |
| sec_cpu_branch_p = p; |
| stl_p(p++, 0x0BADC0DE); /* bne xxx */ |
| stl_p(p++, 0x01000000); /* nop */ |
| |
| /* Initialize the UARTs */ |
| /* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */ |
| p = gen_store_u32(p, 0x80000108, 3); |
| |
| /* Initialize the TIMER 0 */ |
| /* *GPTIMER_SCALER_RELOAD = 40 - 1; */ |
| p = gen_store_u32(p, 0x80000304, 39); |
| /* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */ |
| p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE); |
| /* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */ |
| p = gen_store_u32(p, 0x80000318, 3); |
| |
| /* Now, the relative branch above can be computed. */ |
| stl_p(sec_cpu_branch_p, 0x12800000 |
| + (p - sec_cpu_branch_p)); |
| |
| /* JUMP to the entry point */ |
| stl_p(p++, 0x82100000); /* mov %g0, %g1 */ |
| stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22)); |
| /* sethi %hi(kernel_addr), %g1 */ |
| stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10)); |
| /* or kernel_addr, %g1 */ |
| stl_p(p++, 0x81c04000); /* jmp %g1 */ |
| stl_p(p++, 0x01000000); /* nop */ |
| } |
| |
| static void leon3_cpu_reset(void *opaque) |
| { |
| struct CPUResetData *info = (struct CPUResetData *) opaque; |
| int id = info->id; |
| ResetData *s = container_of(info, ResetData, info[id]); |
| CPUState *cpu = CPU(s->info[id].cpu); |
| CPUSPARCState *env = cpu_env(cpu); |
| |
| cpu_reset(cpu); |
| |
| cpu->halted = cpu->cpu_index != 0; |
| env->pc = s->entry; |
| env->npc = s->entry + 4; |
| } |
| |
| static void leon3_cache_control_int(CPUSPARCState *env) |
| { |
| uint32_t state = 0; |
| |
| if (env->cache_control & CACHE_CTRL_IF) { |
| /* Instruction cache state */ |
| state = env->cache_control & CACHE_STATE_MASK; |
| if (state == CACHE_ENABLED) { |
| state = CACHE_FROZEN; |
| trace_int_helper_icache_freeze(); |
| } |
| |
| env->cache_control &= ~CACHE_STATE_MASK; |
| env->cache_control |= state; |
| } |
| |
| if (env->cache_control & CACHE_CTRL_DF) { |
| /* Data cache state */ |
| state = (env->cache_control >> 2) & CACHE_STATE_MASK; |
| if (state == CACHE_ENABLED) { |
| state = CACHE_FROZEN; |
| trace_int_helper_dcache_freeze(); |
| } |
| |
| env->cache_control &= ~(CACHE_STATE_MASK << 2); |
| env->cache_control |= (state << 2); |
| } |
| } |
| |
| static void leon3_irq_ack(CPUSPARCState *env, int intno) |
| { |
| CPUState *cpu = CPU(env_cpu(env)); |
| grlib_irqmp_ack(env->irq_manager, cpu->cpu_index, intno); |
| } |
| |
| /* |
| * This device assumes that the incoming 'level' value on the |
| * qemu_irq is the interrupt number, not just a simple 0/1 level. |
| */ |
| static void leon3_set_pil_in(void *opaque, int n, int level) |
| { |
| DeviceState *cpu = opaque; |
| CPUState *cs = CPU(cpu); |
| CPUSPARCState *env = cpu_env(cs); |
| uint32_t pil_in = level; |
| |
| assert(env != NULL); |
| |
| env->pil_in = pil_in; |
| |
| if (env->pil_in && (env->interrupt_index == 0 || |
| (env->interrupt_index & ~15) == TT_EXTINT)) { |
| unsigned int i; |
| |
| for (i = 15; i > 0; i--) { |
| if (env->pil_in & (1 << i)) { |
| int old_interrupt = env->interrupt_index; |
| |
| env->interrupt_index = TT_EXTINT | i; |
| if (old_interrupt != env->interrupt_index) { |
| trace_leon3_set_irq(i); |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| break; |
| } |
| } |
| } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { |
| trace_leon3_reset_irq(env->interrupt_index & 15); |
| env->interrupt_index = 0; |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| static void leon3_start_cpu_async_work(CPUState *cpu, run_on_cpu_data data) |
| { |
| cpu->halted = 0; |
| } |
| |
| static void leon3_start_cpu(void *opaque, int n, int level) |
| { |
| DeviceState *cpu = opaque; |
| CPUState *cs = CPU(cpu); |
| |
| assert(level == 1); |
| async_run_on_cpu(cs, leon3_start_cpu_async_work, RUN_ON_CPU_NULL); |
| } |
| |
| static void leon3_irq_manager(CPUSPARCState *env, int intno) |
| { |
| leon3_irq_ack(env, intno); |
| leon3_cache_control_int(env); |
| } |
| |
| static void leon3_generic_hw_init(MachineState *machine) |
| { |
| ram_addr_t ram_size = machine->ram_size; |
| const char *bios_name = machine->firmware ?: LEON3_PROM_FILENAME; |
| const char *kernel_filename = machine->kernel_filename; |
| SPARCCPU *cpu; |
| CPUSPARCState *env; |
| MemoryRegion *address_space_mem = get_system_memory(); |
| MemoryRegion *prom = g_new(MemoryRegion, 1); |
| int ret; |
| char *filename; |
| int bios_size; |
| int prom_size; |
| ResetData *reset_info; |
| DeviceState *dev, *irqmpdev; |
| int i; |
| AHBPnp *ahb_pnp; |
| APBPnp *apb_pnp; |
| |
| reset_info = g_malloc0(sizeof(ResetData)); |
| |
| for (i = 0; i < machine->smp.cpus; i++) { |
| /* Init CPU */ |
| cpu = SPARC_CPU(object_new(machine->cpu_type)); |
| qdev_init_gpio_in_named(DEVICE(cpu), leon3_start_cpu, "start_cpu", 1); |
| qdev_init_gpio_in_named(DEVICE(cpu), leon3_set_pil_in, "pil", 1); |
| qdev_realize(DEVICE(cpu), NULL, &error_fatal); |
| env = &cpu->env; |
| |
| cpu_sparc_set_id(env, i); |
| |
| /* Reset data */ |
| reset_info->info[i].id = i; |
| reset_info->info[i].cpu = cpu; |
| qemu_register_reset(leon3_cpu_reset, &reset_info->info[i]); |
| } |
| |
| ahb_pnp = GRLIB_AHB_PNP(qdev_new(TYPE_GRLIB_AHB_PNP)); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(ahb_pnp), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET); |
| grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER, |
| GRLIB_LEON3_DEV, GRLIB_AHB_MASTER, |
| GRLIB_CPU_AREA); |
| |
| apb_pnp = GRLIB_APB_PNP(qdev_new(TYPE_GRLIB_APB_PNP)); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(apb_pnp), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET); |
| grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF, |
| GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV, |
| GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA); |
| |
| /* Allocate IRQ manager */ |
| irqmpdev = qdev_new(TYPE_GRLIB_IRQMP); |
| object_property_set_int(OBJECT(irqmpdev), "ncpus", machine->smp.cpus, |
| &error_fatal); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(irqmpdev), &error_fatal); |
| |
| for (i = 0; i < machine->smp.cpus; i++) { |
| cpu = reset_info->info[i].cpu; |
| env = &cpu->env; |
| qdev_connect_gpio_out_named(irqmpdev, "grlib-start-cpu", i, |
| qdev_get_gpio_in_named(DEVICE(cpu), |
| "start_cpu", 0)); |
| qdev_connect_gpio_out_named(irqmpdev, "grlib-irq", i, |
| qdev_get_gpio_in_named(DEVICE(cpu), |
| "pil", 0)); |
| env->irq_manager = irqmpdev; |
| env->qemu_irq_ack = leon3_irq_manager; |
| } |
| |
| sysbus_mmio_map(SYS_BUS_DEVICE(irqmpdev), 0, LEON3_IRQMP_OFFSET); |
| grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF, |
| GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV, |
| 2, 0, GRLIB_APBIO_AREA); |
| |
| /* Allocate RAM */ |
| if (ram_size > 1 * GiB) { |
| error_report("Too much memory for this machine: %" PRId64 "MB," |
| " maximum 1G", |
| ram_size / MiB); |
| exit(1); |
| } |
| |
| memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET, |
| machine->ram); |
| |
| /* Allocate BIOS */ |
| prom_size = 8 * MiB; |
| memory_region_init_rom(prom, NULL, "Leon3.bios", prom_size, &error_fatal); |
| memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom); |
| |
| /* Load boot prom */ |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| |
| if (filename) { |
| bios_size = get_image_size(filename); |
| } else { |
| bios_size = -1; |
| } |
| |
| if (bios_size > prom_size) { |
| error_report("could not load prom '%s': file too big", filename); |
| exit(1); |
| } |
| |
| if (bios_size > 0) { |
| ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size); |
| if (ret < 0 || ret > prom_size) { |
| error_report("could not load prom '%s'", filename); |
| exit(1); |
| } |
| } else if (kernel_filename == NULL && !qtest_enabled()) { |
| error_report("Can't read bios image '%s'", filename |
| ? filename |
| : LEON3_PROM_FILENAME); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* Can directly load an application. */ |
| if (kernel_filename != NULL) { |
| long kernel_size; |
| uint64_t entry; |
| |
| kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, |
| &entry, NULL, NULL, NULL, |
| 1 /* big endian */, EM_SPARC, 0, 0); |
| if (kernel_size < 0) { |
| kernel_size = load_uimage(kernel_filename, NULL, &entry, |
| NULL, NULL, NULL); |
| } |
| if (kernel_size < 0) { |
| error_report("could not load kernel '%s'", kernel_filename); |
| exit(1); |
| } |
| if (bios_size <= 0) { |
| /* |
| * If there is no bios/monitor just start the application but put |
| * the machine in an initialized state through a little |
| * bootloader. |
| */ |
| write_bootloader(memory_region_get_ram_ptr(prom), entry); |
| reset_info->entry = LEON3_PROM_OFFSET; |
| for (i = 0; i < machine->smp.cpus; i++) { |
| reset_info->info[i].cpu->env.pc = LEON3_PROM_OFFSET; |
| reset_info->info[i].cpu->env.npc = LEON3_PROM_OFFSET + 4; |
| } |
| } |
| } |
| |
| /* Allocate timers */ |
| dev = qdev_new(TYPE_GRLIB_GPTIMER); |
| qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT); |
| qdev_prop_set_uint32(dev, "frequency", CPU_CLK); |
| qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET); |
| for (i = 0; i < LEON3_TIMER_COUNT; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, |
| qdev_get_gpio_in(irqmpdev, LEON3_TIMER_IRQ + i)); |
| } |
| |
| grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF, |
| GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV, |
| 0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA); |
| |
| /* Allocate uart */ |
| dev = qdev_new(TYPE_GRLIB_APB_UART); |
| qdev_prop_set_chr(dev, "chrdev", serial_hd(0)); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET); |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, |
| qdev_get_gpio_in(irqmpdev, LEON3_UART_IRQ)); |
| grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF, |
| GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1, |
| LEON3_UART_IRQ, GRLIB_APBIO_AREA); |
| } |
| |
| static void leon3_generic_machine_init(MachineClass *mc) |
| { |
| mc->desc = "Leon-3 generic"; |
| mc->init = leon3_generic_hw_init; |
| mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3"); |
| mc->default_ram_id = "leon3.ram"; |
| mc->max_cpus = MAX_CPUS; |
| } |
| |
| DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init) |