blob: 8a08752613981bc12e86267d22ff3859d0b609fe [file] [log] [blame]
/*
* QEMU PowerPC e500-based platforms
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "config.h"
#include "qemu-common.h"
#include "e500.h"
#include "e500-ccsr.h"
#include "net/net.h"
#include "qemu/config-file.h"
#include "hw/hw.h"
#include "hw/char/serial.h"
#include "hw/pci/pci.h"
#include "hw/boards.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/openpic.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "qemu/host-utils.h"
#include "hw/pci-host/ppce500.h"
#define EPAPR_MAGIC (0x45504150)
#define BINARY_DEVICE_TREE_FILE "mpc8544ds.dtb"
#define UIMAGE_LOAD_BASE 0
#define DTC_LOAD_PAD 0x1800000
#define DTC_PAD_MASK 0xFFFFF
#define DTB_MAX_SIZE (8 * 1024 * 1024)
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64UL << 20)
/* TODO: parameterize */
#define MPC8544_CCSRBAR_BASE 0xE0000000ULL
#define MPC8544_CCSRBAR_SIZE 0x00100000ULL
#define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
#define MPC8544_MSI_REGS_OFFSET 0x41600ULL
#define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
#define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
#define MPC8544_PCI_REGS_OFFSET 0x8000ULL
#define MPC8544_PCI_REGS_BASE (MPC8544_CCSRBAR_BASE + \
MPC8544_PCI_REGS_OFFSET)
#define MPC8544_PCI_REGS_SIZE 0x1000ULL
#define MPC8544_PCI_IO 0xE1000000ULL
#define MPC8544_UTIL_OFFSET 0xe0000ULL
#define MPC8544_SPIN_BASE 0xEF000000ULL
struct boot_info
{
uint32_t dt_base;
uint32_t dt_size;
uint32_t entry;
};
static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
int nr_slots, int *len)
{
int i = 0;
int slot;
int pci_irq;
int host_irq;
int last_slot = first_slot + nr_slots;
uint32_t *pci_map;
*len = nr_slots * 4 * 7 * sizeof(uint32_t);
pci_map = g_malloc(*len);
for (slot = first_slot; slot < last_slot; slot++) {
for (pci_irq = 0; pci_irq < 4; pci_irq++) {
pci_map[i++] = cpu_to_be32(slot << 11);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(pci_irq + 1);
pci_map[i++] = cpu_to_be32(mpic);
host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
pci_map[i++] = cpu_to_be32(host_irq + 1);
pci_map[i++] = cpu_to_be32(0x1);
}
}
assert((i * sizeof(uint32_t)) == *len);
return pci_map;
}
static void dt_serial_create(void *fdt, unsigned long long offset,
const char *soc, const char *mpic,
const char *alias, int idx, bool defcon)
{
char ser[128];
snprintf(ser, sizeof(ser), "%s/serial@%llx", soc, offset);
qemu_fdt_add_subnode(fdt, ser);
qemu_fdt_setprop_string(fdt, ser, "device_type", "serial");
qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550");
qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100);
qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx);
qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", 0);
qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2);
qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, ser);
if (defcon) {
qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
}
}
static int ppce500_load_device_tree(QEMUMachineInitArgs *args,
PPCE500Params *params,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
bool dry_run)
{
CPUPPCState *env = first_cpu->env_ptr;
int ret = -1;
uint64_t mem_reg_property[] = { 0, cpu_to_be64(args->ram_size) };
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = 400000000;
uint32_t tb_freq = 400000000;
int i;
char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
char soc[128];
char mpic[128];
uint32_t mpic_ph;
uint32_t msi_ph;
char gutil[128];
char pci[128];
char msi[128];
uint32_t *pci_map = NULL;
int len;
uint32_t pci_ranges[14] =
{
0x2000000, 0x0, 0xc0000000,
0x0, 0xc0000000,
0x0, 0x20000000,
0x1000000, 0x0, 0x0,
0x0, 0xe1000000,
0x0, 0x10000,
};
QemuOpts *machine_opts = qemu_get_machine_opts();
const char *dtb_file = qemu_opt_get(machine_opts, "dtb");
const char *toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible");
if (dtb_file) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
if (!fdt) {
goto out;
}
goto done;
}
fdt = create_device_tree(&fdt_size);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
qemu_fdt_add_subnode(fdt, "/chosen");
if (initrd_size) {
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
args->kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_fdt_add_subnode(fdt, "/hypervisor");
qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
/* if KVM supports the idle hcall, set property indicating this */
if (kvmppc_get_hasidle(env)) {
qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
}
}
/* Create CPU nodes */
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
CPUState *cpu;
PowerPCCPU *pcpu;
char cpu_name[128];
uint64_t cpu_release_addr = MPC8544_SPIN_BASE + (i * 0x20);
cpu = qemu_get_cpu(i);
if (cpu == NULL) {
continue;
}
env = cpu->env_ptr;
pcpu = POWERPC_CPU(cpu);
snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x",
ppc_get_vcpu_dt_id(pcpu));
qemu_fdt_add_subnode(fdt, cpu_name);
qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
ppc_get_vcpu_dt_id(pcpu));
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (cpu->cpu_index) {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
"spin-table");
qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
cpu_release_addr);
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
}
}
qemu_fdt_add_subnode(fdt, "/aliases");
/* XXX These should go into their respective devices' code */
snprintf(soc, sizeof(soc), "/soc@%llx", MPC8544_CCSRBAR_BASE);
qemu_fdt_add_subnode(fdt, soc);
qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
sizeof(compatible_sb));
qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
MPC8544_CCSRBAR_BASE >> 32, MPC8544_CCSRBAR_BASE,
MPC8544_CCSRBAR_SIZE);
/* XXX should contain a reasonable value */
qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);
snprintf(mpic, sizeof(mpic), "%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, mpic);
qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
0x40000);
qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
mpic_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
/*
* We have to generate ser1 first, because Linux takes the first
* device it finds in the dt as serial output device. And we generate
* devices in reverse order to the dt.
*/
dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
soc, mpic, "serial1", 1, false);
dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
soc, mpic, "serial0", 0, true);
snprintf(gutil, sizeof(gutil), "%s/global-utilities@%llx", soc,
MPC8544_UTIL_OFFSET);
qemu_fdt_add_subnode(fdt, gutil);
qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
snprintf(msi, sizeof(msi), "/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, msi);
qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
msi_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, msi, "interrupts",
0xe0, 0x0,
0xe1, 0x0,
0xe2, 0x0,
0xe3, 0x0,
0xe4, 0x0,
0xe5, 0x0,
0xe6, 0x0,
0xe7, 0x0);
qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
snprintf(pci, sizeof(pci), "/pci@%llx", MPC8544_PCI_REGS_BASE);
qemu_fdt_add_subnode(fdt, pci);
qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
0x0, 0x7);
pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
params->pci_first_slot, params->pci_nr_slots,
&len);
qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
for (i = 0; i < 14; i++) {
pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
}
qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
qemu_fdt_setprop_cells(fdt, pci, "reg", MPC8544_PCI_REGS_BASE >> 32,
MPC8544_PCI_REGS_BASE, 0, 0x1000);
qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);
params->fixup_devtree(params, fdt);
if (toplevel_compat) {
qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
strlen(toplevel_compat) + 1);
}
done:
if (!dry_run) {
qemu_fdt_dumpdtb(fdt, fdt_size);
cpu_physical_memory_write(addr, fdt, fdt_size);
}
ret = fdt_size;
out:
g_free(pci_map);
return ret;
}
typedef struct DeviceTreeParams {
QEMUMachineInitArgs args;
PPCE500Params params;
hwaddr addr;
hwaddr initrd_base;
hwaddr initrd_size;
} DeviceTreeParams;
static void ppce500_reset_device_tree(void *opaque)
{
DeviceTreeParams *p = opaque;
ppce500_load_device_tree(&p->args, &p->params, p->addr, p->initrd_base,
p->initrd_size, false);
}
static int ppce500_prep_device_tree(QEMUMachineInitArgs *args,
PPCE500Params *params,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size)
{
DeviceTreeParams *p = g_new(DeviceTreeParams, 1);
p->args = *args;
p->params = *params;
p->addr = addr;
p->initrd_base = initrd_base;
p->initrd_size = initrd_size;
qemu_register_reset(ppce500_reset_device_tree, p);
/* Issue the device tree loader once, so that we get the size of the blob */
return ppce500_load_device_tree(args, params, addr, initrd_base,
initrd_size, true);
}
/* Create -kernel TLB entries for BookE. */
static inline hwaddr booke206_page_size_to_tlb(uint64_t size)
{
return 63 - clz64(size >> 10);
}
static int booke206_initial_map_tsize(CPUPPCState *env)
{
struct boot_info *bi = env->load_info;
hwaddr dt_end;
int ps;
/* Our initial TLB entry needs to cover everything from 0 to
the device tree top */
dt_end = bi->dt_base + bi->dt_size;
ps = booke206_page_size_to_tlb(dt_end) + 1;
if (ps & 1) {
/* e500v2 can only do even TLB size bits */
ps++;
}
return ps;
}
static uint64_t mmubooke_initial_mapsize(CPUPPCState *env)
{
int tsize;
tsize = booke206_initial_map_tsize(env);
return (1ULL << 10 << tsize);
}
static void mmubooke_create_initial_mapping(CPUPPCState *env)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
hwaddr size;
int ps;
ps = booke206_initial_map_tsize(env);
size = (ps << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = 0;
tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
env->tlb_dirty = true;
}
static void ppce500_cpu_reset_sec(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cpu_reset(cs);
/* Secondary CPU starts in halted state for now. Needs to change when
implementing non-kernel boot. */
cs->halted = 1;
env->exception_index = EXCP_HLT;
}
static void ppce500_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct boot_info *bi = env->load_info;
cpu_reset(cs);
/* Set initial guest state. */
cs->halted = 0;
env->gpr[1] = (16<<20) - 8;
env->gpr[3] = bi->dt_base;
env->gpr[4] = 0;
env->gpr[5] = 0;
env->gpr[6] = EPAPR_MAGIC;
env->gpr[7] = mmubooke_initial_mapsize(env);
env->gpr[8] = 0;
env->gpr[9] = 0;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env);
}
static DeviceState *ppce500_init_mpic_qemu(PPCE500Params *params,
qemu_irq **irqs)
{
DeviceState *dev;
SysBusDevice *s;
int i, j, k;
dev = qdev_create(NULL, TYPE_OPENPIC);
qdev_prop_set_uint32(dev, "model", params->mpic_version);
qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
k = 0;
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_connect_irq(s, k++, irqs[i][j]);
}
}
return dev;
}
static DeviceState *ppce500_init_mpic_kvm(PPCE500Params *params,
qemu_irq **irqs)
{
DeviceState *dev;
CPUState *cs;
int r;
dev = qdev_create(NULL, TYPE_KVM_OPENPIC);
qdev_prop_set_uint32(dev, "model", params->mpic_version);
r = qdev_init(dev);
if (r) {
return NULL;
}
CPU_FOREACH(cs) {
if (kvm_openpic_connect_vcpu(dev, cs)) {
fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
__func__);
abort();
}
}
return dev;
}
static qemu_irq *ppce500_init_mpic(PPCE500Params *params, MemoryRegion *ccsr,
qemu_irq **irqs)
{
qemu_irq *mpic;
DeviceState *dev = NULL;
SysBusDevice *s;
int i;
mpic = g_new(qemu_irq, 256);
if (kvm_enabled()) {
QemuOpts *machine_opts = qemu_get_machine_opts();
bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", true);
bool irqchip_required = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", false);
if (irqchip_allowed) {
dev = ppce500_init_mpic_kvm(params, irqs);
}
if (irqchip_required && !dev) {
fprintf(stderr, "%s: irqchip requested but unavailable\n",
__func__);
abort();
}
}
if (!dev) {
dev = ppce500_init_mpic_qemu(params, irqs);
}
for (i = 0; i < 256; i++) {
mpic[i] = qdev_get_gpio_in(dev, i);
}
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
return mpic;
}
void ppce500_init(QEMUMachineInitArgs *args, PPCE500Params *params)
{
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
PCIBus *pci_bus;
CPUPPCState *env = NULL;
uint64_t elf_entry;
uint64_t elf_lowaddr;
hwaddr entry=0;
hwaddr loadaddr=UIMAGE_LOAD_BASE;
target_long kernel_size=0;
target_ulong dt_base = 0;
target_ulong initrd_base = 0;
target_long initrd_size = 0;
target_ulong cur_base = 0;
int i;
unsigned int pci_irq_nrs[4] = {1, 2, 3, 4};
qemu_irq **irqs, *mpic;
DeviceState *dev;
CPUPPCState *firstenv = NULL;
MemoryRegion *ccsr_addr_space;
SysBusDevice *s;
PPCE500CCSRState *ccsr;
/* Setup CPUs */
if (args->cpu_model == NULL) {
args->cpu_model = "e500v2_v30";
}
irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
for (i = 0; i < smp_cpus; i++) {
PowerPCCPU *cpu;
CPUState *cs;
qemu_irq *input;
cpu = cpu_ppc_init(args->cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to initialize CPU!\n");
exit(1);
}
env = &cpu->env;
cs = CPU(cpu);
if (!firstenv) {
firstenv = env;
}
irqs[i] = irqs[0] + (i * OPENPIC_OUTPUT_NB);
input = (qemu_irq *)env->irq_inputs;
irqs[i][OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
irqs[i][OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
env->spr[SPR_BOOKE_PIR] = cs->cpu_index = i;
env->mpic_iack = MPC8544_CCSRBAR_BASE +
MPC8544_MPIC_REGS_OFFSET + 0xa0;
ppc_booke_timers_init(cpu, 400000000, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
struct boot_info *boot_info;
boot_info = g_malloc0(sizeof(struct boot_info));
qemu_register_reset(ppce500_cpu_reset, cpu);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(ppce500_cpu_reset_sec, cpu);
}
}
env = firstenv;
/* Fixup Memory size on a alignment boundary */
ram_size &= ~(RAM_SIZES_ALIGN - 1);
args->ram_size = ram_size;
/* Register Memory */
memory_region_init_ram(ram, NULL, "mpc8544ds.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space_mem, 0, ram);
dev = qdev_create(NULL, "e500-ccsr");
object_property_add_child(qdev_get_machine(), "e500-ccsr",
OBJECT(dev), NULL);
qdev_init_nofail(dev);
ccsr = CCSR(dev);
ccsr_addr_space = &ccsr->ccsr_space;
memory_region_add_subregion(address_space_mem, MPC8544_CCSRBAR_BASE,
ccsr_addr_space);
mpic = ppce500_init_mpic(params, ccsr_addr_space, irqs);
/* Serial */
if (serial_hds[0]) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[0], DEVICE_BIG_ENDIAN);
}
if (serial_hds[1]) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[1], DEVICE_BIG_ENDIAN);
}
/* General Utility device */
dev = qdev_create(NULL, "mpc8544-guts");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
sysbus_mmio_get_region(s, 0));
/* PCI */
dev = qdev_create(NULL, "e500-pcihost");
qdev_prop_set_uint32(dev, "first_slot", params->pci_first_slot);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, mpic[pci_irq_nrs[0]]);
sysbus_connect_irq(s, 1, mpic[pci_irq_nrs[1]]);
sysbus_connect_irq(s, 2, mpic[pci_irq_nrs[2]]);
sysbus_connect_irq(s, 3, mpic[pci_irq_nrs[3]]);
memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, MPC8544_PCI_IO);
if (pci_bus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci_bus, "virtio", NULL);
}
}
/* Register spinning region */
sysbus_create_simple("e500-spin", MPC8544_SPIN_BASE, NULL);
/* Load kernel. */
if (args->kernel_filename) {
kernel_size = load_uimage(args->kernel_filename, &entry,
&loadaddr, NULL);
if (kernel_size < 0) {
kernel_size = load_elf(args->kernel_filename, NULL, NULL,
&elf_entry, &elf_lowaddr, NULL, 1,
ELF_MACHINE, 0);
entry = elf_entry;
loadaddr = elf_lowaddr;
}
/* XXX try again as binary */
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
args->kernel_filename);
exit(1);
}
cur_base = loadaddr + kernel_size;
/* Reserve space for dtb */
dt_base = (cur_base + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
cur_base += DTB_MAX_SIZE;
}
/* Load initrd. */
if (args->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(args->initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
args->initrd_filename);
exit(1);
}
cur_base = initrd_base + initrd_size;
}
/* If we're loading a kernel directly, we must load the device tree too. */
if (args->kernel_filename) {
struct boot_info *boot_info;
int dt_size;
dt_size = ppce500_prep_device_tree(args, params, dt_base,
initrd_base, initrd_size);
if (dt_size < 0) {
fprintf(stderr, "couldn't load device tree\n");
exit(1);
}
assert(dt_size < DTB_MAX_SIZE);
boot_info = env->load_info;
boot_info->entry = entry;
boot_info->dt_base = dt_base;
boot_info->dt_size = dt_size;
}
if (kvm_enabled()) {
kvmppc_init();
}
}
static int e500_ccsr_initfn(SysBusDevice *dev)
{
PPCE500CCSRState *ccsr;
ccsr = CCSR(dev);
memory_region_init(&ccsr->ccsr_space, OBJECT(ccsr), "e500-ccsr",
MPC8544_CCSRBAR_SIZE);
return 0;
}
static void e500_ccsr_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = e500_ccsr_initfn;
}
static const TypeInfo e500_ccsr_info = {
.name = TYPE_CCSR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PPCE500CCSRState),
.class_init = e500_ccsr_class_init,
};
static void e500_register_types(void)
{
type_register_static(&e500_ccsr_info);
}
type_init(e500_register_types)