| /* |
| * ARM translation |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * Copyright (c) 2005-2007 CodeSourcery |
| * Copyright (c) 2007 OpenedHand, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "internals.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg/tcg-op-gvec.h" |
| #include "qemu/log.h" |
| #include "qemu/bitops.h" |
| #include "arm_ldst.h" |
| #include "hw/semihosting/semihost.h" |
| |
| #include "exec/helper-proto.h" |
| #include "exec/helper-gen.h" |
| |
| #include "trace-tcg.h" |
| #include "exec/log.h" |
| |
| |
| #define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T) |
| #define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5) |
| /* currently all emulated v5 cores are also v5TE, so don't bother */ |
| #define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5) |
| #define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s) |
| #define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6) |
| #define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K) |
| #define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2) |
| #define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7) |
| #define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8) |
| |
| #define ARCH(x) do { if (!ENABLE_ARCH_##x) goto illegal_op; } while(0) |
| |
| #include "translate.h" |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define IS_USER(s) 1 |
| #else |
| #define IS_USER(s) (s->user) |
| #endif |
| |
| /* We reuse the same 64-bit temporaries for efficiency. */ |
| static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; |
| static TCGv_i32 cpu_R[16]; |
| TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF; |
| TCGv_i64 cpu_exclusive_addr; |
| TCGv_i64 cpu_exclusive_val; |
| |
| #include "exec/gen-icount.h" |
| |
| static const char * const regnames[] = |
| { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" }; |
| |
| /* Function prototypes for gen_ functions calling Neon helpers. */ |
| typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, |
| TCGv_i32, TCGv_i32); |
| /* Function prototypes for gen_ functions for fix point conversions */ |
| typedef void VFPGenFixPointFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| |
| /* initialize TCG globals. */ |
| void arm_translate_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| cpu_R[i] = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUARMState, regs[i]), |
| regnames[i]); |
| } |
| cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF"); |
| cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF"); |
| cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF"); |
| cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF"); |
| |
| cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); |
| cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, exclusive_val), "exclusive_val"); |
| |
| a64_translate_init(); |
| } |
| |
| /* Flags for the disas_set_da_iss info argument: |
| * lower bits hold the Rt register number, higher bits are flags. |
| */ |
| typedef enum ISSInfo { |
| ISSNone = 0, |
| ISSRegMask = 0x1f, |
| ISSInvalid = (1 << 5), |
| ISSIsAcqRel = (1 << 6), |
| ISSIsWrite = (1 << 7), |
| ISSIs16Bit = (1 << 8), |
| } ISSInfo; |
| |
| /* Save the syndrome information for a Data Abort */ |
| static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo) |
| { |
| uint32_t syn; |
| int sas = memop & MO_SIZE; |
| bool sse = memop & MO_SIGN; |
| bool is_acqrel = issinfo & ISSIsAcqRel; |
| bool is_write = issinfo & ISSIsWrite; |
| bool is_16bit = issinfo & ISSIs16Bit; |
| int srt = issinfo & ISSRegMask; |
| |
| if (issinfo & ISSInvalid) { |
| /* Some callsites want to conditionally provide ISS info, |
| * eg "only if this was not a writeback" |
| */ |
| return; |
| } |
| |
| if (srt == 15) { |
| /* For AArch32, insns where the src/dest is R15 never generate |
| * ISS information. Catching that here saves checking at all |
| * the call sites. |
| */ |
| return; |
| } |
| |
| syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel, |
| 0, 0, 0, is_write, 0, is_16bit); |
| disas_set_insn_syndrome(s, syn); |
| } |
| |
| static inline int get_a32_user_mem_index(DisasContext *s) |
| { |
| /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store" |
| * insns: |
| * if PL2, UNPREDICTABLE (we choose to implement as if PL0) |
| * otherwise, access as if at PL0. |
| */ |
| switch (s->mmu_idx) { |
| case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */ |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| return arm_to_core_mmu_idx(ARMMMUIdx_E10_0); |
| case ARMMMUIdx_SE3: |
| case ARMMMUIdx_SE10_0: |
| case ARMMMUIdx_SE10_1: |
| case ARMMMUIdx_SE10_1_PAN: |
| return arm_to_core_mmu_idx(ARMMMUIdx_SE10_0); |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MPriv: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MUser); |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPrivNegPri: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri); |
| case ARMMMUIdx_MSUser: |
| case ARMMMUIdx_MSPriv: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MSUser); |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPrivNegPri: |
| return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline TCGv_i32 load_cpu_offset(int offset) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(tmp, cpu_env, offset); |
| return tmp; |
| } |
| |
| #define load_cpu_field(name) load_cpu_offset(offsetof(CPUARMState, name)) |
| |
| static inline void store_cpu_offset(TCGv_i32 var, int offset) |
| { |
| tcg_gen_st_i32(var, cpu_env, offset); |
| tcg_temp_free_i32(var); |
| } |
| |
| #define store_cpu_field(var, name) \ |
| store_cpu_offset(var, offsetof(CPUARMState, name)) |
| |
| /* The architectural value of PC. */ |
| static uint32_t read_pc(DisasContext *s) |
| { |
| return s->pc_curr + (s->thumb ? 4 : 8); |
| } |
| |
| /* Set a variable to the value of a CPU register. */ |
| static void load_reg_var(DisasContext *s, TCGv_i32 var, int reg) |
| { |
| if (reg == 15) { |
| tcg_gen_movi_i32(var, read_pc(s)); |
| } else { |
| tcg_gen_mov_i32(var, cpu_R[reg]); |
| } |
| } |
| |
| /* Create a new temporary and set it to the value of a CPU register. */ |
| static inline TCGv_i32 load_reg(DisasContext *s, int reg) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| load_reg_var(s, tmp, reg); |
| return tmp; |
| } |
| |
| /* |
| * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4). |
| * This is used for load/store for which use of PC implies (literal), |
| * or ADD that implies ADR. |
| */ |
| static TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| if (reg == 15) { |
| tcg_gen_movi_i32(tmp, (read_pc(s) & ~3) + ofs); |
| } else { |
| tcg_gen_addi_i32(tmp, cpu_R[reg], ofs); |
| } |
| return tmp; |
| } |
| |
| /* Set a CPU register. The source must be a temporary and will be |
| marked as dead. */ |
| static void store_reg(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15) { |
| /* In Thumb mode, we must ignore bit 0. |
| * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0] |
| * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0]. |
| * We choose to ignore [1:0] in ARM mode for all architecture versions. |
| */ |
| tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3); |
| s->base.is_jmp = DISAS_JUMP; |
| } |
| tcg_gen_mov_i32(cpu_R[reg], var); |
| tcg_temp_free_i32(var); |
| } |
| |
| /* |
| * Variant of store_reg which applies v8M stack-limit checks before updating |
| * SP. If the check fails this will result in an exception being taken. |
| * We disable the stack checks for CONFIG_USER_ONLY because we have |
| * no idea what the stack limits should be in that case. |
| * If stack checking is not being done this just acts like store_reg(). |
| */ |
| static void store_sp_checked(DisasContext *s, TCGv_i32 var) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (s->v8m_stackcheck) { |
| gen_helper_v8m_stackcheck(cpu_env, var); |
| } |
| #endif |
| store_reg(s, 13, var); |
| } |
| |
| /* Value extensions. */ |
| #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) |
| #define gen_uxth(var) tcg_gen_ext16u_i32(var, var) |
| #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) |
| #define gen_sxth(var) tcg_gen_ext16s_i32(var, var) |
| |
| #define gen_sxtb16(var) gen_helper_sxtb16(var, var) |
| #define gen_uxtb16(var) gen_helper_uxtb16(var, var) |
| |
| |
| static inline void gen_set_cpsr(TCGv_i32 var, uint32_t mask) |
| { |
| TCGv_i32 tmp_mask = tcg_const_i32(mask); |
| gen_helper_cpsr_write(cpu_env, var, tmp_mask); |
| tcg_temp_free_i32(tmp_mask); |
| } |
| /* Set NZCV flags from the high 4 bits of var. */ |
| #define gen_set_nzcv(var) gen_set_cpsr(var, CPSR_NZCV) |
| |
| static void gen_exception_internal(int excp) |
| { |
| TCGv_i32 tcg_excp = tcg_const_i32(excp); |
| |
| assert(excp_is_internal(excp)); |
| gen_helper_exception_internal(cpu_env, tcg_excp); |
| tcg_temp_free_i32(tcg_excp); |
| } |
| |
| static void gen_step_complete_exception(DisasContext *s) |
| { |
| /* We just completed step of an insn. Move from Active-not-pending |
| * to Active-pending, and then also take the swstep exception. |
| * This corresponds to making the (IMPDEF) choice to prioritize |
| * swstep exceptions over asynchronous exceptions taken to an exception |
| * level where debug is disabled. This choice has the advantage that |
| * we do not need to maintain internal state corresponding to the |
| * ISV/EX syndrome bits between completion of the step and generation |
| * of the exception, and our syndrome information is always correct. |
| */ |
| gen_ss_advance(s); |
| gen_swstep_exception(s, 1, s->is_ldex); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_singlestep_exception(DisasContext *s) |
| { |
| /* Generate the right kind of exception for singlestep, which is |
| * either the architectural singlestep or EXCP_DEBUG for QEMU's |
| * gdb singlestepping. |
| */ |
| if (s->ss_active) { |
| gen_step_complete_exception(s); |
| } else { |
| gen_exception_internal(EXCP_DEBUG); |
| } |
| } |
| |
| static inline bool is_singlestepping(DisasContext *s) |
| { |
| /* Return true if we are singlestepping either because of |
| * architectural singlestep or QEMU gdbstub singlestep. This does |
| * not include the command line '-singlestep' mode which is rather |
| * misnamed as it only means "one instruction per TB" and doesn't |
| * affect the code we generate. |
| */ |
| return s->base.singlestep_enabled || s->ss_active; |
| } |
| |
| static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 tmp1 = tcg_temp_new_i32(); |
| TCGv_i32 tmp2 = tcg_temp_new_i32(); |
| tcg_gen_ext16s_i32(tmp1, a); |
| tcg_gen_ext16s_i32(tmp2, b); |
| tcg_gen_mul_i32(tmp1, tmp1, tmp2); |
| tcg_temp_free_i32(tmp2); |
| tcg_gen_sari_i32(a, a, 16); |
| tcg_gen_sari_i32(b, b, 16); |
| tcg_gen_mul_i32(b, b, a); |
| tcg_gen_mov_i32(a, tmp1); |
| tcg_temp_free_i32(tmp1); |
| } |
| |
| /* Byteswap each halfword. */ |
| static void gen_rev16(TCGv_i32 dest, TCGv_i32 var) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 mask = tcg_const_i32(0x00ff00ff); |
| tcg_gen_shri_i32(tmp, var, 8); |
| tcg_gen_and_i32(tmp, tmp, mask); |
| tcg_gen_and_i32(var, var, mask); |
| tcg_gen_shli_i32(var, var, 8); |
| tcg_gen_or_i32(dest, var, tmp); |
| tcg_temp_free_i32(mask); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| /* Byteswap low halfword and sign extend. */ |
| static void gen_revsh(TCGv_i32 dest, TCGv_i32 var) |
| { |
| tcg_gen_ext16u_i32(var, var); |
| tcg_gen_bswap16_i32(var, var); |
| tcg_gen_ext16s_i32(dest, var); |
| } |
| |
| /* 32x32->64 multiply. Marks inputs as dead. */ |
| static TCGv_i64 gen_mulu_i64_i32(TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 lo = tcg_temp_new_i32(); |
| TCGv_i32 hi = tcg_temp_new_i32(); |
| TCGv_i64 ret; |
| |
| tcg_gen_mulu2_i32(lo, hi, a, b); |
| tcg_temp_free_i32(a); |
| tcg_temp_free_i32(b); |
| |
| ret = tcg_temp_new_i64(); |
| tcg_gen_concat_i32_i64(ret, lo, hi); |
| tcg_temp_free_i32(lo); |
| tcg_temp_free_i32(hi); |
| |
| return ret; |
| } |
| |
| static TCGv_i64 gen_muls_i64_i32(TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 lo = tcg_temp_new_i32(); |
| TCGv_i32 hi = tcg_temp_new_i32(); |
| TCGv_i64 ret; |
| |
| tcg_gen_muls2_i32(lo, hi, a, b); |
| tcg_temp_free_i32(a); |
| tcg_temp_free_i32(b); |
| |
| ret = tcg_temp_new_i64(); |
| tcg_gen_concat_i32_i64(ret, lo, hi); |
| tcg_temp_free_i32(lo); |
| tcg_temp_free_i32(hi); |
| |
| return ret; |
| } |
| |
| /* Swap low and high halfwords. */ |
| static void gen_swap_half(TCGv_i32 var) |
| { |
| tcg_gen_rotri_i32(var, var, 16); |
| } |
| |
| /* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. |
| tmp = (t0 ^ t1) & 0x8000; |
| t0 &= ~0x8000; |
| t1 &= ~0x8000; |
| t0 = (t0 + t1) ^ tmp; |
| */ |
| |
| static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andi_i32(tmp, tmp, 0x8000); |
| tcg_gen_andi_i32(t0, t0, ~0x8000); |
| tcg_gen_andi_i32(t1, t1, ~0x8000); |
| tcg_gen_add_i32(t0, t0, t1); |
| tcg_gen_xor_i32(dest, t0, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| /* Set N and Z flags from var. */ |
| static inline void gen_logic_CC(TCGv_i32 var) |
| { |
| tcg_gen_mov_i32(cpu_NF, var); |
| tcg_gen_mov_i32(cpu_ZF, var); |
| } |
| |
| /* dest = T0 + T1 + CF. */ |
| static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| tcg_gen_add_i32(dest, t0, t1); |
| tcg_gen_add_i32(dest, dest, cpu_CF); |
| } |
| |
| /* dest = T0 - T1 + CF - 1. */ |
| static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| tcg_gen_sub_i32(dest, t0, t1); |
| tcg_gen_add_i32(dest, dest, cpu_CF); |
| tcg_gen_subi_i32(dest, dest, 1); |
| } |
| |
| /* dest = T0 + T1. Compute C, N, V and Z flags */ |
| static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_temp_free_i32(tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */ |
| static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| if (TCG_TARGET_HAS_add2_i32) { |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp); |
| } else { |
| TCGv_i64 q0 = tcg_temp_new_i64(); |
| TCGv_i64 q1 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(q0, t0); |
| tcg_gen_extu_i32_i64(q1, t1); |
| tcg_gen_add_i64(q0, q0, q1); |
| tcg_gen_extu_i32_i64(q1, cpu_CF); |
| tcg_gen_add_i64(q0, q0, q1); |
| tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0); |
| tcg_temp_free_i64(q0); |
| tcg_temp_free_i64(q1); |
| } |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_temp_free_i32(tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 - T1. Compute C, N, V and Z flags */ |
| static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp; |
| tcg_gen_sub_i32(cpu_NF, t0, t1); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0, t1); |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); |
| tcg_temp_free_i32(tmp); |
| tcg_gen_mov_i32(dest, cpu_NF); |
| } |
| |
| /* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */ |
| static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_not_i32(tmp, t1); |
| gen_adc_CC(dest, t0, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| #define GEN_SHIFT(name) \ |
| static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \ |
| { \ |
| TCGv_i32 tmp1, tmp2, tmp3; \ |
| tmp1 = tcg_temp_new_i32(); \ |
| tcg_gen_andi_i32(tmp1, t1, 0xff); \ |
| tmp2 = tcg_const_i32(0); \ |
| tmp3 = tcg_const_i32(0x1f); \ |
| tcg_gen_movcond_i32(TCG_COND_GTU, tmp2, tmp1, tmp3, tmp2, t0); \ |
| tcg_temp_free_i32(tmp3); \ |
| tcg_gen_andi_i32(tmp1, tmp1, 0x1f); \ |
| tcg_gen_##name##_i32(dest, tmp2, tmp1); \ |
| tcg_temp_free_i32(tmp2); \ |
| tcg_temp_free_i32(tmp1); \ |
| } |
| GEN_SHIFT(shl) |
| GEN_SHIFT(shr) |
| #undef GEN_SHIFT |
| |
| static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 tmp1, tmp2; |
| tmp1 = tcg_temp_new_i32(); |
| tcg_gen_andi_i32(tmp1, t1, 0xff); |
| tmp2 = tcg_const_i32(0x1f); |
| tcg_gen_movcond_i32(TCG_COND_GTU, tmp1, tmp1, tmp2, tmp2, tmp1); |
| tcg_temp_free_i32(tmp2); |
| tcg_gen_sar_i32(dest, t0, tmp1); |
| tcg_temp_free_i32(tmp1); |
| } |
| |
| static void shifter_out_im(TCGv_i32 var, int shift) |
| { |
| tcg_gen_extract_i32(cpu_CF, var, shift, 1); |
| } |
| |
| /* Shift by immediate. Includes special handling for shift == 0. */ |
| static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop, |
| int shift, int flags) |
| { |
| switch (shiftop) { |
| case 0: /* LSL */ |
| if (shift != 0) { |
| if (flags) |
| shifter_out_im(var, 32 - shift); |
| tcg_gen_shli_i32(var, var, shift); |
| } |
| break; |
| case 1: /* LSR */ |
| if (shift == 0) { |
| if (flags) { |
| tcg_gen_shri_i32(cpu_CF, var, 31); |
| } |
| tcg_gen_movi_i32(var, 0); |
| } else { |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| tcg_gen_shri_i32(var, var, shift); |
| } |
| break; |
| case 2: /* ASR */ |
| if (shift == 0) |
| shift = 32; |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| if (shift == 32) |
| shift = 31; |
| tcg_gen_sari_i32(var, var, shift); |
| break; |
| case 3: /* ROR/RRX */ |
| if (shift != 0) { |
| if (flags) |
| shifter_out_im(var, shift - 1); |
| tcg_gen_rotri_i32(var, var, shift); break; |
| } else { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_shli_i32(tmp, cpu_CF, 31); |
| if (flags) |
| shifter_out_im(var, 0); |
| tcg_gen_shri_i32(var, var, 1); |
| tcg_gen_or_i32(var, var, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| } |
| }; |
| |
| static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop, |
| TCGv_i32 shift, int flags) |
| { |
| if (flags) { |
| switch (shiftop) { |
| case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break; |
| case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break; |
| case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break; |
| case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break; |
| } |
| } else { |
| switch (shiftop) { |
| case 0: |
| gen_shl(var, var, shift); |
| break; |
| case 1: |
| gen_shr(var, var, shift); |
| break; |
| case 2: |
| gen_sar(var, var, shift); |
| break; |
| case 3: tcg_gen_andi_i32(shift, shift, 0x1f); |
| tcg_gen_rotr_i32(var, var, shift); break; |
| } |
| } |
| tcg_temp_free_i32(shift); |
| } |
| |
| /* |
| * Generate a conditional based on ARM condition code cc. |
| * This is common between ARM and Aarch64 targets. |
| */ |
| void arm_test_cc(DisasCompare *cmp, int cc) |
| { |
| TCGv_i32 value; |
| TCGCond cond; |
| bool global = true; |
| |
| switch (cc) { |
| case 0: /* eq: Z */ |
| case 1: /* ne: !Z */ |
| cond = TCG_COND_EQ; |
| value = cpu_ZF; |
| break; |
| |
| case 2: /* cs: C */ |
| case 3: /* cc: !C */ |
| cond = TCG_COND_NE; |
| value = cpu_CF; |
| break; |
| |
| case 4: /* mi: N */ |
| case 5: /* pl: !N */ |
| cond = TCG_COND_LT; |
| value = cpu_NF; |
| break; |
| |
| case 6: /* vs: V */ |
| case 7: /* vc: !V */ |
| cond = TCG_COND_LT; |
| value = cpu_VF; |
| break; |
| |
| case 8: /* hi: C && !Z */ |
| case 9: /* ls: !C || Z -> !(C && !Z) */ |
| cond = TCG_COND_NE; |
| value = tcg_temp_new_i32(); |
| global = false; |
| /* CF is 1 for C, so -CF is an all-bits-set mask for C; |
| ZF is non-zero for !Z; so AND the two subexpressions. */ |
| tcg_gen_neg_i32(value, cpu_CF); |
| tcg_gen_and_i32(value, value, cpu_ZF); |
| break; |
| |
| case 10: /* ge: N == V -> N ^ V == 0 */ |
| case 11: /* lt: N != V -> N ^ V != 0 */ |
| /* Since we're only interested in the sign bit, == 0 is >= 0. */ |
| cond = TCG_COND_GE; |
| value = tcg_temp_new_i32(); |
| global = false; |
| tcg_gen_xor_i32(value, cpu_VF, cpu_NF); |
| break; |
| |
| case 12: /* gt: !Z && N == V */ |
| case 13: /* le: Z || N != V */ |
| cond = TCG_COND_NE; |
| value = tcg_temp_new_i32(); |
| global = false; |
| /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate |
| * the sign bit then AND with ZF to yield the result. */ |
| tcg_gen_xor_i32(value, cpu_VF, cpu_NF); |
| tcg_gen_sari_i32(value, value, 31); |
| tcg_gen_andc_i32(value, cpu_ZF, value); |
| break; |
| |
| case 14: /* always */ |
| case 15: /* always */ |
| /* Use the ALWAYS condition, which will fold early. |
| * It doesn't matter what we use for the value. */ |
| cond = TCG_COND_ALWAYS; |
| value = cpu_ZF; |
| goto no_invert; |
| |
| default: |
| fprintf(stderr, "Bad condition code 0x%x\n", cc); |
| abort(); |
| } |
| |
| if (cc & 1) { |
| cond = tcg_invert_cond(cond); |
| } |
| |
| no_invert: |
| cmp->cond = cond; |
| cmp->value = value; |
| cmp->value_global = global; |
| } |
| |
| void arm_free_cc(DisasCompare *cmp) |
| { |
| if (!cmp->value_global) { |
| tcg_temp_free_i32(cmp->value); |
| } |
| } |
| |
| void arm_jump_cc(DisasCompare *cmp, TCGLabel *label) |
| { |
| tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label); |
| } |
| |
| void arm_gen_test_cc(int cc, TCGLabel *label) |
| { |
| DisasCompare cmp; |
| arm_test_cc(&cmp, cc); |
| arm_jump_cc(&cmp, label); |
| arm_free_cc(&cmp); |
| } |
| |
| static inline void gen_set_condexec(DisasContext *s) |
| { |
| if (s->condexec_mask) { |
| uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, val); |
| store_cpu_field(tmp, condexec_bits); |
| } |
| } |
| |
| static inline void gen_set_pc_im(DisasContext *s, target_ulong val) |
| { |
| tcg_gen_movi_i32(cpu_R[15], val); |
| } |
| |
| /* Set PC and Thumb state from var. var is marked as dead. */ |
| static inline void gen_bx(DisasContext *s, TCGv_i32 var) |
| { |
| s->base.is_jmp = DISAS_JUMP; |
| tcg_gen_andi_i32(cpu_R[15], var, ~1); |
| tcg_gen_andi_i32(var, var, 1); |
| store_cpu_field(var, thumb); |
| } |
| |
| /* |
| * Set PC and Thumb state from var. var is marked as dead. |
| * For M-profile CPUs, include logic to detect exception-return |
| * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC, |
| * and BX reg, and no others, and happens only for code in Handler mode. |
| * The Security Extension also requires us to check for the FNC_RETURN |
| * which signals a function return from non-secure state; this can happen |
| * in both Handler and Thread mode. |
| * To avoid having to do multiple comparisons in inline generated code, |
| * we make the check we do here loose, so it will match for EXC_RETURN |
| * in Thread mode. For system emulation do_v7m_exception_exit() checks |
| * for these spurious cases and returns without doing anything (giving |
| * the same behaviour as for a branch to a non-magic address). |
| * |
| * In linux-user mode it is unclear what the right behaviour for an |
| * attempted FNC_RETURN should be, because in real hardware this will go |
| * directly to Secure code (ie not the Linux kernel) which will then treat |
| * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN |
| * attempt behave the way it would on a CPU without the security extension, |
| * which is to say "like a normal branch". That means we can simply treat |
| * all branches as normal with no magic address behaviour. |
| */ |
| static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var) |
| { |
| /* Generate the same code here as for a simple bx, but flag via |
| * s->base.is_jmp that we need to do the rest of the work later. |
| */ |
| gen_bx(s, var); |
| #ifndef CONFIG_USER_ONLY |
| if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) || |
| (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) { |
| s->base.is_jmp = DISAS_BX_EXCRET; |
| } |
| #endif |
| } |
| |
| static inline void gen_bx_excret_final_code(DisasContext *s) |
| { |
| /* Generate the code to finish possible exception return and end the TB */ |
| TCGLabel *excret_label = gen_new_label(); |
| uint32_t min_magic; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) { |
| /* Covers FNC_RETURN and EXC_RETURN magic */ |
| min_magic = FNC_RETURN_MIN_MAGIC; |
| } else { |
| /* EXC_RETURN magic only */ |
| min_magic = EXC_RETURN_MIN_MAGIC; |
| } |
| |
| /* Is the new PC value in the magic range indicating exception return? */ |
| tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label); |
| /* No: end the TB as we would for a DISAS_JMP */ |
| if (is_singlestepping(s)) { |
| gen_singlestep_exception(s); |
| } else { |
| tcg_gen_exit_tb(NULL, 0); |
| } |
| gen_set_label(excret_label); |
| /* Yes: this is an exception return. |
| * At this point in runtime env->regs[15] and env->thumb will hold |
| * the exception-return magic number, which do_v7m_exception_exit() |
| * will read. Nothing else will be able to see those values because |
| * the cpu-exec main loop guarantees that we will always go straight |
| * from raising the exception to the exception-handling code. |
| * |
| * gen_ss_advance(s) does nothing on M profile currently but |
| * calling it is conceptually the right thing as we have executed |
| * this instruction (compare SWI, HVC, SMC handling). |
| */ |
| gen_ss_advance(s); |
| gen_exception_internal(EXCP_EXCEPTION_EXIT); |
| } |
| |
| static inline void gen_bxns(DisasContext *s, int rm) |
| { |
| TCGv_i32 var = load_reg(s, rm); |
| |
| /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory |
| * we need to sync state before calling it, but: |
| * - we don't need to do gen_set_pc_im() because the bxns helper will |
| * always set the PC itself |
| * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE |
| * unless it's outside an IT block or the last insn in an IT block, |
| * so we know that condexec == 0 (already set at the top of the TB) |
| * is correct in the non-UNPREDICTABLE cases, and we can choose |
| * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise. |
| */ |
| gen_helper_v7m_bxns(cpu_env, var); |
| tcg_temp_free_i32(var); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| static inline void gen_blxns(DisasContext *s, int rm) |
| { |
| TCGv_i32 var = load_reg(s, rm); |
| |
| /* We don't need to sync condexec state, for the same reason as bxns. |
| * We do however need to set the PC, because the blxns helper reads it. |
| * The blxns helper may throw an exception. |
| */ |
| gen_set_pc_im(s, s->base.pc_next); |
| gen_helper_v7m_blxns(cpu_env, var); |
| tcg_temp_free_i32(var); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| /* Variant of store_reg which uses branch&exchange logic when storing |
| to r15 in ARM architecture v7 and above. The source must be a temporary |
| and will be marked as dead. */ |
| static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15 && ENABLE_ARCH_7) { |
| gen_bx(s, var); |
| } else { |
| store_reg(s, reg, var); |
| } |
| } |
| |
| /* Variant of store_reg which uses branch&exchange logic when storing |
| * to r15 in ARM architecture v5T and above. This is used for storing |
| * the results of a LDR/LDM/POP into r15, and corresponds to the cases |
| * in the ARM ARM which use the LoadWritePC() pseudocode function. */ |
| static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var) |
| { |
| if (reg == 15 && ENABLE_ARCH_5) { |
| gen_bx_excret(s, var); |
| } else { |
| store_reg(s, reg, var); |
| } |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| #define IS_USER_ONLY 1 |
| #else |
| #define IS_USER_ONLY 0 |
| #endif |
| |
| /* Abstractions of "generate code to do a guest load/store for |
| * AArch32", where a vaddr is always 32 bits (and is zero |
| * extended if we're a 64 bit core) and data is also |
| * 32 bits unless specifically doing a 64 bit access. |
| * These functions work like tcg_gen_qemu_{ld,st}* except |
| * that the address argument is TCGv_i32 rather than TCGv. |
| */ |
| |
| static inline TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op) |
| { |
| TCGv addr = tcg_temp_new(); |
| tcg_gen_extu_i32_tl(addr, a32); |
| |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) { |
| tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE))); |
| } |
| return addr; |
| } |
| |
| static void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| TCGv addr; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN)) { |
| opc |= MO_ALIGN; |
| } |
| |
| addr = gen_aa32_addr(s, a32, opc); |
| tcg_gen_qemu_ld_i32(val, addr, index, opc); |
| tcg_temp_free(addr); |
| } |
| |
| static void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| TCGv addr; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| !arm_dc_feature(s, ARM_FEATURE_M_MAIN)) { |
| opc |= MO_ALIGN; |
| } |
| |
| addr = gen_aa32_addr(s, a32, opc); |
| tcg_gen_qemu_st_i32(val, addr, index, opc); |
| tcg_temp_free(addr); |
| } |
| |
| #define DO_GEN_LD(SUFF, OPC) \ |
| static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \ |
| TCGv_i32 a32, int index) \ |
| { \ |
| gen_aa32_ld_i32(s, val, a32, index, OPC | s->be_data); \ |
| } |
| |
| #define DO_GEN_ST(SUFF, OPC) \ |
| static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \ |
| TCGv_i32 a32, int index) \ |
| { \ |
| gen_aa32_st_i32(s, val, a32, index, OPC | s->be_data); \ |
| } |
| |
| static inline void gen_aa32_frob64(DisasContext *s, TCGv_i64 val) |
| { |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b) { |
| tcg_gen_rotri_i64(val, val, 32); |
| } |
| } |
| |
| static void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| tcg_gen_qemu_ld_i64(val, addr, index, opc); |
| gen_aa32_frob64(s, val); |
| tcg_temp_free(addr); |
| } |
| |
| static inline void gen_aa32_ld64(DisasContext *s, TCGv_i64 val, |
| TCGv_i32 a32, int index) |
| { |
| gen_aa32_ld_i64(s, val, a32, index, MO_Q | s->be_data); |
| } |
| |
| static void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, |
| int index, MemOp opc) |
| { |
| TCGv addr = gen_aa32_addr(s, a32, opc); |
| |
| /* Not needed for user-mode BE32, where we use MO_BE instead. */ |
| if (!IS_USER_ONLY && s->sctlr_b) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_rotri_i64(tmp, val, 32); |
| tcg_gen_qemu_st_i64(tmp, addr, index, opc); |
| tcg_temp_free_i64(tmp); |
| } else { |
| tcg_gen_qemu_st_i64(val, addr, index, opc); |
| } |
| tcg_temp_free(addr); |
| } |
| |
| static inline void gen_aa32_st64(DisasContext *s, TCGv_i64 val, |
| TCGv_i32 a32, int index) |
| { |
| gen_aa32_st_i64(s, val, a32, index, MO_Q | s->be_data); |
| } |
| |
| DO_GEN_LD(8u, MO_UB) |
| DO_GEN_LD(16u, MO_UW) |
| DO_GEN_LD(32u, MO_UL) |
| DO_GEN_ST(8, MO_UB) |
| DO_GEN_ST(16, MO_UW) |
| DO_GEN_ST(32, MO_UL) |
| |
| static inline void gen_hvc(DisasContext *s, int imm16) |
| { |
| /* The pre HVC helper handles cases when HVC gets trapped |
| * as an undefined insn by runtime configuration (ie before |
| * the insn really executes). |
| */ |
| gen_set_pc_im(s, s->pc_curr); |
| gen_helper_pre_hvc(cpu_env); |
| /* Otherwise we will treat this as a real exception which |
| * happens after execution of the insn. (The distinction matters |
| * for the PC value reported to the exception handler and also |
| * for single stepping.) |
| */ |
| s->svc_imm = imm16; |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_HVC; |
| } |
| |
| static inline void gen_smc(DisasContext *s) |
| { |
| /* As with HVC, we may take an exception either before or after |
| * the insn executes. |
| */ |
| TCGv_i32 tmp; |
| |
| gen_set_pc_im(s, s->pc_curr); |
| tmp = tcg_const_i32(syn_aa32_smc()); |
| gen_helper_pre_smc(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_SMC; |
| } |
| |
| static void gen_exception_internal_insn(DisasContext *s, uint32_t pc, int excp) |
| { |
| gen_set_condexec(s); |
| gen_set_pc_im(s, pc); |
| gen_exception_internal(excp); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_insn(DisasContext *s, uint32_t pc, int excp, |
| int syn, uint32_t target_el) |
| { |
| gen_set_condexec(s); |
| gen_set_pc_im(s, pc); |
| gen_exception(excp, syn, target_el); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn) |
| { |
| TCGv_i32 tcg_syn; |
| |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| tcg_syn = tcg_const_i32(syn); |
| gen_helper_exception_bkpt_insn(cpu_env, tcg_syn); |
| tcg_temp_free_i32(tcg_syn); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void unallocated_encoding(DisasContext *s) |
| { |
| /* Unallocated and reserved encodings are uncategorized */ |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(), |
| default_exception_el(s)); |
| } |
| |
| /* Force a TB lookup after an instruction that changes the CPU state. */ |
| static inline void gen_lookup_tb(DisasContext *s) |
| { |
| tcg_gen_movi_i32(cpu_R[15], s->base.pc_next); |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| static inline void gen_hlt(DisasContext *s, int imm) |
| { |
| /* HLT. This has two purposes. |
| * Architecturally, it is an external halting debug instruction. |
| * Since QEMU doesn't implement external debug, we treat this as |
| * it is required for halting debug disabled: it will UNDEF. |
| * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction, |
| * and "HLT 0xF000" is an A32 semihosting syscall. These traps |
| * must trigger semihosting even for ARMv7 and earlier, where |
| * HLT was an undefined encoding. |
| * In system mode, we don't allow userspace access to |
| * semihosting, to provide some semblance of security |
| * (and for consistency with our 32-bit semihosting). |
| */ |
| if (semihosting_enabled() && |
| #ifndef CONFIG_USER_ONLY |
| s->current_el != 0 && |
| #endif |
| (imm == (s->thumb ? 0x3c : 0xf000))) { |
| gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST); |
| return; |
| } |
| |
| unallocated_encoding(s); |
| } |
| |
| static TCGv_ptr get_fpstatus_ptr(int neon) |
| { |
| TCGv_ptr statusptr = tcg_temp_new_ptr(); |
| int offset; |
| if (neon) { |
| offset = offsetof(CPUARMState, vfp.standard_fp_status); |
| } else { |
| offset = offsetof(CPUARMState, vfp.fp_status); |
| } |
| tcg_gen_addi_ptr(statusptr, cpu_env, offset); |
| return statusptr; |
| } |
| |
| static inline long vfp_reg_offset(bool dp, unsigned reg) |
| { |
| if (dp) { |
| return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]); |
| } else { |
| long ofs = offsetof(CPUARMState, vfp.zregs[reg >> 2].d[(reg >> 1) & 1]); |
| if (reg & 1) { |
| ofs += offsetof(CPU_DoubleU, l.upper); |
| } else { |
| ofs += offsetof(CPU_DoubleU, l.lower); |
| } |
| return ofs; |
| } |
| } |
| |
| /* Return the offset of a 32-bit piece of a NEON register. |
| zero is the least significant end of the register. */ |
| static inline long |
| neon_reg_offset (int reg, int n) |
| { |
| int sreg; |
| sreg = reg * 2 + n; |
| return vfp_reg_offset(0, sreg); |
| } |
| |
| /* Return the offset of a 2**SIZE piece of a NEON register, at index ELE, |
| * where 0 is the least significant end of the register. |
| */ |
| static inline long |
| neon_element_offset(int reg, int element, MemOp size) |
| { |
| int element_size = 1 << size; |
| int ofs = element * element_size; |
| #ifdef HOST_WORDS_BIGENDIAN |
| /* Calculate the offset assuming fully little-endian, |
| * then XOR to account for the order of the 8-byte units. |
| */ |
| if (element_size < 8) { |
| ofs ^= 8 - element_size; |
| } |
| #endif |
| return neon_reg_offset(reg, 0) + ofs; |
| } |
| |
| static TCGv_i32 neon_load_reg(int reg, int pass) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(tmp, cpu_env, neon_reg_offset(reg, pass)); |
| return tmp; |
| } |
| |
| static void neon_load_element(TCGv_i32 var, int reg, int ele, MemOp mop) |
| { |
| long offset = neon_element_offset(reg, ele, mop & MO_SIZE); |
| |
| switch (mop) { |
| case MO_UB: |
| tcg_gen_ld8u_i32(var, cpu_env, offset); |
| break; |
| case MO_UW: |
| tcg_gen_ld16u_i32(var, cpu_env, offset); |
| break; |
| case MO_UL: |
| tcg_gen_ld_i32(var, cpu_env, offset); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void neon_load_element64(TCGv_i64 var, int reg, int ele, MemOp mop) |
| { |
| long offset = neon_element_offset(reg, ele, mop & MO_SIZE); |
| |
| switch (mop) { |
| case MO_UB: |
| tcg_gen_ld8u_i64(var, cpu_env, offset); |
| break; |
| case MO_UW: |
| tcg_gen_ld16u_i64(var, cpu_env, offset); |
| break; |
| case MO_UL: |
| tcg_gen_ld32u_i64(var, cpu_env, offset); |
| break; |
| case MO_Q: |
| tcg_gen_ld_i64(var, cpu_env, offset); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void neon_store_reg(int reg, int pass, TCGv_i32 var) |
| { |
| tcg_gen_st_i32(var, cpu_env, neon_reg_offset(reg, pass)); |
| tcg_temp_free_i32(var); |
| } |
| |
| static void neon_store_element(int reg, int ele, MemOp size, TCGv_i32 var) |
| { |
| long offset = neon_element_offset(reg, ele, size); |
| |
| switch (size) { |
| case MO_8: |
| tcg_gen_st8_i32(var, cpu_env, offset); |
| break; |
| case MO_16: |
| tcg_gen_st16_i32(var, cpu_env, offset); |
| break; |
| case MO_32: |
| tcg_gen_st_i32(var, cpu_env, offset); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void neon_store_element64(int reg, int ele, MemOp size, TCGv_i64 var) |
| { |
| long offset = neon_element_offset(reg, ele, size); |
| |
| switch (size) { |
| case MO_8: |
| tcg_gen_st8_i64(var, cpu_env, offset); |
| break; |
| case MO_16: |
| tcg_gen_st16_i64(var, cpu_env, offset); |
| break; |
| case MO_32: |
| tcg_gen_st32_i64(var, cpu_env, offset); |
| break; |
| case MO_64: |
| tcg_gen_st_i64(var, cpu_env, offset); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline void neon_load_reg64(TCGv_i64 var, int reg) |
| { |
| tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(1, reg)); |
| } |
| |
| static inline void neon_store_reg64(TCGv_i64 var, int reg) |
| { |
| tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(1, reg)); |
| } |
| |
| static inline void neon_load_reg32(TCGv_i32 var, int reg) |
| { |
| tcg_gen_ld_i32(var, cpu_env, vfp_reg_offset(false, reg)); |
| } |
| |
| static inline void neon_store_reg32(TCGv_i32 var, int reg) |
| { |
| tcg_gen_st_i32(var, cpu_env, vfp_reg_offset(false, reg)); |
| } |
| |
| static TCGv_ptr vfp_reg_ptr(bool dp, int reg) |
| { |
| TCGv_ptr ret = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(ret, cpu_env, vfp_reg_offset(dp, reg)); |
| return ret; |
| } |
| |
| #define ARM_CP_RW_BIT (1 << 20) |
| |
| /* Include the VFP and Neon decoders */ |
| #include "translate-vfp.inc.c" |
| #include "translate-neon.inc.c" |
| |
| static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) |
| { |
| tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); |
| } |
| |
| static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) |
| { |
| tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); |
| } |
| |
| static inline TCGv_i32 iwmmxt_load_creg(int reg) |
| { |
| TCGv_i32 var = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); |
| return var; |
| } |
| |
| static inline void iwmmxt_store_creg(int reg, TCGv_i32 var) |
| { |
| tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); |
| tcg_temp_free_i32(var); |
| } |
| |
| static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) |
| { |
| iwmmxt_store_reg(cpu_M0, rn); |
| } |
| |
| static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_M0, rn); |
| } |
| |
| static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| #define IWMMXT_OP(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ |
| { \ |
| iwmmxt_load_reg(cpu_V1, rn); \ |
| gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ |
| } |
| |
| #define IWMMXT_OP_ENV(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ |
| { \ |
| iwmmxt_load_reg(cpu_V1, rn); \ |
| gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \ |
| } |
| |
| #define IWMMXT_OP_ENV_SIZE(name) \ |
| IWMMXT_OP_ENV(name##b) \ |
| IWMMXT_OP_ENV(name##w) \ |
| IWMMXT_OP_ENV(name##l) |
| |
| #define IWMMXT_OP_ENV1(name) \ |
| static inline void gen_op_iwmmxt_##name##_M0(void) \ |
| { \ |
| gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \ |
| } |
| |
| IWMMXT_OP(maddsq) |
| IWMMXT_OP(madduq) |
| IWMMXT_OP(sadb) |
| IWMMXT_OP(sadw) |
| IWMMXT_OP(mulslw) |
| IWMMXT_OP(mulshw) |
| IWMMXT_OP(mululw) |
| IWMMXT_OP(muluhw) |
| IWMMXT_OP(macsw) |
| IWMMXT_OP(macuw) |
| |
| IWMMXT_OP_ENV_SIZE(unpackl) |
| IWMMXT_OP_ENV_SIZE(unpackh) |
| |
| IWMMXT_OP_ENV1(unpacklub) |
| IWMMXT_OP_ENV1(unpackluw) |
| IWMMXT_OP_ENV1(unpacklul) |
| IWMMXT_OP_ENV1(unpackhub) |
| IWMMXT_OP_ENV1(unpackhuw) |
| IWMMXT_OP_ENV1(unpackhul) |
| IWMMXT_OP_ENV1(unpacklsb) |
| IWMMXT_OP_ENV1(unpacklsw) |
| IWMMXT_OP_ENV1(unpacklsl) |
| IWMMXT_OP_ENV1(unpackhsb) |
| IWMMXT_OP_ENV1(unpackhsw) |
| IWMMXT_OP_ENV1(unpackhsl) |
| |
| IWMMXT_OP_ENV_SIZE(cmpeq) |
| IWMMXT_OP_ENV_SIZE(cmpgtu) |
| IWMMXT_OP_ENV_SIZE(cmpgts) |
| |
| IWMMXT_OP_ENV_SIZE(mins) |
| IWMMXT_OP_ENV_SIZE(minu) |
| IWMMXT_OP_ENV_SIZE(maxs) |
| IWMMXT_OP_ENV_SIZE(maxu) |
| |
| IWMMXT_OP_ENV_SIZE(subn) |
| IWMMXT_OP_ENV_SIZE(addn) |
| IWMMXT_OP_ENV_SIZE(subu) |
| IWMMXT_OP_ENV_SIZE(addu) |
| IWMMXT_OP_ENV_SIZE(subs) |
| IWMMXT_OP_ENV_SIZE(adds) |
| |
| IWMMXT_OP_ENV(avgb0) |
| IWMMXT_OP_ENV(avgb1) |
| IWMMXT_OP_ENV(avgw0) |
| IWMMXT_OP_ENV(avgw1) |
| |
| IWMMXT_OP_ENV(packuw) |
| IWMMXT_OP_ENV(packul) |
| IWMMXT_OP_ENV(packuq) |
| IWMMXT_OP_ENV(packsw) |
| IWMMXT_OP_ENV(packsl) |
| IWMMXT_OP_ENV(packsq) |
| |
| static void gen_op_iwmmxt_set_mup(void) |
| { |
| TCGv_i32 tmp; |
| tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| tcg_gen_ori_i32(tmp, tmp, 2); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| } |
| |
| static void gen_op_iwmmxt_set_cup(void) |
| { |
| TCGv_i32 tmp; |
| tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| tcg_gen_ori_i32(tmp, tmp, 1); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); |
| } |
| |
| static void gen_op_iwmmxt_setpsr_nz(void) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); |
| store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); |
| } |
| |
| static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) |
| { |
| iwmmxt_load_reg(cpu_V1, rn); |
| tcg_gen_ext32u_i64(cpu_V1, cpu_V1); |
| tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| |
| static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, |
| TCGv_i32 dest) |
| { |
| int rd; |
| uint32_t offset; |
| TCGv_i32 tmp; |
| |
| rd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| |
| offset = (insn & 0xff) << ((insn >> 7) & 2); |
| if (insn & (1 << 24)) { |
| /* Pre indexed */ |
| if (insn & (1 << 23)) |
| tcg_gen_addi_i32(tmp, tmp, offset); |
| else |
| tcg_gen_addi_i32(tmp, tmp, -offset); |
| tcg_gen_mov_i32(dest, tmp); |
| if (insn & (1 << 21)) |
| store_reg(s, rd, tmp); |
| else |
| tcg_temp_free_i32(tmp); |
| } else if (insn & (1 << 21)) { |
| /* Post indexed */ |
| tcg_gen_mov_i32(dest, tmp); |
| if (insn & (1 << 23)) |
| tcg_gen_addi_i32(tmp, tmp, offset); |
| else |
| tcg_gen_addi_i32(tmp, tmp, -offset); |
| store_reg(s, rd, tmp); |
| } else if (!(insn & (1 << 23))) |
| return 1; |
| return 0; |
| } |
| |
| static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest) |
| { |
| int rd = (insn >> 0) & 0xf; |
| TCGv_i32 tmp; |
| |
| if (insn & (1 << 8)) { |
| if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { |
| return 1; |
| } else { |
| tmp = iwmmxt_load_creg(rd); |
| } |
| } else { |
| tmp = tcg_temp_new_i32(); |
| iwmmxt_load_reg(cpu_V0, rd); |
| tcg_gen_extrl_i64_i32(tmp, cpu_V0); |
| } |
| tcg_gen_andi_i32(tmp, tmp, mask); |
| tcg_gen_mov_i32(dest, tmp); |
| tcg_temp_free_i32(tmp); |
| return 0; |
| } |
| |
| /* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred |
| (ie. an undefined instruction). */ |
| static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn) |
| { |
| int rd, wrd; |
| int rdhi, rdlo, rd0, rd1, i; |
| TCGv_i32 addr; |
| TCGv_i32 tmp, tmp2, tmp3; |
| |
| if ((insn & 0x0e000e00) == 0x0c000000) { |
| if ((insn & 0x0fe00ff0) == 0x0c400000) { |
| wrd = insn & 0xf; |
| rdlo = (insn >> 12) & 0xf; |
| rdhi = (insn >> 16) & 0xf; |
| if (insn & ARM_CP_RW_BIT) { /* TMRRC */ |
| iwmmxt_load_reg(cpu_V0, wrd); |
| tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); |
| tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); |
| } else { /* TMCRR */ |
| tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); |
| iwmmxt_store_reg(cpu_V0, wrd); |
| gen_op_iwmmxt_set_mup(); |
| } |
| return 0; |
| } |
| |
| wrd = (insn >> 12) & 0xf; |
| addr = tcg_temp_new_i32(); |
| if (gen_iwmmxt_address(s, insn, addr)) { |
| tcg_temp_free_i32(addr); |
| return 1; |
| } |
| if (insn & ARM_CP_RW_BIT) { |
| if ((insn >> 28) == 0xf) { /* WLDRW wCx */ |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); |
| iwmmxt_store_creg(wrd, tmp); |
| } else { |
| i = 1; |
| if (insn & (1 << 8)) { |
| if (insn & (1 << 22)) { /* WLDRD */ |
| gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s)); |
| i = 0; |
| } else { /* WLDRW wRd */ |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); |
| } |
| } else { |
| tmp = tcg_temp_new_i32(); |
| if (insn & (1 << 22)) { /* WLDRH */ |
| gen_aa32_ld16u(s, tmp, addr, get_mem_index(s)); |
| } else { /* WLDRB */ |
| gen_aa32_ld8u(s, tmp, addr, get_mem_index(s)); |
| } |
| } |
| if (i) { |
| tcg_gen_extu_i32_i64(cpu_M0, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| } |
| } else { |
| if ((insn >> 28) == 0xf) { /* WSTRW wCx */ |
| tmp = iwmmxt_load_creg(wrd); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| } else { |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = tcg_temp_new_i32(); |
| if (insn & (1 << 8)) { |
| if (insn & (1 << 22)) { /* WSTRD */ |
| gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s)); |
| } else { /* WSTRW wRd */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| } |
| } else { |
| if (insn & (1 << 22)) { /* WSTRH */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st16(s, tmp, addr, get_mem_index(s)); |
| } else { /* WSTRB */ |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| gen_aa32_st8(s, tmp, addr, get_mem_index(s)); |
| } |
| } |
| } |
| tcg_temp_free_i32(tmp); |
| } |
| tcg_temp_free_i32(addr); |
| return 0; |
| } |
| |
| if ((insn & 0x0f000000) != 0x0e000000) |
| return 1; |
| |
| switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { |
| case 0x000: /* WOR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_orq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x011: /* TMCR */ |
| if (insn & 0xf) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| switch (wrd) { |
| case ARM_IWMMXT_wCID: |
| case ARM_IWMMXT_wCASF: |
| break; |
| case ARM_IWMMXT_wCon: |
| gen_op_iwmmxt_set_cup(); |
| /* Fall through. */ |
| case ARM_IWMMXT_wCSSF: |
| tmp = iwmmxt_load_creg(wrd); |
| tmp2 = load_reg(s, rd); |
| tcg_gen_andc_i32(tmp, tmp, tmp2); |
| tcg_temp_free_i32(tmp2); |
| iwmmxt_store_creg(wrd, tmp); |
| break; |
| case ARM_IWMMXT_wCGR0: |
| case ARM_IWMMXT_wCGR1: |
| case ARM_IWMMXT_wCGR2: |
| case ARM_IWMMXT_wCGR3: |
| gen_op_iwmmxt_set_cup(); |
| tmp = load_reg(s, rd); |
| iwmmxt_store_creg(wrd, tmp); |
| break; |
| default: |
| return 1; |
| } |
| break; |
| case 0x100: /* WXOR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_xorq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x111: /* TMRC */ |
| if (insn & 0xf) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = iwmmxt_load_creg(wrd); |
| store_reg(s, rd, tmp); |
| break; |
| case 0x300: /* WANDN */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tcg_gen_neg_i64(cpu_M0, cpu_M0); |
| gen_op_iwmmxt_andq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x200: /* WAND */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| gen_op_iwmmxt_andq_M0_wRn(rd1); |
| gen_op_iwmmxt_setpsr_nz(); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x810: case 0xa10: /* WMADD */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 0) & 0xf; |
| rd1 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maddsq_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_madduq_M0_wRn(rd1); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_unpacklb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_unpacklw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_unpackll_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_unpackhb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_unpackhw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_unpackhl_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 22)) |
| gen_op_iwmmxt_sadw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_sadb_M0_wRn(rd1); |
| if (!(insn & (1 << 20))) |
| gen_op_iwmmxt_addl_M0_wRn(wrd); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_mulshw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_mulslw_M0_wRn(rd1); |
| } else { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_muluhw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_mululw_M0_wRn(rd1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_macsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_macuw_M0_wRn(rd1); |
| if (!(insn & (1 << 20))) { |
| iwmmxt_load_reg(cpu_V1, wrd); |
| tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); |
| break; |
| case 1: |
| gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); |
| break; |
| case 2: |
| gen_op_iwmmxt_cmpeql_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| if (insn & (1 << 22)) { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_avgw1_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_avgw0_M0_wRn(rd1); |
| } else { |
| if (insn & (1 << 20)) |
| gen_op_iwmmxt_avgb1_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_avgb0_M0_wRn(rd1); |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); |
| tcg_gen_andi_i32(tmp, tmp, 7); |
| iwmmxt_load_reg(cpu_V1, rd1); |
| gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */ |
| if (((insn >> 6) & 3) == 3) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| switch ((insn >> 6) & 3) { |
| case 0: |
| tmp2 = tcg_const_i32(0xff); |
| tmp3 = tcg_const_i32((insn & 7) << 3); |
| break; |
| case 1: |
| tmp2 = tcg_const_i32(0xffff); |
| tmp3 = tcg_const_i32((insn & 3) << 4); |
| break; |
| case 2: |
| tmp2 = tcg_const_i32(0xffffffff); |
| tmp3 = tcg_const_i32((insn & 1) << 5); |
| break; |
| default: |
| tmp2 = NULL; |
| tmp3 = NULL; |
| } |
| gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); |
| tcg_temp_free_i32(tmp3); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */ |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| if (rd == 15 || ((insn >> 22) & 3) == 3) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| if (insn & 8) { |
| tcg_gen_ext8s_i32(tmp, tmp); |
| } else { |
| tcg_gen_andi_i32(tmp, tmp, 0xff); |
| } |
| break; |
| case 1: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| if (insn & 8) { |
| tcg_gen_ext16s_i32(tmp, tmp); |
| } else { |
| tcg_gen_andi_i32(tmp, tmp, 0xffff); |
| } |
| break; |
| case 2: |
| tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); |
| tcg_gen_extrl_i64_i32(tmp, cpu_M0); |
| break; |
| } |
| store_reg(s, rd, tmp); |
| break; |
| case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */ |
| if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); |
| break; |
| case 1: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); |
| break; |
| case 2: |
| tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); |
| break; |
| } |
| tcg_gen_shli_i32(tmp, tmp, 28); |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp); |
| break; |
| case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */ |
| if (((insn >> 6) & 3) == 3) |
| return 1; |
| rd = (insn >> 12) & 0xf; |
| wrd = (insn >> 16) & 0xf; |
| tmp = load_reg(s, rd); |
| switch ((insn >> 6) & 3) { |
| case 0: |
| gen_helper_iwmmxt_bcstb(cpu_M0, tmp); |
| break; |
| case 1: |
| gen_helper_iwmmxt_bcstw(cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_bcstl(cpu_M0, tmp); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */ |
| if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| tmp2 = tcg_temp_new_i32(); |
| tcg_gen_mov_i32(tmp2, tmp); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| for (i = 0; i < 7; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 4); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 1: |
| for (i = 0; i < 3; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 8); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 2: |
| tcg_gen_shli_i32(tmp2, tmp2, 16); |
| tcg_gen_and_i32(tmp, tmp, tmp2); |
| break; |
| } |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| break; |
| case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */ |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); |
| break; |
| case 1: |
| gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); |
| break; |
| case 2: |
| gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */ |
| if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) |
| return 1; |
| tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); |
| tmp2 = tcg_temp_new_i32(); |
| tcg_gen_mov_i32(tmp2, tmp); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| for (i = 0; i < 7; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 4); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 1: |
| for (i = 0; i < 3; i ++) { |
| tcg_gen_shli_i32(tmp2, tmp2, 8); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| } |
| break; |
| case 2: |
| tcg_gen_shli_i32(tmp2, tmp2, 16); |
| tcg_gen_or_i32(tmp, tmp, tmp2); |
| break; |
| } |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| break; |
| case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */ |
| rd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| gen_helper_iwmmxt_msbb(tmp, cpu_M0); |
| break; |
| case 1: |
| gen_helper_iwmmxt_msbw(tmp, cpu_M0); |
| break; |
| case 2: |
| gen_helper_iwmmxt_msbl(tmp, cpu_M0); |
| break; |
| } |
| store_reg(s, rd, tmp); |
| break; |
| case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */ |
| case 0x906: case 0xb06: case 0xd06: case 0xf06: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */ |
| case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsb_M0(); |
| else |
| gen_op_iwmmxt_unpacklub_M0(); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsw_M0(); |
| else |
| gen_op_iwmmxt_unpackluw_M0(); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpacklsl_M0(); |
| else |
| gen_op_iwmmxt_unpacklul_M0(); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */ |
| case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsb_M0(); |
| else |
| gen_op_iwmmxt_unpackhub_M0(); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsw_M0(); |
| else |
| gen_op_iwmmxt_unpackhuw_M0(); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_unpackhsl_M0(); |
| else |
| gen_op_iwmmxt_unpackhul_M0(); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */ |
| case 0x214: case 0x614: case 0xa14: case 0xe14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */ |
| case 0x014: case 0x414: case 0x814: case 0xc14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */ |
| case 0x114: case 0x514: case 0x914: case 0xd14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| if (gen_iwmmxt_shift(insn, 0xff, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| switch ((insn >> 22) & 3) { |
| case 1: |
| gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 2: |
| gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 3: |
| gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */ |
| case 0x314: case 0x714: case 0xb14: case 0xf14: |
| if (((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_temp_new_i32(); |
| switch ((insn >> 22) & 3) { |
| case 1: |
| if (gen_iwmmxt_shift(insn, 0xf, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 2: |
| if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| case 3: |
| if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */ |
| case 0x916: case 0xb16: case 0xd16: case 0xf16: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_minsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_minul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */ |
| case 0x816: case 0xa16: case 0xc16: case 0xe16: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 0: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsb_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxub_M0_wRn(rd1); |
| break; |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_maxsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_maxul_M0_wRn(rd1); |
| break; |
| case 3: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */ |
| case 0x402: case 0x502: case 0x602: case 0x702: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_const_i32((insn >> 20) & 3); |
| iwmmxt_load_reg(cpu_V1, rd1); |
| gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */ |
| case 0x41a: case 0x51a: case 0x61a: case 0x71a: |
| case 0x81a: case 0x91a: case 0xa1a: case 0xb1a: |
| case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 20) & 0xf) { |
| case 0x0: |
| gen_op_iwmmxt_subnb_M0_wRn(rd1); |
| break; |
| case 0x1: |
| gen_op_iwmmxt_subub_M0_wRn(rd1); |
| break; |
| case 0x3: |
| gen_op_iwmmxt_subsb_M0_wRn(rd1); |
| break; |
| case 0x4: |
| gen_op_iwmmxt_subnw_M0_wRn(rd1); |
| break; |
| case 0x5: |
| gen_op_iwmmxt_subuw_M0_wRn(rd1); |
| break; |
| case 0x7: |
| gen_op_iwmmxt_subsw_M0_wRn(rd1); |
| break; |
| case 0x8: |
| gen_op_iwmmxt_subnl_M0_wRn(rd1); |
| break; |
| case 0x9: |
| gen_op_iwmmxt_subul_M0_wRn(rd1); |
| break; |
| case 0xb: |
| gen_op_iwmmxt_subsl_M0_wRn(rd1); |
| break; |
| default: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */ |
| case 0x41e: case 0x51e: case 0x61e: case 0x71e: |
| case 0x81e: case 0x91e: case 0xa1e: case 0xb1e: |
| case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); |
| gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */ |
| case 0x418: case 0x518: case 0x618: case 0x718: |
| case 0x818: case 0x918: case 0xa18: case 0xb18: |
| case 0xc18: case 0xd18: case 0xe18: case 0xf18: |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 20) & 0xf) { |
| case 0x0: |
| gen_op_iwmmxt_addnb_M0_wRn(rd1); |
| break; |
| case 0x1: |
| gen_op_iwmmxt_addub_M0_wRn(rd1); |
| break; |
| case 0x3: |
| gen_op_iwmmxt_addsb_M0_wRn(rd1); |
| break; |
| case 0x4: |
| gen_op_iwmmxt_addnw_M0_wRn(rd1); |
| break; |
| case 0x5: |
| gen_op_iwmmxt_adduw_M0_wRn(rd1); |
| break; |
| case 0x7: |
| gen_op_iwmmxt_addsw_M0_wRn(rd1); |
| break; |
| case 0x8: |
| gen_op_iwmmxt_addnl_M0_wRn(rd1); |
| break; |
| case 0x9: |
| gen_op_iwmmxt_addul_M0_wRn(rd1); |
| break; |
| case 0xb: |
| gen_op_iwmmxt_addsl_M0_wRn(rd1); |
| break; |
| default: |
| return 1; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */ |
| case 0x408: case 0x508: case 0x608: case 0x708: |
| case 0x808: case 0x908: case 0xa08: case 0xb08: |
| case 0xc08: case 0xd08: case 0xe08: case 0xf08: |
| if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) |
| return 1; |
| wrd = (insn >> 12) & 0xf; |
| rd0 = (insn >> 16) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| gen_op_iwmmxt_movq_M0_wRn(rd0); |
| switch ((insn >> 22) & 3) { |
| case 1: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsw_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packuw_M0_wRn(rd1); |
| break; |
| case 2: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsl_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packul_M0_wRn(rd1); |
| break; |
| case 3: |
| if (insn & (1 << 21)) |
| gen_op_iwmmxt_packsq_M0_wRn(rd1); |
| else |
| gen_op_iwmmxt_packuq_M0_wRn(rd1); |
| break; |
| } |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| gen_op_iwmmxt_set_cup(); |
| break; |
| case 0x201: case 0x203: case 0x205: case 0x207: |
| case 0x209: case 0x20b: case 0x20d: case 0x20f: |
| case 0x211: case 0x213: case 0x215: case 0x217: |
| case 0x219: case 0x21b: case 0x21d: case 0x21f: |
| wrd = (insn >> 5) & 0xf; |
| rd0 = (insn >> 12) & 0xf; |
| rd1 = (insn >> 0) & 0xf; |
| if (rd0 == 0xf || rd1 == 0xf) |
| return 1; |
| gen_op_iwmmxt_movq_M0_wRn(wrd); |
| tmp = load_reg(s, rd0); |
| tmp2 = load_reg(s, rd1); |
| switch ((insn >> 16) & 0xf) { |
| case 0x0: /* TMIA */ |
| gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0x8: /* TMIAPH */ |
| gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */ |
| if (insn & (1 << 16)) |
| tcg_gen_shri_i32(tmp, tmp, 16); |
| if (insn & (1 << 17)) |
| tcg_gen_shri_i32(tmp2, tmp2, 16); |
| gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| default: |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| return 1; |
| } |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| gen_op_iwmmxt_movq_wRn_M0(wrd); |
| gen_op_iwmmxt_set_mup(); |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred |
| (ie. an undefined instruction). */ |
| static int disas_dsp_insn(DisasContext *s, uint32_t insn) |
| { |
| int acc, rd0, rd1, rdhi, rdlo; |
| TCGv_i32 tmp, tmp2; |
| |
| if ((insn & 0x0ff00f10) == 0x0e200010) { |
| /* Multiply with Internal Accumulate Format */ |
| rd0 = (insn >> 12) & 0xf; |
| rd1 = insn & 0xf; |
| acc = (insn >> 5) & 7; |
| |
| if (acc != 0) |
| return 1; |
| |
| tmp = load_reg(s, rd0); |
| tmp2 = load_reg(s, rd1); |
| switch ((insn >> 16) & 0xf) { |
| case 0x0: /* MIA */ |
| gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0x8: /* MIAPH */ |
| gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| case 0xc: /* MIABB */ |
| case 0xd: /* MIABT */ |
| case 0xe: /* MIATB */ |
| case 0xf: /* MIATT */ |
| if (insn & (1 << 16)) |
| tcg_gen_shri_i32(tmp, tmp, 16); |
| if (insn & (1 << 17)) |
| tcg_gen_shri_i32(tmp2, tmp2, 16); |
| gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); |
| break; |
| default: |
| return 1; |
| } |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| |
| gen_op_iwmmxt_movq_wRn_M0(acc); |
| return 0; |
| } |
| |
| if ((insn & 0x0fe00ff8) == 0x0c400000) { |
| /* Internal Accumulator Access Format */ |
| rdhi = (insn >> 16) & 0xf; |
| rdlo = (insn >> 12) & 0xf; |
| acc = insn & 7; |
| |
| if (acc != 0) |
| return 1; |
| |
| if (insn & ARM_CP_RW_BIT) { /* MRA */ |
| iwmmxt_load_reg(cpu_V0, acc); |
| tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); |
| tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); |
| tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); |
| } else { /* MAR */ |
| tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); |
| iwmmxt_store_reg(cpu_V0, acc); |
| } |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| #define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n)) |
| #define VFP_DREG(reg, insn, bigbit, smallbit) do { \ |
| if (dc_isar_feature(aa32_simd_r32, s)) { \ |
| reg = (((insn) >> (bigbit)) & 0x0f) \ |
| | (((insn) >> ((smallbit) - 4)) & 0x10); \ |
| } else { \ |
| if (insn & (1 << (smallbit))) \ |
| return 1; \ |
| reg = ((insn) >> (bigbit)) & 0x0f; \ |
| }} while (0) |
| |
| #define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22) |
| #define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7) |
| #define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5) |
| |
| static void gen_neon_dup_low16(TCGv_i32 var) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_ext16u_i32(var, var); |
| tcg_gen_shli_i32(tmp, var, 16); |
| tcg_gen_or_i32(var, var, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static void gen_neon_dup_high16(TCGv_i32 var) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_andi_i32(var, var, 0xffff0000); |
| tcg_gen_shri_i32(tmp, var, 16); |
| tcg_gen_or_i32(var, var, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static inline bool use_goto_tb(DisasContext *s, target_ulong dest) |
| { |
| #ifndef CONFIG_USER_ONLY |
| return (s->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) || |
| ((s->base.pc_next - 1) & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK); |
| #else |
| return true; |
| #endif |
| } |
| |
| static void gen_goto_ptr(void) |
| { |
| tcg_gen_lookup_and_goto_ptr(); |
| } |
| |
| /* This will end the TB but doesn't guarantee we'll return to |
| * cpu_loop_exec. Any live exit_requests will be processed as we |
| * enter the next TB. |
| */ |
| static void gen_goto_tb(DisasContext *s, int n, target_ulong dest) |
| { |
| if (use_goto_tb(s, dest)) { |
| tcg_gen_goto_tb(n); |
| gen_set_pc_im(s, dest); |
| tcg_gen_exit_tb(s->base.tb, n); |
| } else { |
| gen_set_pc_im(s, dest); |
| gen_goto_ptr(); |
| } |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static inline void gen_jmp (DisasContext *s, uint32_t dest) |
| { |
| if (unlikely(is_singlestepping(s))) { |
| /* An indirect jump so that we still trigger the debug exception. */ |
| gen_set_pc_im(s, dest); |
| s->base.is_jmp = DISAS_JUMP; |
| } else { |
| gen_goto_tb(s, 0, dest); |
| } |
| } |
| |
| static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y) |
| { |
| if (x) |
| tcg_gen_sari_i32(t0, t0, 16); |
| else |
| gen_sxth(t0); |
| if (y) |
| tcg_gen_sari_i32(t1, t1, 16); |
| else |
| gen_sxth(t1); |
| tcg_gen_mul_i32(t0, t0, t1); |
| } |
| |
| /* Return the mask of PSR bits set by a MSR instruction. */ |
| static uint32_t msr_mask(DisasContext *s, int flags, int spsr) |
| { |
| uint32_t mask = 0; |
| |
| if (flags & (1 << 0)) { |
| mask |= 0xff; |
| } |
| if (flags & (1 << 1)) { |
| mask |= 0xff00; |
| } |
| if (flags & (1 << 2)) { |
| mask |= 0xff0000; |
| } |
| if (flags & (1 << 3)) { |
| mask |= 0xff000000; |
| } |
| |
| /* Mask out undefined and reserved bits. */ |
| mask &= aarch32_cpsr_valid_mask(s->features, s->isar); |
| |
| /* Mask out execution state. */ |
| if (!spsr) { |
| mask &= ~CPSR_EXEC; |
| } |
| |
| /* Mask out privileged bits. */ |
| if (IS_USER(s)) { |
| mask &= CPSR_USER; |
| } |
| return mask; |
| } |
| |
| /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ |
| static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0) |
| { |
| TCGv_i32 tmp; |
| if (spsr) { |
| /* ??? This is also undefined in system mode. */ |
| if (IS_USER(s)) |
| return 1; |
| |
| tmp = load_cpu_field(spsr); |
| tcg_gen_andi_i32(tmp, tmp, ~mask); |
| tcg_gen_andi_i32(t0, t0, mask); |
| tcg_gen_or_i32(tmp, tmp, t0); |
| store_cpu_field(tmp, spsr); |
| } else { |
| gen_set_cpsr(t0, mask); |
| } |
| tcg_temp_free_i32(t0); |
| gen_lookup_tb(s); |
| return 0; |
| } |
| |
| /* Returns nonzero if access to the PSR is not permitted. */ |
| static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) |
| { |
| TCGv_i32 tmp; |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, val); |
| return gen_set_psr(s, mask, spsr, tmp); |
| } |
| |
| static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn, |
| int *tgtmode, int *regno) |
| { |
| /* Decode the r and sysm fields of MSR/MRS banked accesses into |
| * the target mode and register number, and identify the various |
| * unpredictable cases. |
| * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if: |
| * + executed in user mode |
| * + using R15 as the src/dest register |
| * + accessing an unimplemented register |
| * + accessing a register that's inaccessible at current PL/security state* |
| * + accessing a register that you could access with a different insn |
| * We choose to UNDEF in all these cases. |
| * Since we don't know which of the various AArch32 modes we are in |
| * we have to defer some checks to runtime. |
| * Accesses to Monitor mode registers from Secure EL1 (which implies |
| * that EL3 is AArch64) must trap to EL3. |
| * |
| * If the access checks fail this function will emit code to take |
| * an exception and return false. Otherwise it will return true, |
| * and set *tgtmode and *regno appropriately. |
| */ |
| int exc_target = default_exception_el(s); |
| |
| /* These instructions are present only in ARMv8, or in ARMv7 with the |
| * Virtualization Extensions. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_V8) && |
| !arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| goto undef; |
| } |
| |
| if (IS_USER(s) || rn == 15) { |
| goto undef; |
| } |
| |
| /* The table in the v8 ARM ARM section F5.2.3 describes the encoding |
| * of registers into (r, sysm). |
| */ |
| if (r) { |
| /* SPSRs for other modes */ |
| switch (sysm) { |
| case 0xe: /* SPSR_fiq */ |
| *tgtmode = ARM_CPU_MODE_FIQ; |
| break; |
| case 0x10: /* SPSR_irq */ |
| *tgtmode = ARM_CPU_MODE_IRQ; |
| break; |
| case 0x12: /* SPSR_svc */ |
| *tgtmode = ARM_CPU_MODE_SVC; |
| break; |
| case 0x14: /* SPSR_abt */ |
| *tgtmode = ARM_CPU_MODE_ABT; |
| break; |
| case 0x16: /* SPSR_und */ |
| *tgtmode = ARM_CPU_MODE_UND; |
| break; |
| case 0x1c: /* SPSR_mon */ |
| *tgtmode = ARM_CPU_MODE_MON; |
| break; |
| case 0x1e: /* SPSR_hyp */ |
| *tgtmode = ARM_CPU_MODE_HYP; |
| break; |
| default: /* unallocated */ |
| goto undef; |
| } |
| /* We arbitrarily assign SPSR a register number of 16. */ |
| *regno = 16; |
| } else { |
| /* general purpose registers for other modes */ |
| switch (sysm) { |
| case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */ |
| *tgtmode = ARM_CPU_MODE_USR; |
| *regno = sysm + 8; |
| break; |
| case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */ |
| *tgtmode = ARM_CPU_MODE_FIQ; |
| *regno = sysm; |
| break; |
| case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */ |
| *tgtmode = ARM_CPU_MODE_IRQ; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */ |
| *tgtmode = ARM_CPU_MODE_SVC; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */ |
| *tgtmode = ARM_CPU_MODE_ABT; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */ |
| *tgtmode = ARM_CPU_MODE_UND; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */ |
| *tgtmode = ARM_CPU_MODE_MON; |
| *regno = sysm & 1 ? 13 : 14; |
| break; |
| case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */ |
| *tgtmode = ARM_CPU_MODE_HYP; |
| /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */ |
| *regno = sysm & 1 ? 13 : 17; |
| break; |
| default: /* unallocated */ |
| goto undef; |
| } |
| } |
| |
| /* Catch the 'accessing inaccessible register' cases we can detect |
| * at translate time. |
| */ |
| switch (*tgtmode) { |
| case ARM_CPU_MODE_MON: |
| if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) { |
| goto undef; |
| } |
| if (s->current_el == 1) { |
| /* If we're in Secure EL1 (which implies that EL3 is AArch64) |
| * then accesses to Mon registers trap to EL3 |
| */ |
| exc_target = 3; |
| goto undef; |
| } |
| break; |
| case ARM_CPU_MODE_HYP: |
| /* |
| * SPSR_hyp and r13_hyp can only be accessed from Monitor mode |
| * (and so we can forbid accesses from EL2 or below). elr_hyp |
| * can be accessed also from Hyp mode, so forbid accesses from |
| * EL0 or EL1. |
| */ |
| if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 || |
| (s->current_el < 3 && *regno != 17)) { |
| goto undef; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| |
| undef: |
| /* If we get here then some access check did not pass */ |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, |
| syn_uncategorized(), exc_target); |
| return false; |
| } |
| |
| static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn) |
| { |
| TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno; |
| int tgtmode = 0, regno = 0; |
| |
| if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { |
| return; |
| } |
| |
| /* Sync state because msr_banked() can raise exceptions */ |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| tcg_reg = load_reg(s, rn); |
| tcg_tgtmode = tcg_const_i32(tgtmode); |
| tcg_regno = tcg_const_i32(regno); |
| gen_helper_msr_banked(cpu_env, tcg_reg, tcg_tgtmode, tcg_regno); |
| tcg_temp_free_i32(tcg_tgtmode); |
| tcg_temp_free_i32(tcg_regno); |
| tcg_temp_free_i32(tcg_reg); |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| |
| static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn) |
| { |
| TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno; |
| int tgtmode = 0, regno = 0; |
| |
| if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { |
| return; |
| } |
| |
| /* Sync state because mrs_banked() can raise exceptions */ |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| tcg_reg = tcg_temp_new_i32(); |
| tcg_tgtmode = tcg_const_i32(tgtmode); |
| tcg_regno = tcg_const_i32(regno); |
| gen_helper_mrs_banked(tcg_reg, cpu_env, tcg_tgtmode, tcg_regno); |
| tcg_temp_free_i32(tcg_tgtmode); |
| tcg_temp_free_i32(tcg_regno); |
| store_reg(s, rn, tcg_reg); |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| |
| /* Store value to PC as for an exception return (ie don't |
| * mask bits). The subsequent call to gen_helper_cpsr_write_eret() |
| * will do the masking based on the new value of the Thumb bit. |
| */ |
| static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc) |
| { |
| tcg_gen_mov_i32(cpu_R[15], pc); |
| tcg_temp_free_i32(pc); |
| } |
| |
| /* Generate a v6 exception return. Marks both values as dead. */ |
| static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) |
| { |
| store_pc_exc_ret(s, pc); |
| /* The cpsr_write_eret helper will mask the low bits of PC |
| * appropriately depending on the new Thumb bit, so it must |
| * be called after storing the new PC. |
| */ |
| if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { |
| gen_io_start(); |
| } |
| gen_helper_cpsr_write_eret(cpu_env, cpsr); |
| tcg_temp_free_i32(cpsr); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| |
| /* Generate an old-style exception return. Marks pc as dead. */ |
| static void gen_exception_return(DisasContext *s, TCGv_i32 pc) |
| { |
| gen_rfe(s, pc, load_cpu_field(spsr)); |
| } |
| |
| #define CPU_V001 cpu_V0, cpu_V0, cpu_V1 |
| |
| static inline void gen_neon_add(int size, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_add_u8(t0, t0, t1); break; |
| case 1: gen_helper_neon_add_u16(t0, t0, t1); break; |
| case 2: tcg_gen_add_i32(t0, t0, t1); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_rsb(int size, TCGv_i32 t0, TCGv_i32 t1) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_sub_u8(t0, t1, t0); break; |
| case 1: gen_helper_neon_sub_u16(t0, t1, t0); break; |
| case 2: tcg_gen_sub_i32(t0, t1, t0); break; |
| default: return; |
| } |
| } |
| |
| /* 32-bit pairwise ops end up the same as the elementwise versions. */ |
| #define gen_helper_neon_pmax_s32 tcg_gen_smax_i32 |
| #define gen_helper_neon_pmax_u32 tcg_gen_umax_i32 |
| #define gen_helper_neon_pmin_s32 tcg_gen_smin_i32 |
| #define gen_helper_neon_pmin_u32 tcg_gen_umin_i32 |
| |
| #define GEN_NEON_INTEGER_OP_ENV(name) do { \ |
| switch ((size << 1) | u) { \ |
| case 0: \ |
| gen_helper_neon_##name##_s8(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| case 1: \ |
| gen_helper_neon_##name##_u8(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| case 2: \ |
| gen_helper_neon_##name##_s16(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| case 3: \ |
| gen_helper_neon_##name##_u16(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| case 4: \ |
| gen_helper_neon_##name##_s32(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| case 5: \ |
| gen_helper_neon_##name##_u32(tmp, cpu_env, tmp, tmp2); \ |
| break; \ |
| default: return 1; \ |
| }} while (0) |
| |
| #define GEN_NEON_INTEGER_OP(name) do { \ |
| switch ((size << 1) | u) { \ |
| case 0: \ |
| gen_helper_neon_##name##_s8(tmp, tmp, tmp2); \ |
| break; \ |
| case 1: \ |
| gen_helper_neon_##name##_u8(tmp, tmp, tmp2); \ |
| break; \ |
| case 2: \ |
| gen_helper_neon_##name##_s16(tmp, tmp, tmp2); \ |
| break; \ |
| case 3: \ |
| gen_helper_neon_##name##_u16(tmp, tmp, tmp2); \ |
| break; \ |
| case 4: \ |
| gen_helper_neon_##name##_s32(tmp, tmp, tmp2); \ |
| break; \ |
| case 5: \ |
| gen_helper_neon_##name##_u32(tmp, tmp, tmp2); \ |
| break; \ |
| default: return 1; \ |
| }} while (0) |
| |
| static TCGv_i32 neon_load_scratch(int scratch) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch])); |
| return tmp; |
| } |
| |
| static void neon_store_scratch(int scratch, TCGv_i32 var) |
| { |
| tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch])); |
| tcg_temp_free_i32(var); |
| } |
| |
| static inline TCGv_i32 neon_get_scalar(int size, int reg) |
| { |
| TCGv_i32 tmp; |
| if (size == 1) { |
| tmp = neon_load_reg(reg & 7, reg >> 4); |
| if (reg & 8) { |
| gen_neon_dup_high16(tmp); |
| } else { |
| gen_neon_dup_low16(tmp); |
| } |
| } else { |
| tmp = neon_load_reg(reg & 15, reg >> 4); |
| } |
| return tmp; |
| } |
| |
| static int gen_neon_unzip(int rd, int rm, int size, int q) |
| { |
| TCGv_ptr pd, pm; |
| |
| if (!q && size == 2) { |
| return 1; |
| } |
| pd = vfp_reg_ptr(true, rd); |
| pm = vfp_reg_ptr(true, rm); |
| if (q) { |
| switch (size) { |
| case 0: |
| gen_helper_neon_qunzip8(pd, pm); |
| break; |
| case 1: |
| gen_helper_neon_qunzip16(pd, pm); |
| break; |
| case 2: |
| gen_helper_neon_qunzip32(pd, pm); |
| break; |
| default: |
| abort(); |
| } |
| } else { |
| switch (size) { |
| case 0: |
| gen_helper_neon_unzip8(pd, pm); |
| break; |
| case 1: |
| gen_helper_neon_unzip16(pd, pm); |
| break; |
| default: |
| abort(); |
| } |
| } |
| tcg_temp_free_ptr(pd); |
| tcg_temp_free_ptr(pm); |
| return 0; |
| } |
| |
| static int gen_neon_zip(int rd, int rm, int size, int q) |
| { |
| TCGv_ptr pd, pm; |
| |
| if (!q && size == 2) { |
| return 1; |
| } |
| pd = vfp_reg_ptr(true, rd); |
| pm = vfp_reg_ptr(true, rm); |
| if (q) { |
| switch (size) { |
| case 0: |
| gen_helper_neon_qzip8(pd, pm); |
| break; |
| case 1: |
| gen_helper_neon_qzip16(pd, pm); |
| break; |
| case 2: |
| gen_helper_neon_qzip32(pd, pm); |
| break; |
| default: |
| abort(); |
| } |
| } else { |
| switch (size) { |
| case 0: |
| gen_helper_neon_zip8(pd, pm); |
| break; |
| case 1: |
| gen_helper_neon_zip16(pd, pm); |
| break; |
| default: |
| abort(); |
| } |
| } |
| tcg_temp_free_ptr(pd); |
| tcg_temp_free_ptr(pm); |
| return 0; |
| } |
| |
| static void gen_neon_trn_u8(TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 rd, tmp; |
| |
| rd = tcg_temp_new_i32(); |
| tmp = tcg_temp_new_i32(); |
| |
| tcg_gen_shli_i32(rd, t0, 8); |
| tcg_gen_andi_i32(rd, rd, 0xff00ff00); |
| tcg_gen_andi_i32(tmp, t1, 0x00ff00ff); |
| tcg_gen_or_i32(rd, rd, tmp); |
| |
| tcg_gen_shri_i32(t1, t1, 8); |
| tcg_gen_andi_i32(t1, t1, 0x00ff00ff); |
| tcg_gen_andi_i32(tmp, t0, 0xff00ff00); |
| tcg_gen_or_i32(t1, t1, tmp); |
| tcg_gen_mov_i32(t0, rd); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(rd); |
| } |
| |
| static void gen_neon_trn_u16(TCGv_i32 t0, TCGv_i32 t1) |
| { |
| TCGv_i32 rd, tmp; |
| |
| rd = tcg_temp_new_i32(); |
| tmp = tcg_temp_new_i32(); |
| |
| tcg_gen_shli_i32(rd, t0, 16); |
| tcg_gen_andi_i32(tmp, t1, 0xffff); |
| tcg_gen_or_i32(rd, rd, tmp); |
| tcg_gen_shri_i32(t1, t1, 16); |
| tcg_gen_andi_i32(tmp, t0, 0xffff0000); |
| tcg_gen_or_i32(t1, t1, tmp); |
| tcg_gen_mov_i32(t0, rd); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(rd); |
| } |
| |
| static inline void gen_neon_narrow(int size, TCGv_i32 dest, TCGv_i64 src) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_narrow_u8(dest, src); break; |
| case 1: gen_helper_neon_narrow_u16(dest, src); break; |
| case 2: tcg_gen_extrl_i64_i32(dest, src); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_narrow_sats(int size, TCGv_i32 dest, TCGv_i64 src) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_narrow_sat_s8(dest, cpu_env, src); break; |
| case 1: gen_helper_neon_narrow_sat_s16(dest, cpu_env, src); break; |
| case 2: gen_helper_neon_narrow_sat_s32(dest, cpu_env, src); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_narrow_satu(int size, TCGv_i32 dest, TCGv_i64 src) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_narrow_sat_u8(dest, cpu_env, src); break; |
| case 1: gen_helper_neon_narrow_sat_u16(dest, cpu_env, src); break; |
| case 2: gen_helper_neon_narrow_sat_u32(dest, cpu_env, src); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_unarrow_sats(int size, TCGv_i32 dest, TCGv_i64 src) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_unarrow_sat8(dest, cpu_env, src); break; |
| case 1: gen_helper_neon_unarrow_sat16(dest, cpu_env, src); break; |
| case 2: gen_helper_neon_unarrow_sat32(dest, cpu_env, src); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_shift_narrow(int size, TCGv_i32 var, TCGv_i32 shift, |
| int q, int u) |
| { |
| if (q) { |
| if (u) { |
| switch (size) { |
| case 1: gen_helper_neon_rshl_u16(var, var, shift); break; |
| case 2: gen_helper_neon_rshl_u32(var, var, shift); break; |
| default: abort(); |
| } |
| } else { |
| switch (size) { |
| case 1: gen_helper_neon_rshl_s16(var, var, shift); break; |
| case 2: gen_helper_neon_rshl_s32(var, var, shift); break; |
| default: abort(); |
| } |
| } |
| } else { |
| if (u) { |
| switch (size) { |
| case 1: gen_helper_neon_shl_u16(var, var, shift); break; |
| case 2: gen_ushl_i32(var, var, shift); break; |
| default: abort(); |
| } |
| } else { |
| switch (size) { |
| case 1: gen_helper_neon_shl_s16(var, var, shift); break; |
| case 2: gen_sshl_i32(var, var, shift); break; |
| default: abort(); |
| } |
| } |
| } |
| } |
| |
| static inline void gen_neon_widen(TCGv_i64 dest, TCGv_i32 src, int size, int u) |
| { |
| if (u) { |
| switch (size) { |
| case 0: gen_helper_neon_widen_u8(dest, src); break; |
| case 1: gen_helper_neon_widen_u16(dest, src); break; |
| case 2: tcg_gen_extu_i32_i64(dest, src); break; |
| default: abort(); |
| } |
| } else { |
| switch (size) { |
| case 0: gen_helper_neon_widen_s8(dest, src); break; |
| case 1: gen_helper_neon_widen_s16(dest, src); break; |
| case 2: tcg_gen_ext_i32_i64(dest, src); break; |
| default: abort(); |
| } |
| } |
| tcg_temp_free_i32(src); |
| } |
| |
| static inline void gen_neon_addl(int size) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_addl_u16(CPU_V001); break; |
| case 1: gen_helper_neon_addl_u32(CPU_V001); break; |
| case 2: tcg_gen_add_i64(CPU_V001); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_subl(int size) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_subl_u16(CPU_V001); break; |
| case 1: gen_helper_neon_subl_u32(CPU_V001); break; |
| case 2: tcg_gen_sub_i64(CPU_V001); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_negl(TCGv_i64 var, int size) |
| { |
| switch (size) { |
| case 0: gen_helper_neon_negl_u16(var, var); break; |
| case 1: gen_helper_neon_negl_u32(var, var); break; |
| case 2: |
| tcg_gen_neg_i64(var, var); |
| break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size) |
| { |
| switch (size) { |
| case 1: gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); break; |
| case 2: gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); break; |
| default: abort(); |
| } |
| } |
| |
| static inline void gen_neon_mull(TCGv_i64 dest, TCGv_i32 a, TCGv_i32 b, |
| int size, int u) |
| { |
| TCGv_i64 tmp; |
| |
| switch ((size << 1) | u) { |
| case 0: gen_helper_neon_mull_s8(dest, a, b); break; |
| case 1: gen_helper_neon_mull_u8(dest, a, b); break; |
| case 2: gen_helper_neon_mull_s16(dest, a, b); break; |
| case 3: gen_helper_neon_mull_u16(dest, a, b); break; |
| case 4: |
| tmp = gen_muls_i64_i32(a, b); |
| tcg_gen_mov_i64(dest, tmp); |
| tcg_temp_free_i64(tmp); |
| break; |
| case 5: |
| tmp = gen_mulu_i64_i32(a, b); |
| tcg_gen_mov_i64(dest, tmp); |
| tcg_temp_free_i64(tmp); |
| break; |
| default: abort(); |
| } |
| |
| /* gen_helper_neon_mull_[su]{8|16} do not free their parameters. |
| Don't forget to clean them now. */ |
| if (size < 2) { |
| tcg_temp_free_i32(a); |
| tcg_temp_free_i32(b); |
| } |
| } |
| |
| static void gen_neon_narrow_op(int op, int u, int size, |
| TCGv_i32 dest, TCGv_i64 src) |
| { |
| if (op) { |
| if (u) { |
| gen_neon_unarrow_sats(size, dest, src); |
| } else { |
| gen_neon_narrow(size, dest, src); |
| } |
| } else { |
| if (u) { |
| gen_neon_narrow_satu(size, dest, src); |
| } else { |
| gen_neon_narrow_sats(size, dest, src); |
| } |
| } |
| } |
| |
| /* Symbolic constants for op fields for Neon 3-register same-length. |
| * The values correspond to bits [11:8,4]; see the ARM ARM DDI0406B |
| * table A7-9. |
| */ |
| #define NEON_3R_VHADD 0 |
| #define NEON_3R_VQADD 1 |
| #define NEON_3R_VRHADD 2 |
| #define NEON_3R_LOGIC 3 /* VAND,VBIC,VORR,VMOV,VORN,VEOR,VBIF,VBIT,VBSL */ |
| #define NEON_3R_VHSUB 4 |
| #define NEON_3R_VQSUB 5 |
| #define NEON_3R_VCGT 6 |
| #define NEON_3R_VCGE 7 |
| #define NEON_3R_VSHL 8 |
| #define NEON_3R_VQSHL 9 |
| #define NEON_3R_VRSHL 10 |
| #define NEON_3R_VQRSHL 11 |
| #define NEON_3R_VMAX 12 |
| #define NEON_3R_VMIN 13 |
| #define NEON_3R_VABD 14 |
| #define NEON_3R_VABA 15 |
| #define NEON_3R_VADD_VSUB 16 |
| #define NEON_3R_VTST_VCEQ 17 |
| #define NEON_3R_VML 18 /* VMLA, VMLS */ |
| #define NEON_3R_VMUL 19 |
| #define NEON_3R_VPMAX 20 |
| #define NEON_3R_VPMIN 21 |
| #define NEON_3R_VQDMULH_VQRDMULH 22 |
| #define NEON_3R_VPADD_VQRDMLAH 23 |
| #define NEON_3R_SHA 24 /* SHA1C,SHA1P,SHA1M,SHA1SU0,SHA256H{2},SHA256SU1 */ |
| #define NEON_3R_VFM_VQRDMLSH 25 /* VFMA, VFMS, VQRDMLSH */ |
| #define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */ |
| #define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */ |
| #define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */ |
| #define NEON_3R_FLOAT_ACMP 29 /* float VACGE, VACGT, VACLE, VACLT */ |
| #define NEON_3R_FLOAT_MINMAX 30 /* float VMIN, VMAX */ |
| #define NEON_3R_FLOAT_MISC 31 /* float VRECPS, VRSQRTS, VMAXNM/MINNM */ |
| |
| static const uint8_t neon_3r_sizes[] = { |
| [NEON_3R_VHADD] = 0x7, |
| [NEON_3R_VQADD] = 0xf, |
| [NEON_3R_VRHADD] = 0x7, |
| [NEON_3R_LOGIC] = 0xf, /* size field encodes op type */ |
| [NEON_3R_VHSUB] = 0x7, |
| [NEON_3R_VQSUB] = 0xf, |
| [NEON_3R_VCGT] = 0x7, |
| [NEON_3R_VCGE] = 0x7, |
| [NEON_3R_VSHL] = 0xf, |
| [NEON_3R_VQSHL] = 0xf, |
| [NEON_3R_VRSHL] = 0xf, |
| [NEON_3R_VQRSHL] = 0xf, |
| [NEON_3R_VMAX] = 0x7, |
| [NEON_3R_VMIN] = 0x7, |
| [NEON_3R_VABD] = 0x7, |
| [NEON_3R_VABA] = 0x7, |
| [NEON_3R_VADD_VSUB] = 0xf, |
| [NEON_3R_VTST_VCEQ] = 0x7, |
| [NEON_3R_VML] = 0x7, |
| [NEON_3R_VMUL] = 0x7, |
| [NEON_3R_VPMAX] = 0x7, |
| [NEON_3R_VPMIN] = 0x7, |
| [NEON_3R_VQDMULH_VQRDMULH] = 0x6, |
| [NEON_3R_VPADD_VQRDMLAH] = 0x7, |
| [NEON_3R_SHA] = 0xf, /* size field encodes op type */ |
| [NEON_3R_VFM_VQRDMLSH] = 0x7, /* For VFM, size bit 1 encodes op */ |
| [NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */ |
| [NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */ |
| [NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */ |
| [NEON_3R_FLOAT_ACMP] = 0x5, /* size bit 1 encodes op */ |
| [NEON_3R_FLOAT_MINMAX] = 0x5, /* size bit 1 encodes op */ |
| [NEON_3R_FLOAT_MISC] = 0x5, /* size bit 1 encodes op */ |
| }; |
| |
| /* Symbolic constants for op fields for Neon 2-register miscellaneous. |
| * The values correspond to bits [17:16,10:7]; see the ARM ARM DDI0406B |
| * table A7-13. |
| */ |
| #define NEON_2RM_VREV64 0 |
| #define NEON_2RM_VREV32 1 |
| #define NEON_2RM_VREV16 2 |
| #define NEON_2RM_VPADDL 4 |
| #define NEON_2RM_VPADDL_U 5 |
| #define NEON_2RM_AESE 6 /* Includes AESD */ |
| #define NEON_2RM_AESMC 7 /* Includes AESIMC */ |
| #define NEON_2RM_VCLS 8 |
| #define NEON_2RM_VCLZ 9 |
| #define NEON_2RM_VCNT 10 |
| #define NEON_2RM_VMVN 11 |
| #define NEON_2RM_VPADAL 12 |
| #define NEON_2RM_VPADAL_U 13 |
| #define NEON_2RM_VQABS 14 |
| #define NEON_2RM_VQNEG 15 |
| #define NEON_2RM_VCGT0 16 |
| #define NEON_2RM_VCGE0 17 |
| #define NEON_2RM_VCEQ0 18 |
| #define NEON_2RM_VCLE0 19 |
| #define NEON_2RM_VCLT0 20 |
| #define NEON_2RM_SHA1H 21 |
| #define NEON_2RM_VABS 22 |
| #define NEON_2RM_VNEG 23 |
| #define NEON_2RM_VCGT0_F 24 |
| #define NEON_2RM_VCGE0_F 25 |
| #define NEON_2RM_VCEQ0_F 26 |
| #define NEON_2RM_VCLE0_F 27 |
| #define NEON_2RM_VCLT0_F 28 |
| #define NEON_2RM_VABS_F 30 |
| #define NEON_2RM_VNEG_F 31 |
| #define NEON_2RM_VSWP 32 |
| #define NEON_2RM_VTRN 33 |
| #define NEON_2RM_VUZP 34 |
| #define NEON_2RM_VZIP 35 |
| #define NEON_2RM_VMOVN 36 /* Includes VQMOVN, VQMOVUN */ |
| #define NEON_2RM_VQMOVN 37 /* Includes VQMOVUN */ |
| #define NEON_2RM_VSHLL 38 |
| #define NEON_2RM_SHA1SU1 39 /* Includes SHA256SU0 */ |
| #define NEON_2RM_VRINTN 40 |
| #define NEON_2RM_VRINTX 41 |
| #define NEON_2RM_VRINTA 42 |
| #define NEON_2RM_VRINTZ 43 |
| #define NEON_2RM_VCVT_F16_F32 44 |
| #define NEON_2RM_VRINTM 45 |
| #define NEON_2RM_VCVT_F32_F16 46 |
| #define NEON_2RM_VRINTP 47 |
| #define NEON_2RM_VCVTAU 48 |
| #define NEON_2RM_VCVTAS 49 |
| #define NEON_2RM_VCVTNU 50 |
| #define NEON_2RM_VCVTNS 51 |
| #define NEON_2RM_VCVTPU 52 |
| #define NEON_2RM_VCVTPS 53 |
| #define NEON_2RM_VCVTMU 54 |
| #define NEON_2RM_VCVTMS 55 |
| #define NEON_2RM_VRECPE 56 |
| #define NEON_2RM_VRSQRTE 57 |
| #define NEON_2RM_VRECPE_F 58 |
| #define NEON_2RM_VRSQRTE_F 59 |
| #define NEON_2RM_VCVT_FS 60 |
| #define NEON_2RM_VCVT_FU 61 |
| #define NEON_2RM_VCVT_SF 62 |
| #define NEON_2RM_VCVT_UF 63 |
| |
| static bool neon_2rm_is_v8_op(int op) |
| { |
| /* Return true if this neon 2reg-misc op is ARMv8 and up */ |
| switch (op) { |
| case NEON_2RM_VRINTN: |
| case NEON_2RM_VRINTA: |
| case NEON_2RM_VRINTM: |
| case NEON_2RM_VRINTP: |
| case NEON_2RM_VRINTZ: |
| case NEON_2RM_VRINTX: |
| case NEON_2RM_VCVTAU: |
| case NEON_2RM_VCVTAS: |
| case NEON_2RM_VCVTNU: |
| case NEON_2RM_VCVTNS: |
| case NEON_2RM_VCVTPU: |
| case NEON_2RM_VCVTPS: |
| case NEON_2RM_VCVTMU: |
| case NEON_2RM_VCVTMS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Each entry in this array has bit n set if the insn allows |
| * size value n (otherwise it will UNDEF). Since unallocated |
| * op values will have no bits set they always UNDEF. |
| */ |
| static const uint8_t neon_2rm_sizes[] = { |
| [NEON_2RM_VREV64] = 0x7, |
| [NEON_2RM_VREV32] = 0x3, |
| [NEON_2RM_VREV16] = 0x1, |
| [NEON_2RM_VPADDL] = 0x7, |
| [NEON_2RM_VPADDL_U] = 0x7, |
| [NEON_2RM_AESE] = 0x1, |
| [NEON_2RM_AESMC] = 0x1, |
| [NEON_2RM_VCLS] = 0x7, |
| [NEON_2RM_VCLZ] = 0x7, |
| [NEON_2RM_VCNT] = 0x1, |
| [NEON_2RM_VMVN] = 0x1, |
| [NEON_2RM_VPADAL] = 0x7, |
| [NEON_2RM_VPADAL_U] = 0x7, |
| [NEON_2RM_VQABS] = 0x7, |
| [NEON_2RM_VQNEG] = 0x7, |
| [NEON_2RM_VCGT0] = 0x7, |
| [NEON_2RM_VCGE0] = 0x7, |
| [NEON_2RM_VCEQ0] = 0x7, |
| [NEON_2RM_VCLE0] = 0x7, |
| [NEON_2RM_VCLT0] = 0x7, |
| [NEON_2RM_SHA1H] = 0x4, |
| [NEON_2RM_VABS] = 0x7, |
| [NEON_2RM_VNEG] = 0x7, |
| [NEON_2RM_VCGT0_F] = 0x4, |
| [NEON_2RM_VCGE0_F] = 0x4, |
| [NEON_2RM_VCEQ0_F] = 0x4, |
| [NEON_2RM_VCLE0_F] = 0x4, |
| [NEON_2RM_VCLT0_F] = 0x4, |
| [NEON_2RM_VABS_F] = 0x4, |
| [NEON_2RM_VNEG_F] = 0x4, |
| [NEON_2RM_VSWP] = 0x1, |
| [NEON_2RM_VTRN] = 0x7, |
| [NEON_2RM_VUZP] = 0x7, |
| [NEON_2RM_VZIP] = 0x7, |
| [NEON_2RM_VMOVN] = 0x7, |
| [NEON_2RM_VQMOVN] = 0x7, |
| [NEON_2RM_VSHLL] = 0x7, |
| [NEON_2RM_SHA1SU1] = 0x4, |
| [NEON_2RM_VRINTN] = 0x4, |
| [NEON_2RM_VRINTX] = 0x4, |
| [NEON_2RM_VRINTA] = 0x4, |
| [NEON_2RM_VRINTZ] = 0x4, |
| [NEON_2RM_VCVT_F16_F32] = 0x2, |
| [NEON_2RM_VRINTM] = 0x4, |
| [NEON_2RM_VCVT_F32_F16] = 0x2, |
| [NEON_2RM_VRINTP] = 0x4, |
| [NEON_2RM_VCVTAU] = 0x4, |
| [NEON_2RM_VCVTAS] = 0x4, |
| [NEON_2RM_VCVTNU] = 0x4, |
| [NEON_2RM_VCVTNS] = 0x4, |
| [NEON_2RM_VCVTPU] = 0x4, |
| [NEON_2RM_VCVTPS] = 0x4, |
| [NEON_2RM_VCVTMU] = 0x4, |
| [NEON_2RM_VCVTMS] = 0x4, |
| [NEON_2RM_VRECPE] = 0x4, |
| [NEON_2RM_VRSQRTE] = 0x4, |
| [NEON_2RM_VRECPE_F] = 0x4, |
| [NEON_2RM_VRSQRTE_F] = 0x4, |
| [NEON_2RM_VCVT_FS] = 0x4, |
| [NEON_2RM_VCVT_FU] = 0x4, |
| [NEON_2RM_VCVT_SF] = 0x4, |
| [NEON_2RM_VCVT_UF] = 0x4, |
| }; |
| |
| |
| /* Expand v8.1 simd helper. */ |
| static int do_v81_helper(DisasContext *s, gen_helper_gvec_3_ptr *fn, |
| int q, int rd, int rn, int rm) |
| { |
| if (dc_isar_feature(aa32_rdm, s)) { |
| int opr_sz = (1 + q) * 8; |
| tcg_gen_gvec_3_ptr(vfp_reg_offset(1, rd), |
| vfp_reg_offset(1, rn), |
| vfp_reg_offset(1, rm), cpu_env, |
| opr_sz, opr_sz, 0, fn); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void gen_ceq0_i32(TCGv_i32 d, TCGv_i32 a) |
| { |
| tcg_gen_setcondi_i32(TCG_COND_EQ, d, a, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_ceq0_i64(TCGv_i64 d, TCGv_i64 a) |
| { |
| tcg_gen_setcondi_i64(TCG_COND_EQ, d, a, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_ceq0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) |
| { |
| TCGv_vec zero = tcg_const_zeros_vec_matching(d); |
| tcg_gen_cmp_vec(TCG_COND_EQ, vece, d, a, zero); |
| tcg_temp_free_vec(zero); |
| } |
| |
| static const TCGOpcode vecop_list_cmp[] = { |
| INDEX_op_cmp_vec, 0 |
| }; |
| |
| const GVecGen2 ceq0_op[4] = { |
| { .fno = gen_helper_gvec_ceq0_b, |
| .fniv = gen_ceq0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_8 }, |
| { .fno = gen_helper_gvec_ceq0_h, |
| .fniv = gen_ceq0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_16 }, |
| { .fni4 = gen_ceq0_i32, |
| .fniv = gen_ceq0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_32 }, |
| { .fni8 = gen_ceq0_i64, |
| .fniv = gen_ceq0_vec, |
| .opt_opc = vecop_list_cmp, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_cle0_i32(TCGv_i32 d, TCGv_i32 a) |
| { |
| tcg_gen_setcondi_i32(TCG_COND_LE, d, a, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_cle0_i64(TCGv_i64 d, TCGv_i64 a) |
| { |
| tcg_gen_setcondi_i64(TCG_COND_LE, d, a, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_cle0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) |
| { |
| TCGv_vec zero = tcg_const_zeros_vec_matching(d); |
| tcg_gen_cmp_vec(TCG_COND_LE, vece, d, a, zero); |
| tcg_temp_free_vec(zero); |
| } |
| |
| const GVecGen2 cle0_op[4] = { |
| { .fno = gen_helper_gvec_cle0_b, |
| .fniv = gen_cle0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_8 }, |
| { .fno = gen_helper_gvec_cle0_h, |
| .fniv = gen_cle0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_16 }, |
| { .fni4 = gen_cle0_i32, |
| .fniv = gen_cle0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_32 }, |
| { .fni8 = gen_cle0_i64, |
| .fniv = gen_cle0_vec, |
| .opt_opc = vecop_list_cmp, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_cge0_i32(TCGv_i32 d, TCGv_i32 a) |
| { |
| tcg_gen_setcondi_i32(TCG_COND_GE, d, a, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_cge0_i64(TCGv_i64 d, TCGv_i64 a) |
| { |
| tcg_gen_setcondi_i64(TCG_COND_GE, d, a, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_cge0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) |
| { |
| TCGv_vec zero = tcg_const_zeros_vec_matching(d); |
| tcg_gen_cmp_vec(TCG_COND_GE, vece, d, a, zero); |
| tcg_temp_free_vec(zero); |
| } |
| |
| const GVecGen2 cge0_op[4] = { |
| { .fno = gen_helper_gvec_cge0_b, |
| .fniv = gen_cge0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_8 }, |
| { .fno = gen_helper_gvec_cge0_h, |
| .fniv = gen_cge0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_16 }, |
| { .fni4 = gen_cge0_i32, |
| .fniv = gen_cge0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_32 }, |
| { .fni8 = gen_cge0_i64, |
| .fniv = gen_cge0_vec, |
| .opt_opc = vecop_list_cmp, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_clt0_i32(TCGv_i32 d, TCGv_i32 a) |
| { |
| tcg_gen_setcondi_i32(TCG_COND_LT, d, a, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_clt0_i64(TCGv_i64 d, TCGv_i64 a) |
| { |
| tcg_gen_setcondi_i64(TCG_COND_LT, d, a, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_clt0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) |
| { |
| TCGv_vec zero = tcg_const_zeros_vec_matching(d); |
| tcg_gen_cmp_vec(TCG_COND_LT, vece, d, a, zero); |
| tcg_temp_free_vec(zero); |
| } |
| |
| const GVecGen2 clt0_op[4] = { |
| { .fno = gen_helper_gvec_clt0_b, |
| .fniv = gen_clt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_8 }, |
| { .fno = gen_helper_gvec_clt0_h, |
| .fniv = gen_clt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_16 }, |
| { .fni4 = gen_clt0_i32, |
| .fniv = gen_clt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_32 }, |
| { .fni8 = gen_clt0_i64, |
| .fniv = gen_clt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_cgt0_i32(TCGv_i32 d, TCGv_i32 a) |
| { |
| tcg_gen_setcondi_i32(TCG_COND_GT, d, a, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_cgt0_i64(TCGv_i64 d, TCGv_i64 a) |
| { |
| tcg_gen_setcondi_i64(TCG_COND_GT, d, a, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_cgt0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) |
| { |
| TCGv_vec zero = tcg_const_zeros_vec_matching(d); |
| tcg_gen_cmp_vec(TCG_COND_GT, vece, d, a, zero); |
| tcg_temp_free_vec(zero); |
| } |
| |
| const GVecGen2 cgt0_op[4] = { |
| { .fno = gen_helper_gvec_cgt0_b, |
| .fniv = gen_cgt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_8 }, |
| { .fno = gen_helper_gvec_cgt0_h, |
| .fniv = gen_cgt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_16 }, |
| { .fni4 = gen_cgt0_i32, |
| .fniv = gen_cgt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .vece = MO_32 }, |
| { .fni8 = gen_cgt0_i64, |
| .fniv = gen_cgt0_vec, |
| .opt_opc = vecop_list_cmp, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_sari_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_sari_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_sari_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static const TCGOpcode vecop_list_ssra[] = { |
| INDEX_op_sari_vec, INDEX_op_add_vec, 0 |
| }; |
| |
| const GVecGen2i ssra_op[4] = { |
| { .fni8 = gen_ssra8_i64, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_ssra, |
| .vece = MO_8 }, |
| { .fni8 = gen_ssra16_i64, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_ssra, |
| .vece = MO_16 }, |
| { .fni4 = gen_ssra32_i32, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_ssra, |
| .vece = MO_32 }, |
| { .fni8 = gen_ssra64_i64, |
| .fniv = gen_ssra_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list_ssra, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_shri_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static const TCGOpcode vecop_list_usra[] = { |
| INDEX_op_shri_vec, INDEX_op_add_vec, 0 |
| }; |
| |
| const GVecGen2i usra_op[4] = { |
| { .fni8 = gen_usra8_i64, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_usra, |
| .vece = MO_8, }, |
| { .fni8 = gen_usra16_i64, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_usra, |
| .vece = MO_16, }, |
| { .fni4 = gen_usra32_i32, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_usra, |
| .vece = MO_32, }, |
| { .fni8 = gen_usra64_i64, |
| .fniv = gen_usra_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list_usra, |
| .vece = MO_64, }, |
| }; |
| |
| static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); |
| } |
| |
| static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); |
| } |
| |
| static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| if (sh == 0) { |
| tcg_gen_mov_vec(d, a); |
| } else { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh)); |
| tcg_gen_shri_vec(vece, t, a, sh); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| |
| tcg_temp_free_vec(t); |
| tcg_temp_free_vec(m); |
| } |
| } |
| |
| static const TCGOpcode vecop_list_sri[] = { INDEX_op_shri_vec, 0 }; |
| |
| const GVecGen2i sri_op[4] = { |
| { .fni8 = gen_shr8_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sri, |
| .vece = MO_8 }, |
| { .fni8 = gen_shr16_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sri, |
| .vece = MO_16 }, |
| { .fni4 = gen_shr32_ins_i32, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sri, |
| .vece = MO_32 }, |
| { .fni8 = gen_shr64_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list_sri, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); |
| } |
| |
| static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); |
| } |
| |
| static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| if (sh == 0) { |
| tcg_gen_mov_vec(d, a); |
| } else { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh)); |
| tcg_gen_shli_vec(vece, t, a, sh); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| |
| tcg_temp_free_vec(t); |
| tcg_temp_free_vec(m); |
| } |
| } |
| |
| static const TCGOpcode vecop_list_sli[] = { INDEX_op_shli_vec, 0 }; |
| |
| const GVecGen2i sli_op[4] = { |
| { .fni8 = gen_shl8_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sli, |
| .vece = MO_8 }, |
| { .fni8 = gen_shl16_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sli, |
| .vece = MO_16 }, |
| { .fni4 = gen_shl32_ins_i32, |
| .fniv = gen_shl_ins_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_sli, |
| .vece = MO_32 }, |
| { .fni8 = gen_shl64_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list_sli, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_add_u8(d, d, a); |
| } |
| |
| static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_sub_u8(d, d, a); |
| } |
| |
| static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_add_u16(d, d, a); |
| } |
| |
| static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_sub_u16(d, d, a); |
| } |
| |
| static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_sub_i32(d, d, a); |
| } |
| |
| static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_sub_i64(d, d, a); |
| } |
| |
| static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_sub_vec(vece, d, d, a); |
| } |
| |
| /* Note that while NEON does not support VMLA and VMLS as 64-bit ops, |
| * these tables are shared with AArch64 which does support them. |
| */ |
| |
| static const TCGOpcode vecop_list_mla[] = { |
| INDEX_op_mul_vec, INDEX_op_add_vec, 0 |
| }; |
| |
| static const TCGOpcode vecop_list_mls[] = { |
| INDEX_op_mul_vec, INDEX_op_sub_vec, 0 |
| }; |
| |
| const GVecGen3 mla_op[4] = { |
| { .fni4 = gen_mla8_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mla, |
| .vece = MO_8 }, |
| { .fni4 = gen_mla16_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mla, |
| .vece = MO_16 }, |
| { .fni4 = gen_mla32_i32, |
| .fniv = gen_mla_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mla, |
| .vece = MO_32 }, |
| { .fni8 = gen_mla64_i64, |
| .fniv = gen_mla_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list_mla, |
| .vece = MO_64 }, |
| }; |
| |
| const GVecGen3 mls_op[4] = { |
| { .fni4 = gen_mls8_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mls, |
| .vece = MO_8 }, |
| { .fni4 = gen_mls16_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mls, |
| .vece = MO_16 }, |
| { .fni4 = gen_mls32_i32, |
| .fniv = gen_mls_vec, |
| .load_dest = true, |
| .opt_opc = vecop_list_mls, |
| .vece = MO_32 }, |
| { .fni8 = gen_mls64_i64, |
| .fniv = gen_mls_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opt_opc = vecop_list_mls, |
| .vece = MO_64 }, |
| }; |
| |
| /* CMTST : test is "if (X & Y != 0)". */ |
| static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_and_i32(d, a, b); |
| tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_and_i64(d, a, b); |
| tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_and_vec(vece, d, a, b); |
| tcg_gen_dupi_vec(vece, a, 0); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); |
| } |
| |
| static const TCGOpcode vecop_list_cmtst[] = { INDEX_op_cmp_vec, 0 }; |
| |
| const GVecGen3 cmtst_op[4] = { |
| { .fni4 = gen_helper_neon_tst_u8, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list_cmtst, |
| .vece = MO_8 }, |
| { .fni4 = gen_helper_neon_tst_u16, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list_cmtst, |
| .vece = MO_16 }, |
| { .fni4 = gen_cmtst_i32, |
| .fniv = gen_cmtst_vec, |
| .opt_opc = vecop_list_cmtst, |
| .vece = MO_32 }, |
| { .fni8 = gen_cmtst_i64, |
| .fniv = gen_cmtst_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .opt_opc = vecop_list_cmtst, |
| .vece = MO_64 }, |
| }; |
| |
| void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) |
| { |
| TCGv_i32 lval = tcg_temp_new_i32(); |
| TCGv_i32 rval = tcg_temp_new_i32(); |
| TCGv_i32 lsh = tcg_temp_new_i32(); |
| TCGv_i32 rsh = tcg_temp_new_i32(); |
| TCGv_i32 zero = tcg_const_i32(0); |
| TCGv_i32 max = tcg_const_i32(32); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i32(lsh, shift); |
| tcg_gen_neg_i32(rsh, lsh); |
| tcg_gen_shl_i32(lval, src, lsh); |
| tcg_gen_shr_i32(rval, src, rsh); |
| tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); |
| tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); |
| |
| tcg_temp_free_i32(lval); |
| tcg_temp_free_i32(rval); |
| tcg_temp_free_i32(lsh); |
| tcg_temp_free_i32(rsh); |
| tcg_temp_free_i32(zero); |
| tcg_temp_free_i32(max); |
| } |
| |
| void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) |
| { |
| TCGv_i64 lval = tcg_temp_new_i64(); |
| TCGv_i64 rval = tcg_temp_new_i64(); |
| TCGv_i64 lsh = tcg_temp_new_i64(); |
| TCGv_i64 rsh = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_const_i64(0); |
| TCGv_i64 max = tcg_const_i64(64); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i64(lsh, shift); |
| tcg_gen_neg_i64(rsh, lsh); |
| tcg_gen_shl_i64(lval, src, lsh); |
| tcg_gen_shr_i64(rval, src, rsh); |
| tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); |
| tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); |
| |
| tcg_temp_free_i64(lval); |
| tcg_temp_free_i64(rval); |
| tcg_temp_free_i64(lsh); |
| tcg_temp_free_i64(rsh); |
| tcg_temp_free_i64(zero); |
| tcg_temp_free_i64(max); |
| } |
| |
| static void gen_ushl_vec(unsigned vece, TCGv_vec dst, |
| TCGv_vec src, TCGv_vec shift) |
| { |
| TCGv_vec lval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec lsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec msk, max; |
| |
| tcg_gen_neg_vec(vece, rsh, shift); |
| if (vece == MO_8) { |
| tcg_gen_mov_vec(lsh, shift); |
| } else { |
| msk = tcg_temp_new_vec_matching(dst); |
| tcg_gen_dupi_vec(vece, msk, 0xff); |
| tcg_gen_and_vec(vece, lsh, shift, msk); |
| tcg_gen_and_vec(vece, rsh, rsh, msk); |
| tcg_temp_free_vec(msk); |
| } |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_shlv_vec(vece, lval, src, lsh); |
| tcg_gen_shrv_vec(vece, rval, src, rsh); |
| |
| max = tcg_temp_new_vec_matching(dst); |
| tcg_gen_dupi_vec(vece, max, 8 << vece); |
| |
| /* |
| * The choice of LT (signed) and GEU (unsigned) are biased toward |
| * the instructions of the x86_64 host. For MO_8, the whole byte |
| * is significant so we must use an unsigned compare; otherwise we |
| * have already masked to a byte and so a signed compare works. |
| * Other tcg hosts have a full set of comparisons and do not care. |
| */ |
| if (vece == MO_8) { |
| tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max); |
| tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max); |
| tcg_gen_andc_vec(vece, lval, lval, lsh); |
| tcg_gen_andc_vec(vece, rval, rval, rsh); |
| } else { |
| tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max); |
| tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max); |
| tcg_gen_and_vec(vece, lval, lval, lsh); |
| tcg_gen_and_vec(vece, rval, rval, rsh); |
| } |
| tcg_gen_or_vec(vece, dst, lval, rval); |
| |
| tcg_temp_free_vec(max); |
| tcg_temp_free_vec(lval); |
| tcg_temp_free_vec(rval); |
| tcg_temp_free_vec(lsh); |
| tcg_temp_free_vec(rsh); |
| } |
| |
| static const TCGOpcode ushl_list[] = { |
| INDEX_op_neg_vec, INDEX_op_shlv_vec, |
| INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0 |
| }; |
| |
| const GVecGen3 ushl_op[4] = { |
| { .fniv = gen_ushl_vec, |
| .fno = gen_helper_gvec_ushl_b, |
| .opt_opc = ushl_list, |
| .vece = MO_8 }, |
| { .fniv = gen_ushl_vec, |
| .fno = gen_helper_gvec_ushl_h, |
| .opt_opc = ushl_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_ushl_i32, |
| .fniv = gen_ushl_vec, |
| .opt_opc = ushl_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_ushl_i64, |
| .fniv = gen_ushl_vec, |
| .opt_opc = ushl_list, |
| .vece = MO_64 }, |
| }; |
| |
| void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) |
| { |
| TCGv_i32 lval = tcg_temp_new_i32(); |
| TCGv_i32 rval = tcg_temp_new_i32(); |
| TCGv_i32 lsh = tcg_temp_new_i32(); |
| TCGv_i32 rsh = tcg_temp_new_i32(); |
| TCGv_i32 zero = tcg_const_i32(0); |
| TCGv_i32 max = tcg_const_i32(31); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i32(lsh, shift); |
| tcg_gen_neg_i32(rsh, lsh); |
| tcg_gen_shl_i32(lval, src, lsh); |
| tcg_gen_umin_i32(rsh, rsh, max); |
| tcg_gen_sar_i32(rval, src, rsh); |
| tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); |
| tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); |
| |
| tcg_temp_free_i32(lval); |
| tcg_temp_free_i32(rval); |
| tcg_temp_free_i32(lsh); |
| tcg_temp_free_i32(rsh); |
| tcg_temp_free_i32(zero); |
| tcg_temp_free_i32(max); |
| } |
| |
| void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) |
| { |
| TCGv_i64 lval = tcg_temp_new_i64(); |
| TCGv_i64 rval = tcg_temp_new_i64(); |
| TCGv_i64 lsh = tcg_temp_new_i64(); |
| TCGv_i64 rsh = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_const_i64(0); |
| TCGv_i64 max = tcg_const_i64(63); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_ext8s_i64(lsh, shift); |
| tcg_gen_neg_i64(rsh, lsh); |
| tcg_gen_shl_i64(lval, src, lsh); |
| tcg_gen_umin_i64(rsh, rsh, max); |
| tcg_gen_sar_i64(rval, src, rsh); |
| tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); |
| tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); |
| |
| tcg_temp_free_i64(lval); |
| tcg_temp_free_i64(rval); |
| tcg_temp_free_i64(lsh); |
| tcg_temp_free_i64(rsh); |
| tcg_temp_free_i64(zero); |
| tcg_temp_free_i64(max); |
| } |
| |
| static void gen_sshl_vec(unsigned vece, TCGv_vec dst, |
| TCGv_vec src, TCGv_vec shift) |
| { |
| TCGv_vec lval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rval = tcg_temp_new_vec_matching(dst); |
| TCGv_vec lsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec rsh = tcg_temp_new_vec_matching(dst); |
| TCGv_vec tmp = tcg_temp_new_vec_matching(dst); |
| |
| /* |
| * Rely on the TCG guarantee that out of range shifts produce |
| * unspecified results, not undefined behaviour (i.e. no trap). |
| * Discard out-of-range results after the fact. |
| */ |
| tcg_gen_neg_vec(vece, rsh, shift); |
| if (vece == MO_8) { |
| tcg_gen_mov_vec(lsh, shift); |
| } else { |
| tcg_gen_dupi_vec(vece, tmp, 0xff); |
| tcg_gen_and_vec(vece, lsh, shift, tmp); |
| tcg_gen_and_vec(vece, rsh, rsh, tmp); |
| } |
| |
| /* Bound rsh so out of bound right shift gets -1. */ |
| tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1); |
| tcg_gen_umin_vec(vece, rsh, rsh, tmp); |
| tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp); |
| |
| tcg_gen_shlv_vec(vece, lval, src, lsh); |
| tcg_gen_sarv_vec(vece, rval, src, rsh); |
| |
| /* Select in-bound left shift. */ |
| tcg_gen_andc_vec(vece, lval, lval, tmp); |
| |
| /* Select between left and right shift. */ |
| if (vece == MO_8) { |
| tcg_gen_dupi_vec(vece, tmp, 0); |
| tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval); |
| } else { |
| tcg_gen_dupi_vec(vece, tmp, 0x80); |
| tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval); |
| } |
| |
| tcg_temp_free_vec(lval); |
| tcg_temp_free_vec(rval); |
| tcg_temp_free_vec(lsh); |
| tcg_temp_free_vec(rsh); |
| tcg_temp_free_vec(tmp); |
| } |
| |
| static const TCGOpcode sshl_list[] = { |
| INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, |
| INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0 |
| }; |
| |
| const GVecGen3 sshl_op[4] = { |
| { .fniv = gen_sshl_vec, |
| .fno = gen_helper_gvec_sshl_b, |
| .opt_opc = sshl_list, |
| .vece = MO_8 }, |
| { .fniv = gen_sshl_vec, |
| .fno = gen_helper_gvec_sshl_h, |
| .opt_opc = sshl_list, |
| .vece = MO_16 }, |
| { .fni4 = gen_sshl_i32, |
| .fniv = gen_sshl_vec, |
| .opt_opc = sshl_list, |
| .vece = MO_32 }, |
| { .fni8 = gen_sshl_i64, |
| .fniv = gen_sshl_vec, |
| .opt_opc = sshl_list, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_add_vec(vece, x, a, b); |
| tcg_gen_usadd_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| tcg_temp_free_vec(x); |
| } |
| |
| static const TCGOpcode vecop_list_uqadd[] = { |
| INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 |
| }; |
| |
| const GVecGen4 uqadd_op[4] = { |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_b, |
| .write_aofs = true, |
| .opt_opc = vecop_list_uqadd, |
| .vece = MO_8 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_h, |
| .write_aofs = true, |
| .opt_opc = vecop_list_uqadd, |
| .vece = MO_16 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_s, |
| .write_aofs = true, |
| .opt_opc = vecop_list_uqadd, |
| .vece = MO_32 }, |
| { .fniv = gen_uqadd_vec, |
| .fno = gen_helper_gvec_uqadd_d, |
| .write_aofs = true, |
| .opt_opc = vecop_list_uqadd, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_add_vec(vece, x, a, b); |
| tcg_gen_ssadd_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| tcg_temp_free_vec(x); |
| } |
| |
| static const TCGOpcode vecop_list_sqadd[] = { |
| INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 |
| }; |
| |
| const GVecGen4 sqadd_op[4] = { |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_b, |
| .opt_opc = vecop_list_sqadd, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_h, |
| .opt_opc = vecop_list_sqadd, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_s, |
| .opt_opc = vecop_list_sqadd, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_sqadd_vec, |
| .fno = gen_helper_gvec_sqadd_d, |
| .opt_opc = vecop_list_sqadd, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_sub_vec(vece, x, a, b); |
| tcg_gen_ussub_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| tcg_temp_free_vec(x); |
| } |
| |
| static const TCGOpcode vecop_list_uqsub[] = { |
| INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 |
| }; |
| |
| const GVecGen4 uqsub_op[4] = { |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_b, |
| .opt_opc = vecop_list_uqsub, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_h, |
| .opt_opc = vecop_list_uqsub, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_s, |
| .opt_opc = vecop_list_uqsub, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_uqsub_vec, |
| .fno = gen_helper_gvec_uqsub_d, |
| .opt_opc = vecop_list_uqsub, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| |
| static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec x = tcg_temp_new_vec_matching(t); |
| tcg_gen_sub_vec(vece, x, a, b); |
| tcg_gen_sssub_vec(vece, t, a, b); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); |
| tcg_gen_or_vec(vece, sat, sat, x); |
| tcg_temp_free_vec(x); |
| } |
| |
| static const TCGOpcode vecop_list_sqsub[] = { |
| INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 |
| }; |
| |
| const GVecGen4 sqsub_op[4] = { |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_b, |
| .opt_opc = vecop_list_sqsub, |
| .write_aofs = true, |
| .vece = MO_8 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_h, |
| .opt_opc = vecop_list_sqsub, |
| .write_aofs = true, |
| .vece = MO_16 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_s, |
| .opt_opc = vecop_list_sqsub, |
| .write_aofs = true, |
| .vece = MO_32 }, |
| { .fniv = gen_sqsub_vec, |
| .fno = gen_helper_gvec_sqsub_d, |
| .opt_opc = vecop_list_sqsub, |
| .write_aofs = true, |
| .vece = MO_64 }, |
| }; |
| |
| /* Translate a NEON data processing instruction. Return nonzero if the |
| instruction is invalid. |
| We process data in a mixture of 32-bit and 64-bit chunks. |
| Mostly we use 32-bit chunks so we can use normal scalar instructions. */ |
| |
| static int disas_neon_data_insn(DisasContext *s, uint32_t insn) |
| { |
| int op; |
| int q; |
| int rd, rn, rm, rd_ofs, rn_ofs, rm_ofs; |
| int size; |
| int shift; |
| int pass; |
| int count; |
| int pairwise; |
| int u; |
| int vec_size; |
| uint32_t imm; |
| TCGv_i32 tmp, tmp2, tmp3, tmp4, tmp5; |
| TCGv_ptr ptr1, ptr2, ptr3; |
| TCGv_i64 tmp64; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { |
| return 1; |
| } |
| |
| /* FIXME: this access check should not take precedence over UNDEF |
| * for invalid encodings; we will generate incorrect syndrome information |
| * for attempts to execute invalid vfp/neon encodings with FP disabled. |
| */ |
| if (s->fp_excp_el) { |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, |
| syn_simd_access_trap(1, 0xe, false), s->fp_excp_el); |
| return 0; |
| } |
| |
| if (!s->vfp_enabled) |
| return 1; |
| q = (insn & (1 << 6)) != 0; |
| u = (insn >> 24) & 1; |
| VFP_DREG_D(rd, insn); |
| VFP_DREG_N(rn, insn); |
| VFP_DREG_M(rm, insn); |
| size = (insn >> 20) & 3; |
| vec_size = q ? 16 : 8; |
| rd_ofs = neon_reg_offset(rd, 0); |
| rn_ofs = neon_reg_offset(rn, 0); |
| rm_ofs = neon_reg_offset(rm, 0); |
| |
| if ((insn & (1 << 23)) == 0) { |
| /* Three register same length. */ |
| op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1); |
| /* Catch invalid op and bad size combinations: UNDEF */ |
| if ((neon_3r_sizes[op] & (1 << size)) == 0) { |
| return 1; |
| } |
| /* All insns of this form UNDEF for either this condition or the |
| * superset of cases "Q==1"; we catch the latter later. |
| */ |
| if (q && ((rd | rn | rm) & 1)) { |
| return 1; |
| } |
| switch (op) { |
| case NEON_3R_SHA: |
| /* The SHA-1/SHA-256 3-register instructions require special |
| * treatment here, as their size field is overloaded as an |
| * op type selector, and they all consume their input in a |
| * single pass. |
| */ |
| if (!q) { |
| return 1; |
| } |
| if (!u) { /* SHA-1 */ |
| if (!dc_isar_feature(aa32_sha1, s)) { |
| return 1; |
| } |
| ptr1 = vfp_reg_ptr(true, rd); |
| ptr2 = vfp_reg_ptr(true, rn); |
| ptr3 = vfp_reg_ptr(true, rm); |
| tmp4 = tcg_const_i32(size); |
| gen_helper_crypto_sha1_3reg(ptr1, ptr2, ptr3, tmp4); |
| tcg_temp_free_i32(tmp4); |
| } else { /* SHA-256 */ |
| if (!dc_isar_feature(aa32_sha2, s) || size == 3) { |
| return 1; |
| } |
| ptr1 = vfp_reg_ptr(true, rd); |
| ptr2 = vfp_reg_ptr(true, rn); |
| ptr3 = vfp_reg_ptr(true, rm); |
| switch (size) { |
| case 0: |
| gen_helper_crypto_sha256h(ptr1, ptr2, ptr3); |
| break; |
| case 1: |
| gen_helper_crypto_sha256h2(ptr1, ptr2, ptr3); |
| break; |
| case 2: |
| gen_helper_crypto_sha256su1(ptr1, ptr2, ptr3); |
| break; |
| } |
| } |
| tcg_temp_free_ptr(ptr1); |
| tcg_temp_free_ptr(ptr2); |
| tcg_temp_free_ptr(ptr3); |
| return 0; |
| |
| case NEON_3R_VPADD_VQRDMLAH: |
| if (!u) { |
| break; /* VPADD */ |
| } |
| /* VQRDMLAH */ |
| switch (size) { |
| case 1: |
| return do_v81_helper(s, gen_helper_gvec_qrdmlah_s16, |
| q, rd, rn, rm); |
| case 2: |
| return do_v81_helper(s, gen_helper_gvec_qrdmlah_s32, |
| q, rd, rn, rm); |
| } |
| return 1; |
| |
| case NEON_3R_VFM_VQRDMLSH: |
| if (!u) { |
| /* VFM, VFMS */ |
| if (size == 1) { |
| return 1; |
| } |
| break; |
| } |
| /* VQRDMLSH */ |
| switch (size) { |
| case 1: |
| return do_v81_helper(s, gen_helper_gvec_qrdmlsh_s16, |
| q, rd, rn, rm); |
| case 2: |
| return do_v81_helper(s, gen_helper_gvec_qrdmlsh_s32, |
| q, rd, rn, rm); |
| } |
| return 1; |
| |
| case NEON_3R_VADD_VSUB: |
| case NEON_3R_LOGIC: |
| case NEON_3R_VMAX: |
| case NEON_3R_VMIN: |
| case NEON_3R_VTST_VCEQ: |
| case NEON_3R_VCGT: |
| case NEON_3R_VCGE: |
| case NEON_3R_VQADD: |
| case NEON_3R_VQSUB: |
| case NEON_3R_VMUL: |
| case NEON_3R_VML: |
| case NEON_3R_VSHL: |
| /* Already handled by decodetree */ |
| return 1; |
| } |
| |
| if (size == 3) { |
| /* 64-bit element instructions. */ |
| for (pass = 0; pass < (q ? 2 : 1); pass++) { |
| neon_load_reg64(cpu_V0, rn + pass); |
| neon_load_reg64(cpu_V1, rm + pass); |
| switch (op) { |
| case NEON_3R_VQSHL: |
| if (u) { |
| gen_helper_neon_qshl_u64(cpu_V0, cpu_env, |
| cpu_V1, cpu_V0); |
| } else { |
| gen_helper_neon_qshl_s64(cpu_V0, cpu_env, |
| cpu_V1, cpu_V0); |
| } |
| break; |
| case NEON_3R_VRSHL: |
| if (u) { |
| gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0); |
| } else { |
| gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0); |
| } |
| break; |
| case NEON_3R_VQRSHL: |
| if (u) { |
| gen_helper_neon_qrshl_u64(cpu_V0, cpu_env, |
| cpu_V1, cpu_V0); |
| } else { |
| gen_helper_neon_qrshl_s64(cpu_V0, cpu_env, |
| cpu_V1, cpu_V0); |
| } |
| break; |
| default: |
| abort(); |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| return 0; |
| } |
| pairwise = 0; |
| switch (op) { |
| case NEON_3R_VQSHL: |
| case NEON_3R_VRSHL: |
| case NEON_3R_VQRSHL: |
| { |
| int rtmp; |
| /* Shift instruction operands are reversed. */ |
| rtmp = rn; |
| rn = rm; |
| rm = rtmp; |
| } |
| break; |
| case NEON_3R_VPADD_VQRDMLAH: |
| case NEON_3R_VPMAX: |
| case NEON_3R_VPMIN: |
| pairwise = 1; |
| break; |
| case NEON_3R_FLOAT_ARITH: |
| pairwise = (u && size < 2); /* if VPADD (float) */ |
| break; |
| case NEON_3R_FLOAT_MINMAX: |
| pairwise = u; /* if VPMIN/VPMAX (float) */ |
| break; |
| case NEON_3R_FLOAT_CMP: |
| if (!u && size) { |
| /* no encoding for U=0 C=1x */ |
| return 1; |
| } |
| break; |
| case NEON_3R_FLOAT_ACMP: |
| if (!u) { |
| return 1; |
| } |
| break; |
| case NEON_3R_FLOAT_MISC: |
| /* VMAXNM/VMINNM in ARMv8 */ |
| if (u && !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return 1; |
| } |
| break; |
| case NEON_3R_VFM_VQRDMLSH: |
| if (!dc_isar_feature(aa32_simdfmac, s)) { |
| return 1; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (pairwise && q) { |
| /* All the pairwise insns UNDEF if Q is set */ |
| return 1; |
| } |
| |
| for (pass = 0; pass < (q ? 4 : 2); pass++) { |
| |
| if (pairwise) { |
| /* Pairwise. */ |
| if (pass < 1) { |
| tmp = neon_load_reg(rn, 0); |
| tmp2 = neon_load_reg(rn, 1); |
| } else { |
| tmp = neon_load_reg(rm, 0); |
| tmp2 = neon_load_reg(rm, 1); |
| } |
| } else { |
| /* Elementwise. */ |
| tmp = neon_load_reg(rn, pass); |
| tmp2 = neon_load_reg(rm, pass); |
| } |
| switch (op) { |
| case NEON_3R_VHADD: |
| GEN_NEON_INTEGER_OP(hadd); |
| break; |
| case NEON_3R_VRHADD: |
| GEN_NEON_INTEGER_OP(rhadd); |
| break; |
| case NEON_3R_VHSUB: |
| GEN_NEON_INTEGER_OP(hsub); |
| break; |
| case NEON_3R_VQSHL: |
| GEN_NEON_INTEGER_OP_ENV(qshl); |
| break; |
| case NEON_3R_VRSHL: |
| GEN_NEON_INTEGER_OP(rshl); |
| break; |
| case NEON_3R_VQRSHL: |
| GEN_NEON_INTEGER_OP_ENV(qrshl); |
| break; |
| case NEON_3R_VABD: |
| GEN_NEON_INTEGER_OP(abd); |
| break; |
| case NEON_3R_VABA: |
| GEN_NEON_INTEGER_OP(abd); |
| tcg_temp_free_i32(tmp2); |
| tmp2 = neon_load_reg(rd, pass); |
| gen_neon_add(size, tmp, tmp2); |
| break; |
| case NEON_3R_VPMAX: |
| GEN_NEON_INTEGER_OP(pmax); |
| break; |
| case NEON_3R_VPMIN: |
| GEN_NEON_INTEGER_OP(pmin); |
| break; |
| case NEON_3R_VQDMULH_VQRDMULH: /* Multiply high. */ |
| if (!u) { /* VQDMULH */ |
| switch (size) { |
| case 1: |
| gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); |
| break; |
| case 2: |
| gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); |
| break; |
| default: abort(); |
| } |
| } else { /* VQRDMULH */ |
| switch (size) { |
| case 1: |
| gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); |
| break; |
| case 2: |
| gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); |
| break; |
| default: abort(); |
| } |
| } |
| break; |
| case NEON_3R_VPADD_VQRDMLAH: |
| switch (size) { |
| case 0: gen_helper_neon_padd_u8(tmp, tmp, tmp2); break; |
| case 1: gen_helper_neon_padd_u16(tmp, tmp, tmp2); break; |
| case 2: tcg_gen_add_i32(tmp, tmp, tmp2); break; |
| default: abort(); |
| } |
| break; |
| case NEON_3R_FLOAT_ARITH: /* Floating point arithmetic. */ |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| switch ((u << 2) | size) { |
| case 0: /* VADD */ |
| case 4: /* VPADD */ |
| gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); |
| break; |
| case 2: /* VSUB */ |
| gen_helper_vfp_subs(tmp, tmp, tmp2, fpstatus); |
| break; |
| case 6: /* VABD */ |
| gen_helper_neon_abd_f32(tmp, tmp, tmp2, fpstatus); |
| break; |
| default: |
| abort(); |
| } |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_3R_FLOAT_MULTIPLY: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus); |
| if (!u) { |
| tcg_temp_free_i32(tmp2); |
| tmp2 = neon_load_reg(rd, pass); |
| if (size == 0) { |
| gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); |
| } else { |
| gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus); |
| } |
| } |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_3R_FLOAT_CMP: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| if (!u) { |
| gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus); |
| } else { |
| if (size == 0) { |
| gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus); |
| } else { |
| gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus); |
| } |
| } |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_3R_FLOAT_ACMP: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| if (size == 0) { |
| gen_helper_neon_acge_f32(tmp, tmp, tmp2, fpstatus); |
| } else { |
| gen_helper_neon_acgt_f32(tmp, tmp, tmp2, fpstatus); |
| } |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_3R_FLOAT_MINMAX: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| if (size == 0) { |
| gen_helper_vfp_maxs(tmp, tmp, tmp2, fpstatus); |
| } else { |
| gen_helper_vfp_mins(tmp, tmp, tmp2, fpstatus); |
| } |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_3R_FLOAT_MISC: |
| if (u) { |
| /* VMAXNM/VMINNM */ |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| if (size == 0) { |
| gen_helper_vfp_maxnums(tmp, tmp, tmp2, fpstatus); |
| } else { |
| gen_helper_vfp_minnums(tmp, tmp, tmp2, fpstatus); |
| } |
| tcg_temp_free_ptr(fpstatus); |
| } else { |
| if (size == 0) { |
| gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env); |
| } else { |
| gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env); |
| } |
| } |
| break; |
| case NEON_3R_VFM_VQRDMLSH: |
| { |
| /* VFMA, VFMS: fused multiply-add */ |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| TCGv_i32 tmp3 = neon_load_reg(rd, pass); |
| if (size) { |
| /* VFMS */ |
| gen_helper_vfp_negs(tmp, tmp); |
| } |
| gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus); |
| tcg_temp_free_i32(tmp3); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| default: |
| abort(); |
| } |
| tcg_temp_free_i32(tmp2); |
| |
| /* Save the result. For elementwise operations we can put it |
| straight into the destination register. For pairwise operations |
| we have to be careful to avoid clobbering the source operands. */ |
| if (pairwise && rd == rm) { |
| neon_store_scratch(pass, tmp); |
| } else { |
| neon_store_reg(rd, pass, tmp); |
| } |
| |
| } /* for pass */ |
| if (pairwise && rd == rm) { |
| for (pass = 0; pass < (q ? 4 : 2); pass++) { |
| tmp = neon_load_scratch(pass); |
| neon_store_reg(rd, pass, tmp); |
| } |
| } |
| /* End of 3 register same size operations. */ |
| } else if (insn & (1 << 4)) { |
| if ((insn & 0x00380080) != 0) { |
| /* Two registers and shift. */ |
| op = (insn >> 8) & 0xf; |
| if (insn & (1 << 7)) { |
| /* 64-bit shift. */ |
| if (op > 7) { |
| return 1; |
| } |
| size = 3; |
| } else { |
| size = 2; |
| while ((insn & (1 << (size + 19))) == 0) |
| size--; |
| } |
| shift = (insn >> 16) & ((1 << (3 + size)) - 1); |
| if (op < 8) { |
| /* Shift by immediate: |
| VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */ |
| if (q && ((rd | rm) & 1)) { |
| return 1; |
| } |
| if (!u && (op == 4 || op == 6)) { |
| return 1; |
| } |
| /* Right shifts are encoded as N - shift, where N is the |
| element size in bits. */ |
| if (op <= 4) { |
| shift = shift - (1 << (size + 3)); |
| } |
| |
| switch (op) { |
| case 0: /* VSHR */ |
| /* Right shift comes here negative. */ |
| shift = -shift; |
| /* Shifts larger than the element size are architecturally |
| * valid. Unsigned results in all zeros; signed results |
| * in all sign bits. |
| */ |
| if (!u) { |
| tcg_gen_gvec_sari(size, rd_ofs, rm_ofs, |
| MIN(shift, (8 << size) - 1), |
| vec_size, vec_size); |
| } else if (shift >= 8 << size) { |
| tcg_gen_gvec_dup8i(rd_ofs, vec_size, vec_size, 0); |
| } else { |
| tcg_gen_gvec_shri(size, rd_ofs, rm_ofs, shift, |
| vec_size, vec_size); |
| } |
| return 0; |
| |
| case 1: /* VSRA */ |
| /* Right shift comes here negative. */ |
| shift = -shift; |
| /* Shifts larger than the element size are architecturally |
| * valid. Unsigned results in all zeros; signed results |
| * in all sign bits. |
| */ |
| if (!u) { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size, |
| MIN(shift, (8 << size) - 1), |
| &ssra_op[size]); |
| } else if (shift >= 8 << size) { |
| /* rd += 0 */ |
| } else { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size, |
| shift, &usra_op[size]); |
| } |
| return 0; |
| |
| case 4: /* VSRI */ |
| if (!u) { |
| return 1; |
| } |
| /* Right shift comes here negative. */ |
| shift = -shift; |
| /* Shift out of range leaves destination unchanged. */ |
| if (shift < 8 << size) { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size, |
| shift, &sri_op[size]); |
| } |
| return 0; |
| |
| case 5: /* VSHL, VSLI */ |
| if (u) { /* VSLI */ |
| /* Shift out of range leaves destination unchanged. */ |
| if (shift < 8 << size) { |
| tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, |
| vec_size, shift, &sli_op[size]); |
| } |
| } else { /* VSHL */ |
| /* Shifts larger than the element size are |
| * architecturally valid and results in zero. |
| */ |
| if (shift >= 8 << size) { |
| tcg_gen_gvec_dup8i(rd_ofs, vec_size, vec_size, 0); |
| } else { |
| tcg_gen_gvec_shli(size, rd_ofs, rm_ofs, shift, |
| vec_size, vec_size); |
| } |
| } |
| return 0; |
| } |
| |
| if (size == 3) { |
| count = q + 1; |
| } else { |
| count = q ? 4: 2; |
| } |
| |
| /* To avoid excessive duplication of ops we implement shift |
| * by immediate using the variable shift operations. |
| */ |
| imm = dup_const(size, shift); |
| |
| for (pass = 0; pass < count; pass++) { |
| if (size == 3) { |
| neon_load_reg64(cpu_V0, rm + pass); |
| tcg_gen_movi_i64(cpu_V1, imm); |
| switch (op) { |
| case 2: /* VRSHR */ |
| case 3: /* VRSRA */ |
| if (u) |
| gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1); |
| else |
| gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1); |
| break; |
| case 6: /* VQSHLU */ |
| gen_helper_neon_qshlu_s64(cpu_V0, cpu_env, |
| cpu_V0, cpu_V1); |
| break; |
| case 7: /* VQSHL */ |
| if (u) { |
| gen_helper_neon_qshl_u64(cpu_V0, cpu_env, |
| cpu_V0, cpu_V1); |
| } else { |
| gen_helper_neon_qshl_s64(cpu_V0, cpu_env, |
| cpu_V0, cpu_V1); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (op == 3) { |
| /* Accumulate. */ |
| neon_load_reg64(cpu_V1, rd + pass); |
| tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1); |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } else { /* size < 3 */ |
| /* Operands in T0 and T1. */ |
| tmp = neon_load_reg(rm, pass); |
| tmp2 = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp2, imm); |
| switch (op) { |
| case 2: /* VRSHR */ |
| case 3: /* VRSRA */ |
| GEN_NEON_INTEGER_OP(rshl); |
| break; |
| case 6: /* VQSHLU */ |
| switch (size) { |
| case 0: |
| gen_helper_neon_qshlu_s8(tmp, cpu_env, |
| tmp, tmp2); |
| break; |
| case 1: |
| gen_helper_neon_qshlu_s16(tmp, cpu_env, |
| tmp, tmp2); |
| break; |
| case 2: |
| gen_helper_neon_qshlu_s32(tmp, cpu_env, |
| tmp, tmp2); |
| break; |
| default: |
| abort(); |
| } |
| break; |
| case 7: /* VQSHL */ |
| GEN_NEON_INTEGER_OP_ENV(qshl); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_i32(tmp2); |
| |
| if (op == 3) { |
| /* Accumulate. */ |
| tmp2 = neon_load_reg(rd, pass); |
| gen_neon_add(size, tmp, tmp2); |
| tcg_temp_free_i32(tmp2); |
| } |
| neon_store_reg(rd, pass, tmp); |
| } |
| } /* for pass */ |
| } else if (op < 10) { |
| /* Shift by immediate and narrow: |
| VSHRN, VRSHRN, VQSHRN, VQRSHRN. */ |
| int input_unsigned = (op == 8) ? !u : u; |
| if (rm & 1) { |
| return 1; |
| } |
| shift = shift - (1 << (size + 3)); |
| size++; |
| if (size == 3) { |
| tmp64 = tcg_const_i64(shift); |
| neon_load_reg64(cpu_V0, rm); |
| neon_load_reg64(cpu_V1, rm + 1); |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 in; |
| if (pass == 0) { |
| in = cpu_V0; |
| } else { |
| in = cpu_V1; |
| } |
| if (q) { |
| if (input_unsigned) { |
| gen_helper_neon_rshl_u64(cpu_V0, in, tmp64); |
| } else { |
| gen_helper_neon_rshl_s64(cpu_V0, in, tmp64); |
| } |
| } else { |
| if (input_unsigned) { |
| gen_ushl_i64(cpu_V0, in, tmp64); |
| } else { |
| gen_sshl_i64(cpu_V0, in, tmp64); |
| } |
| } |
| tmp = tcg_temp_new_i32(); |
| gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0); |
| neon_store_reg(rd, pass, tmp); |
| } /* for pass */ |
| tcg_temp_free_i64(tmp64); |
| } else { |
| if (size == 1) { |
| imm = (uint16_t)shift; |
| imm |= imm << 16; |
| } else { |
| /* size == 2 */ |
| imm = (uint32_t)shift; |
| } |
| tmp2 = tcg_const_i32(imm); |
| tmp4 = neon_load_reg(rm + 1, 0); |
| tmp5 = neon_load_reg(rm + 1, 1); |
| for (pass = 0; pass < 2; pass++) { |
| if (pass == 0) { |
| tmp = neon_load_reg(rm, 0); |
| } else { |
| tmp = tmp4; |
| } |
| gen_neon_shift_narrow(size, tmp, tmp2, q, |
| input_unsigned); |
| if (pass == 0) { |
| tmp3 = neon_load_reg(rm, 1); |
| } else { |
| tmp3 = tmp5; |
| } |
| gen_neon_shift_narrow(size, tmp3, tmp2, q, |
| input_unsigned); |
| tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3); |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(tmp3); |
| tmp = tcg_temp_new_i32(); |
| gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0); |
| neon_store_reg(rd, pass, tmp); |
| } /* for pass */ |
| tcg_temp_free_i32(tmp2); |
| } |
| } else if (op == 10) { |
| /* VSHLL, VMOVL */ |
| if (q || (rd & 1)) { |
| return 1; |
| } |
| tmp = neon_load_reg(rm, 0); |
| tmp2 = neon_load_reg(rm, 1); |
| for (pass = 0; pass < 2; pass++) { |
| if (pass == 1) |
| tmp = tmp2; |
| |
| gen_neon_widen(cpu_V0, tmp, size, u); |
| |
| if (shift != 0) { |
| /* The shift is less than the width of the source |
| type, so we can just shift the whole register. */ |
| tcg_gen_shli_i64(cpu_V0, cpu_V0, shift); |
| /* Widen the result of shift: we need to clear |
| * the potential overflow bits resulting from |
| * left bits of the narrow input appearing as |
| * right bits of left the neighbour narrow |
| * input. */ |
| if (size < 2 || !u) { |
| uint64_t imm64; |
| if (size == 0) { |
| imm = (0xffu >> (8 - shift)); |
| imm |= imm << 16; |
| } else if (size == 1) { |
| imm = 0xffff >> (16 - shift); |
| } else { |
| /* size == 2 */ |
| imm = 0xffffffff >> (32 - shift); |
| } |
| if (size < 2) { |
| imm64 = imm | (((uint64_t)imm) << 32); |
| } else { |
| imm64 = imm; |
| } |
| tcg_gen_andi_i64(cpu_V0, cpu_V0, ~imm64); |
| } |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| } else if (op >= 14) { |
| /* VCVT fixed-point. */ |
| TCGv_ptr fpst; |
| TCGv_i32 shiftv; |
| VFPGenFixPointFn *fn; |
| |
| if (!(insn & (1 << 21)) || (q && ((rd | rm) & 1))) { |
| return 1; |
| } |
| |
| if (!(op & 1)) { |
| if (u) { |
| fn = gen_helper_vfp_ultos; |
| } else { |
| fn = gen_helper_vfp_sltos; |
| } |
| } else { |
| if (u) { |
| fn = gen_helper_vfp_touls_round_to_zero; |
| } else { |
| fn = gen_helper_vfp_tosls_round_to_zero; |
| } |
| } |
| |
| /* We have already masked out the must-be-1 top bit of imm6, |
| * hence this 32-shift where the ARM ARM has 64-imm6. |
| */ |
| shift = 32 - shift; |
| fpst = get_fpstatus_ptr(1); |
| shiftv = tcg_const_i32(shift); |
| for (pass = 0; pass < (q ? 4 : 2); pass++) { |
| TCGv_i32 tmpf = neon_load_reg(rm, pass); |
| fn(tmpf, tmpf, shiftv, fpst); |
| neon_store_reg(rd, pass, tmpf); |
| } |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(shiftv); |
| } else { |
| return 1; |
| } |
| } else { /* (insn & 0x00380080) == 0 */ |
| int invert, reg_ofs, vec_size; |
| |
| if (q && (rd & 1)) { |
| return 1; |
| } |
| |
| op = (insn >> 8) & 0xf; |
| /* One register and immediate. */ |
| imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf); |
| invert = (insn & (1 << 5)) != 0; |
| /* Note that op = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE. |
| * We choose to not special-case this and will behave as if a |
| * valid constant encoding of 0 had been given. |
| */ |
| switch (op) { |
| case 0: case 1: |
| /* no-op */ |
| break; |
| case 2: case 3: |
| imm <<= 8; |
| break; |
| case 4: case 5: |
| imm <<= 16; |
| break; |
| case 6: case 7: |
| imm <<= 24; |
| break; |
| case 8: case 9: |
| imm |= imm << 16; |
| break; |
| case 10: case 11: |
| imm = (imm << 8) | (imm << 24); |
| break; |
| case 12: |
| imm = (imm << 8) | 0xff; |
| break; |
| case 13: |
| imm = (imm << 16) | 0xffff; |
| break; |
| case 14: |
| imm |= (imm << 8) | (imm << 16) | (imm << 24); |
| if (invert) { |
| imm = ~imm; |
| } |
| break; |
| case 15: |
| if (invert) { |
| return 1; |
| } |
| imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) |
| | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); |
| break; |
| } |
| if (invert) { |
| imm = ~imm; |
| } |
| |
| reg_ofs = neon_reg_offset(rd, 0); |
| vec_size = q ? 16 : 8; |
| |
| if (op & 1 && op < 12) { |
| if (invert) { |
| /* The immediate value has already been inverted, |
| * so BIC becomes AND. |
| */ |
| tcg_gen_gvec_andi(MO_32, reg_ofs, reg_ofs, imm, |
| vec_size, vec_size); |
| } else { |
| tcg_gen_gvec_ori(MO_32, reg_ofs, reg_ofs, imm, |
| vec_size, vec_size); |
| } |
| } else { |
| /* VMOV, VMVN. */ |
| if (op == 14 && invert) { |
| TCGv_i64 t64 = tcg_temp_new_i64(); |
| |
| for (pass = 0; pass <= q; ++pass) { |
| uint64_t val = 0; |
| int n; |
| |
| for (n = 0; n < 8; n++) { |
| if (imm & (1 << (n + pass * 8))) { |
| val |= 0xffull << (n * 8); |
| } |
| } |
| tcg_gen_movi_i64(t64, val); |
| neon_store_reg64(t64, rd + pass); |
| } |
| tcg_temp_free_i64(t64); |
| } else { |
| tcg_gen_gvec_dup32i(reg_ofs, vec_size, vec_size, imm); |
| } |
| } |
| } |
| } else { /* (insn & 0x00800010 == 0x00800000) */ |
| if (size != 3) { |
| op = (insn >> 8) & 0xf; |
| if ((insn & (1 << 6)) == 0) { |
| /* Three registers of different lengths. */ |
| int src1_wide; |
| int src2_wide; |
| int prewiden; |
| /* undefreq: bit 0 : UNDEF if size == 0 |
| * bit 1 : UNDEF if size == 1 |
| * bit 2 : UNDEF if size == 2 |
| * bit 3 : UNDEF if U == 1 |
| * Note that [2:0] set implies 'always UNDEF' |
| */ |
| int undefreq; |
| /* prewiden, src1_wide, src2_wide, undefreq */ |
| static const int neon_3reg_wide[16][4] = { |
| {1, 0, 0, 0}, /* VADDL */ |
| {1, 1, 0, 0}, /* VADDW */ |
| {1, 0, 0, 0}, /* VSUBL */ |
| {1, 1, 0, 0}, /* VSUBW */ |
| {0, 1, 1, 0}, /* VADDHN */ |
| {0, 0, 0, 0}, /* VABAL */ |
| {0, 1, 1, 0}, /* VSUBHN */ |
| {0, 0, 0, 0}, /* VABDL */ |
| {0, 0, 0, 0}, /* VMLAL */ |
| {0, 0, 0, 9}, /* VQDMLAL */ |
| {0, 0, 0, 0}, /* VMLSL */ |
| {0, 0, 0, 9}, /* VQDMLSL */ |
| {0, 0, 0, 0}, /* Integer VMULL */ |
| {0, 0, 0, 9}, /* VQDMULL */ |
| {0, 0, 0, 0xa}, /* Polynomial VMULL */ |
| {0, 0, 0, 7}, /* Reserved: always UNDEF */ |
| }; |
| |
| prewiden = neon_3reg_wide[op][0]; |
| src1_wide = neon_3reg_wide[op][1]; |
| src2_wide = neon_3reg_wide[op][2]; |
| undefreq = neon_3reg_wide[op][3]; |
| |
| if ((undefreq & (1 << size)) || |
| ((undefreq & 8) && u)) { |
| return 1; |
| } |
| if ((src1_wide && (rn & 1)) || |
| (src2_wide && (rm & 1)) || |
| (!src2_wide && (rd & 1))) { |
| return 1; |
| } |
| |
| /* Handle polynomial VMULL in a single pass. */ |
| if (op == 14) { |
| if (size == 0) { |
| /* VMULL.P8 */ |
| tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, 16, 16, |
| 0, gen_helper_neon_pmull_h); |
| } else { |
| /* VMULL.P64 */ |
| if (!dc_isar_feature(aa32_pmull, s)) { |
| return 1; |
| } |
| tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, 16, 16, |
| 0, gen_helper_gvec_pmull_q); |
| } |
| return 0; |
| } |
| |
| /* Avoid overlapping operands. Wide source operands are |
| always aligned so will never overlap with wide |
| destinations in problematic ways. */ |
| if (rd == rm && !src2_wide) { |
| tmp = neon_load_reg(rm, 1); |
| neon_store_scratch(2, tmp); |
| } else if (rd == rn && !src1_wide) { |
| tmp = neon_load_reg(rn, 1); |
| neon_store_scratch(2, tmp); |
| } |
| tmp3 = NULL; |
| for (pass = 0; pass < 2; pass++) { |
| if (src1_wide) { |
| neon_load_reg64(cpu_V0, rn + pass); |
| tmp = NULL; |
| } else { |
| if (pass == 1 && rd == rn) { |
| tmp = neon_load_scratch(2); |
| } else { |
| tmp = neon_load_reg(rn, pass); |
| } |
| if (prewiden) { |
| gen_neon_widen(cpu_V0, tmp, size, u); |
| } |
| } |
| if (src2_wide) { |
| neon_load_reg64(cpu_V1, rm + pass); |
| tmp2 = NULL; |
| } else { |
| if (pass == 1 && rd == rm) { |
| tmp2 = neon_load_scratch(2); |
| } else { |
| tmp2 = neon_load_reg(rm, pass); |
| } |
| if (prewiden) { |
| gen_neon_widen(cpu_V1, tmp2, size, u); |
| } |
| } |
| switch (op) { |
| case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */ |
| gen_neon_addl(size); |
| break; |
| case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */ |
| gen_neon_subl(size); |
| break; |
| case 5: case 7: /* VABAL, VABDL */ |
| switch ((size << 1) | u) { |
| case 0: |
| gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2); |
| break; |
| case 1: |
| gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2); |
| break; |
| case 2: |
| gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2); |
| break; |
| case 3: |
| gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2); |
| break; |
| case 4: |
| gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2); |
| break; |
| case 5: |
| gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2); |
| break; |
| default: abort(); |
| } |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| break; |
| case 8: case 9: case 10: case 11: case 12: case 13: |
| /* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */ |
| gen_neon_mull(cpu_V0, tmp, tmp2, size, u); |
| break; |
| default: /* 15 is RESERVED: caught earlier */ |
| abort(); |
| } |
| if (op == 13) { |
| /* VQDMULL */ |
| gen_neon_addl_saturate(cpu_V0, cpu_V0, size); |
| neon_store_reg64(cpu_V0, rd + pass); |
| } else if (op == 5 || (op >= 8 && op <= 11)) { |
| /* Accumulate. */ |
| neon_load_reg64(cpu_V1, rd + pass); |
| switch (op) { |
| case 10: /* VMLSL */ |
| gen_neon_negl(cpu_V0, size); |
| /* Fall through */ |
| case 5: case 8: /* VABAL, VMLAL */ |
| gen_neon_addl(size); |
| break; |
| case 9: case 11: /* VQDMLAL, VQDMLSL */ |
| gen_neon_addl_saturate(cpu_V0, cpu_V0, size); |
| if (op == 11) { |
| gen_neon_negl(cpu_V0, size); |
| } |
| gen_neon_addl_saturate(cpu_V0, cpu_V1, size); |
| break; |
| default: |
| abort(); |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } else if (op == 4 || op == 6) { |
| /* Narrowing operation. */ |
| tmp = tcg_temp_new_i32(); |
| if (!u) { |
| switch (size) { |
| case 0: |
| gen_helper_neon_narrow_high_u8(tmp, cpu_V0); |
| break; |
| case 1: |
| gen_helper_neon_narrow_high_u16(tmp, cpu_V0); |
| break; |
| case 2: |
| tcg_gen_extrh_i64_i32(tmp, cpu_V0); |
| break; |
| default: abort(); |
| } |
| } else { |
| switch (size) { |
| case 0: |
| gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0); |
| break; |
| case 1: |
| gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0); |
| break; |
| case 2: |
| tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31); |
| tcg_gen_extrh_i64_i32(tmp, cpu_V0); |
| break; |
| default: abort(); |
| } |
| } |
| if (pass == 0) { |
| tmp3 = tmp; |
| } else { |
| neon_store_reg(rd, 0, tmp3); |
| neon_store_reg(rd, 1, tmp); |
| } |
| } else { |
| /* Write back the result. */ |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| } |
| } else { |
| /* Two registers and a scalar. NB that for ops of this form |
| * the ARM ARM labels bit 24 as Q, but it is in our variable |
| * 'u', not 'q'. |
| */ |
| if (size == 0) { |
| return 1; |
| } |
| switch (op) { |
| case 1: /* Float VMLA scalar */ |
| case 5: /* Floating point VMLS scalar */ |
| case 9: /* Floating point VMUL scalar */ |
| if (size == 1) { |
| return 1; |
| } |
| /* fall through */ |
| case 0: /* Integer VMLA scalar */ |
| case 4: /* Integer VMLS scalar */ |
| case 8: /* Integer VMUL scalar */ |
| case 12: /* VQDMULH scalar */ |
| case 13: /* VQRDMULH scalar */ |
| if (u && ((rd | rn) & 1)) { |
| return 1; |
| } |
| tmp = neon_get_scalar(size, rm); |
| neon_store_scratch(0, tmp); |
| for (pass = 0; pass < (u ? 4 : 2); pass++) { |
| tmp = neon_load_scratch(0); |
| tmp2 = neon_load_reg(rn, pass); |
| if (op == 12) { |
| if (size == 1) { |
| gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); |
| } else { |
| gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); |
| } |
| } else if (op == 13) { |
| if (size == 1) { |
| gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); |
| } else { |
| gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); |
| } |
| } else if (op & 1) { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| } else { |
| switch (size) { |
| case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break; |
| case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break; |
| case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break; |
| default: abort(); |
| } |
| } |
| tcg_temp_free_i32(tmp2); |
| if (op < 8) { |
| /* Accumulate. */ |
| tmp2 = neon_load_reg(rd, pass); |
| switch (op) { |
| case 0: |
| gen_neon_add(size, tmp, tmp2); |
| break; |
| case 1: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case 4: |
| gen_neon_rsb(size, tmp, tmp2); |
| break; |
| case 5: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| default: |
| abort(); |
| } |
| tcg_temp_free_i32(tmp2); |
| } |
| neon_store_reg(rd, pass, tmp); |
| } |
| break; |
| case 3: /* VQDMLAL scalar */ |
| case 7: /* VQDMLSL scalar */ |
| case 11: /* VQDMULL scalar */ |
| if (u == 1) { |
| return 1; |
| } |
| /* fall through */ |
| case 2: /* VMLAL sclar */ |
| case 6: /* VMLSL scalar */ |
| case 10: /* VMULL scalar */ |
| if (rd & 1) { |
| return 1; |
| } |
| tmp2 = neon_get_scalar(size, rm); |
| /* We need a copy of tmp2 because gen_neon_mull |
| * deletes it during pass 0. */ |
| tmp4 = tcg_temp_new_i32(); |
| tcg_gen_mov_i32(tmp4, tmp2); |
| tmp3 = neon_load_reg(rn, 1); |
| |
| for (pass = 0; pass < 2; pass++) { |
| if (pass == 0) { |
| tmp = neon_load_reg(rn, 0); |
| } else { |
| tmp = tmp3; |
| tmp2 = tmp4; |
| } |
| gen_neon_mull(cpu_V0, tmp, tmp2, size, u); |
| if (op != 11) { |
| neon_load_reg64(cpu_V1, rd + pass); |
| } |
| switch (op) { |
| case 6: |
| gen_neon_negl(cpu_V0, size); |
| /* Fall through */ |
| case 2: |
| gen_neon_addl(size); |
| break; |
| case 3: case 7: |
| gen_neon_addl_saturate(cpu_V0, cpu_V0, size); |
| if (op == 7) { |
| gen_neon_negl(cpu_V0, size); |
| } |
| gen_neon_addl_saturate(cpu_V0, cpu_V1, size); |
| break; |
| case 10: |
| /* no-op */ |
| break; |
| case 11: |
| gen_neon_addl_saturate(cpu_V0, cpu_V0, size); |
| break; |
| default: |
| abort(); |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| break; |
| case 14: /* VQRDMLAH scalar */ |
| case 15: /* VQRDMLSH scalar */ |
| { |
| NeonGenThreeOpEnvFn *fn; |
| |
| if (!dc_isar_feature(aa32_rdm, s)) { |
| return 1; |
| } |
| if (u && ((rd | rn) & 1)) { |
| return 1; |
| } |
| if (op == 14) { |
| if (size == 1) { |
| fn = gen_helper_neon_qrdmlah_s16; |
| } else { |
| fn = gen_helper_neon_qrdmlah_s32; |
| } |
| } else { |
| if (size == 1) { |
| fn = gen_helper_neon_qrdmlsh_s16; |
| } else { |
| fn = gen_helper_neon_qrdmlsh_s32; |
| } |
| } |
| |
| tmp2 = neon_get_scalar(size, rm); |
| for (pass = 0; pass < (u ? 4 : 2); pass++) { |
| tmp = neon_load_reg(rn, pass); |
| tmp3 = neon_load_reg(rd, pass); |
| fn(tmp, cpu_env, tmp, tmp2, tmp3); |
| tcg_temp_free_i32(tmp3); |
| neon_store_reg(rd, pass, tmp); |
| } |
| tcg_temp_free_i32(tmp2); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } else { /* size == 3 */ |
| if (!u) { |
| /* Extract. */ |
| imm = (insn >> 8) & 0xf; |
| |
| if (imm > 7 && !q) |
| return 1; |
| |
| if (q && ((rd | rn | rm) & 1)) { |
| return 1; |
| } |
| |
| if (imm == 0) { |
| neon_load_reg64(cpu_V0, rn); |
| if (q) { |
| neon_load_reg64(cpu_V1, rn + 1); |
| } |
| } else if (imm == 8) { |
| neon_load_reg64(cpu_V0, rn + 1); |
| if (q) { |
| neon_load_reg64(cpu_V1, rm); |
| } |
| } else if (q) { |
| tmp64 = tcg_temp_new_i64(); |
| if (imm < 8) { |
| neon_load_reg64(cpu_V0, rn); |
| neon_load_reg64(tmp64, rn + 1); |
| } else { |
| neon_load_reg64(cpu_V0, rn + 1); |
| neon_load_reg64(tmp64, rm); |
| } |
| tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8); |
| tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8)); |
| tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); |
| if (imm < 8) { |
| neon_load_reg64(cpu_V1, rm); |
| } else { |
| neon_load_reg64(cpu_V1, rm + 1); |
| imm -= 8; |
| } |
| tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); |
| tcg_gen_shri_i64(tmp64, tmp64, imm * 8); |
| tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64); |
| tcg_temp_free_i64(tmp64); |
| } else { |
| /* BUGFIX */ |
| neon_load_reg64(cpu_V0, rn); |
| tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8); |
| neon_load_reg64(cpu_V1, rm); |
| tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); |
| tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); |
| } |
| neon_store_reg64(cpu_V0, rd); |
| if (q) { |
| neon_store_reg64(cpu_V1, rd + 1); |
| } |
| } else if ((insn & (1 << 11)) == 0) { |
| /* Two register misc. */ |
| op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf); |
| size = (insn >> 18) & 3; |
| /* UNDEF for unknown op values and bad op-size combinations */ |
| if ((neon_2rm_sizes[op] & (1 << size)) == 0) { |
| return 1; |
| } |
| if (neon_2rm_is_v8_op(op) && |
| !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return 1; |
| } |
| if ((op != NEON_2RM_VMOVN && op != NEON_2RM_VQMOVN) && |
| q && ((rm | rd) & 1)) { |
| return 1; |
| } |
| switch (op) { |
| case NEON_2RM_VREV64: |
| for (pass = 0; pass < (q ? 2 : 1); pass++) { |
| tmp = neon_load_reg(rm, pass * 2); |
| tmp2 = neon_load_reg(rm, pass * 2 + 1); |
| switch (size) { |
| case 0: tcg_gen_bswap32_i32(tmp, tmp); break; |
| case 1: gen_swap_half(tmp); break; |
| case 2: /* no-op */ break; |
| default: abort(); |
| } |
| neon_store_reg(rd, pass * 2 + 1, tmp); |
| if (size == 2) { |
| neon_store_reg(rd, pass * 2, tmp2); |
| } else { |
| switch (size) { |
| case 0: tcg_gen_bswap32_i32(tmp2, tmp2); break; |
| case 1: gen_swap_half(tmp2); break; |
| default: abort(); |
| } |
| neon_store_reg(rd, pass * 2, tmp2); |
| } |
| } |
| break; |
| case NEON_2RM_VPADDL: case NEON_2RM_VPADDL_U: |
| case NEON_2RM_VPADAL: case NEON_2RM_VPADAL_U: |
| for (pass = 0; pass < q + 1; pass++) { |
| tmp = neon_load_reg(rm, pass * 2); |
| gen_neon_widen(cpu_V0, tmp, size, op & 1); |
| tmp = neon_load_reg(rm, pass * 2 + 1); |
| gen_neon_widen(cpu_V1, tmp, size, op & 1); |
| switch (size) { |
| case 0: gen_helper_neon_paddl_u16(CPU_V001); break; |
| case 1: gen_helper_neon_paddl_u32(CPU_V001); break; |
| case 2: tcg_gen_add_i64(CPU_V001); break; |
| default: abort(); |
| } |
| if (op >= NEON_2RM_VPADAL) { |
| /* Accumulate. */ |
| neon_load_reg64(cpu_V1, rd + pass); |
| gen_neon_addl(size); |
| } |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| break; |
| case NEON_2RM_VTRN: |
| if (size == 2) { |
| int n; |
| for (n = 0; n < (q ? 4 : 2); n += 2) { |
| tmp = neon_load_reg(rm, n); |
| tmp2 = neon_load_reg(rd, n + 1); |
| neon_store_reg(rm, n, tmp2); |
| neon_store_reg(rd, n + 1, tmp); |
| } |
| } else { |
| goto elementwise; |
| } |
| break; |
| case NEON_2RM_VUZP: |
| if (gen_neon_unzip(rd, rm, size, q)) { |
| return 1; |
| } |
| break; |
| case NEON_2RM_VZIP: |
| if (gen_neon_zip(rd, rm, size, q)) { |
| return 1; |
| } |
| break; |
| case NEON_2RM_VMOVN: case NEON_2RM_VQMOVN: |
| /* also VQMOVUN; op field and mnemonics don't line up */ |
| if (rm & 1) { |
| return 1; |
| } |
| tmp2 = NULL; |
| for (pass = 0; pass < 2; pass++) { |
| neon_load_reg64(cpu_V0, rm + pass); |
| tmp = tcg_temp_new_i32(); |
| gen_neon_narrow_op(op == NEON_2RM_VMOVN, q, size, |
| tmp, cpu_V0); |
| if (pass == 0) { |
| tmp2 = tmp; |
| } else { |
| neon_store_reg(rd, 0, tmp2); |
| neon_store_reg(rd, 1, tmp); |
| } |
| } |
| break; |
| case NEON_2RM_VSHLL: |
| if (q || (rd & 1)) { |
| return 1; |
| } |
| tmp = neon_load_reg(rm, 0); |
| tmp2 = neon_load_reg(rm, 1); |
| for (pass = 0; pass < 2; pass++) { |
| if (pass == 1) |
| tmp = tmp2; |
| gen_neon_widen(cpu_V0, tmp, size, 1); |
| tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size); |
| neon_store_reg64(cpu_V0, rd + pass); |
| } |
| break; |
| case NEON_2RM_VCVT_F16_F32: |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp; |
| |
| if (!dc_isar_feature(aa32_fp16_spconv, s) || |
| q || (rm & 1)) { |
| return 1; |
| } |
| fpst = get_fpstatus_ptr(true); |
| ahp = get_ahp_flag(); |
| tmp = neon_load_reg(rm, 0); |
| gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp); |
| tmp2 = neon_load_reg(rm, 1); |
| gen_helper_vfp_fcvt_f32_to_f16(tmp2, tmp2, fpst, ahp); |
| tcg_gen_shli_i32(tmp2, tmp2, 16); |
| tcg_gen_or_i32(tmp2, tmp2, tmp); |
| tcg_temp_free_i32(tmp); |
| tmp = neon_load_reg(rm, 2); |
| gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp); |
| tmp3 = neon_load_reg(rm, 3); |
| neon_store_reg(rd, 0, tmp2); |
| gen_helper_vfp_fcvt_f32_to_f16(tmp3, tmp3, fpst, ahp); |
| tcg_gen_shli_i32(tmp3, tmp3, 16); |
| tcg_gen_or_i32(tmp3, tmp3, tmp); |
| neon_store_reg(rd, 1, tmp3); |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(ahp); |
| tcg_temp_free_ptr(fpst); |
| break; |
| } |
| case NEON_2RM_VCVT_F32_F16: |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp; |
| if (!dc_isar_feature(aa32_fp16_spconv, s) || |
| q || (rd & 1)) { |
| return 1; |
| } |
| fpst = get_fpstatus_ptr(true); |
| ahp = get_ahp_flag(); |
| tmp3 = tcg_temp_new_i32(); |
| tmp = neon_load_reg(rm, 0); |
| tmp2 = neon_load_reg(rm, 1); |
| tcg_gen_ext16u_i32(tmp3, tmp); |
| gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp); |
| neon_store_reg(rd, 0, tmp3); |
| tcg_gen_shri_i32(tmp, tmp, 16); |
| gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp); |
| neon_store_reg(rd, 1, tmp); |
| tmp3 = tcg_temp_new_i32(); |
| tcg_gen_ext16u_i32(tmp3, tmp2); |
| gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp); |
| neon_store_reg(rd, 2, tmp3); |
| tcg_gen_shri_i32(tmp2, tmp2, 16); |
| gen_helper_vfp_fcvt_f16_to_f32(tmp2, tmp2, fpst, ahp); |
| neon_store_reg(rd, 3, tmp2); |
| tcg_temp_free_i32(ahp); |
| tcg_temp_free_ptr(fpst); |
| break; |
| } |
| case NEON_2RM_AESE: case NEON_2RM_AESMC: |
| if (!dc_isar_feature(aa32_aes, s) || ((rm | rd) & 1)) { |
| return 1; |
| } |
| ptr1 = vfp_reg_ptr(true, rd); |
| ptr2 = vfp_reg_ptr(true, rm); |
| |
| /* Bit 6 is the lowest opcode bit; it distinguishes between |
| * encryption (AESE/AESMC) and decryption (AESD/AESIMC) |
| */ |
| tmp3 = tcg_const_i32(extract32(insn, 6, 1)); |
| |
| if (op == NEON_2RM_AESE) { |
| gen_helper_crypto_aese(ptr1, ptr2, tmp3); |
| } else { |
| gen_helper_crypto_aesmc(ptr1, ptr2, tmp3); |
| } |
| tcg_temp_free_ptr(ptr1); |
| tcg_temp_free_ptr(ptr2); |
| tcg_temp_free_i32(tmp3); |
| break; |
| case NEON_2RM_SHA1H: |
| if (!dc_isar_feature(aa32_sha1, s) || ((rm | rd) & 1)) { |
| return 1; |
| } |
| ptr1 = vfp_reg_ptr(true, rd); |
| ptr2 = vfp_reg_ptr(true, rm); |
| |
| gen_helper_crypto_sha1h(ptr1, ptr2); |
| |
| tcg_temp_free_ptr(ptr1); |
| tcg_temp_free_ptr(ptr2); |
| break; |
| case NEON_2RM_SHA1SU1: |
| if ((rm | rd) & 1) { |
| return 1; |
| } |
| /* bit 6 (q): set -> SHA256SU0, cleared -> SHA1SU1 */ |
| if (q) { |
| if (!dc_isar_feature(aa32_sha2, s)) { |
| return 1; |
| } |
| } else if (!dc_isar_feature(aa32_sha1, s)) { |
| return 1; |
| } |
| ptr1 = vfp_reg_ptr(true, rd); |
| ptr2 = vfp_reg_ptr(true, rm); |
| if (q) { |
| gen_helper_crypto_sha256su0(ptr1, ptr2); |
| } else { |
| gen_helper_crypto_sha1su1(ptr1, ptr2); |
| } |
| tcg_temp_free_ptr(ptr1); |
| tcg_temp_free_ptr(ptr2); |
| break; |
| |
| case NEON_2RM_VMVN: |
| tcg_gen_gvec_not(0, rd_ofs, rm_ofs, vec_size, vec_size); |
| break; |
| case NEON_2RM_VNEG: |
| tcg_gen_gvec_neg(size, rd_ofs, rm_ofs, vec_size, vec_size); |
| break; |
| case NEON_2RM_VABS: |
| tcg_gen_gvec_abs(size, rd_ofs, rm_ofs, vec_size, vec_size); |
| break; |
| |
| case NEON_2RM_VCEQ0: |
| tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size, |
| vec_size, &ceq0_op[size]); |
| break; |
| case NEON_2RM_VCGT0: |
| tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size, |
| vec_size, &cgt0_op[size]); |
| break; |
| case NEON_2RM_VCLE0: |
| tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size, |
| vec_size, &cle0_op[size]); |
| break; |
| case NEON_2RM_VCGE0: |
| tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size, |
| vec_size, &cge0_op[size]); |
| break; |
| case NEON_2RM_VCLT0: |
| tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size, |
| vec_size, &clt0_op[size]); |
| break; |
| |
| default: |
| elementwise: |
| for (pass = 0; pass < (q ? 4 : 2); pass++) { |
| tmp = neon_load_reg(rm, pass); |
| switch (op) { |
| case NEON_2RM_VREV32: |
| switch (size) { |
| case 0: tcg_gen_bswap32_i32(tmp, tmp); break; |
| case 1: gen_swap_half(tmp); break; |
| default: abort(); |
| } |
| break; |
| case NEON_2RM_VREV16: |
| gen_rev16(tmp, tmp); |
| break; |
| case NEON_2RM_VCLS: |
| switch (size) { |
| case 0: gen_helper_neon_cls_s8(tmp, tmp); break; |
| case 1: gen_helper_neon_cls_s16(tmp, tmp); break; |
| case 2: gen_helper_neon_cls_s32(tmp, tmp); break; |
| default: abort(); |
| } |
| break; |
| case NEON_2RM_VCLZ: |
| switch (size) { |
| case 0: gen_helper_neon_clz_u8(tmp, tmp); break; |
| case 1: gen_helper_neon_clz_u16(tmp, tmp); break; |
| case 2: tcg_gen_clzi_i32(tmp, tmp, 32); break; |
| default: abort(); |
| } |
| break; |
| case NEON_2RM_VCNT: |
| gen_helper_neon_cnt_u8(tmp, tmp); |
| break; |
| case NEON_2RM_VQABS: |
| switch (size) { |
| case 0: |
| gen_helper_neon_qabs_s8(tmp, cpu_env, tmp); |
| break; |
| case 1: |
| gen_helper_neon_qabs_s16(tmp, cpu_env, tmp); |
| break; |
| case 2: |
| gen_helper_neon_qabs_s32(tmp, cpu_env, tmp); |
| break; |
| default: abort(); |
| } |
| break; |
| case NEON_2RM_VQNEG: |
| switch (size) { |
| case 0: |
| gen_helper_neon_qneg_s8(tmp, cpu_env, tmp); |
| break; |
| case 1: |
| gen_helper_neon_qneg_s16(tmp, cpu_env, tmp); |
| break; |
| case 2: |
| gen_helper_neon_qneg_s32(tmp, cpu_env, tmp); |
| break; |
| default: abort(); |
| } |
| break; |
| case NEON_2RM_VCGT0_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| tmp2 = tcg_const_i32(0); |
| gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCGE0_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| tmp2 = tcg_const_i32(0); |
| gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCEQ0_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| tmp2 = tcg_const_i32(0); |
| gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCLE0_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| tmp2 = tcg_const_i32(0); |
| gen_helper_neon_cge_f32(tmp, tmp2, tmp, fpstatus); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCLT0_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| tmp2 = tcg_const_i32(0); |
| gen_helper_neon_cgt_f32(tmp, tmp2, tmp, fpstatus); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VABS_F: |
| gen_helper_vfp_abss(tmp, tmp); |
| break; |
| case NEON_2RM_VNEG_F: |
| gen_helper_vfp_negs(tmp, tmp); |
| break; |
| case NEON_2RM_VSWP: |
| tmp2 = neon_load_reg(rd, pass); |
| neon_store_reg(rm, pass, tmp2); |
| break; |
| case NEON_2RM_VTRN: |
| tmp2 = neon_load_reg(rd, pass); |
| switch (size) { |
| case 0: gen_neon_trn_u8(tmp, tmp2); break; |
| case 1: gen_neon_trn_u16(tmp, tmp2); break; |
| default: abort(); |
| } |
| neon_store_reg(rm, pass, tmp2); |
| break; |
| case NEON_2RM_VRINTN: |
| case NEON_2RM_VRINTA: |
| case NEON_2RM_VRINTM: |
| case NEON_2RM_VRINTP: |
| case NEON_2RM_VRINTZ: |
| { |
| TCGv_i32 tcg_rmode; |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| int rmode; |
| |
| if (op == NEON_2RM_VRINTZ) { |
| rmode = FPROUNDING_ZERO; |
| } else { |
| rmode = fp_decode_rm[((op & 0x6) >> 1) ^ 1]; |
| } |
| |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); |
| gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode, |
| cpu_env); |
| gen_helper_rints(tmp, tmp, fpstatus); |
| gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode, |
| cpu_env); |
| tcg_temp_free_ptr(fpstatus); |
| tcg_temp_free_i32(tcg_rmode); |
| break; |
| } |
| case NEON_2RM_VRINTX: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_rints_exact(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCVTAU: |
| case NEON_2RM_VCVTAS: |
| case NEON_2RM_VCVTNU: |
| case NEON_2RM_VCVTNS: |
| case NEON_2RM_VCVTPU: |
| case NEON_2RM_VCVTPS: |
| case NEON_2RM_VCVTMU: |
| case NEON_2RM_VCVTMS: |
| { |
| bool is_signed = !extract32(insn, 7, 1); |
| TCGv_ptr fpst = get_fpstatus_ptr(1); |
| TCGv_i32 tcg_rmode, tcg_shift; |
| int rmode = fp_decode_rm[extract32(insn, 8, 2)]; |
| |
| tcg_shift = tcg_const_i32(0); |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); |
| gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode, |
| cpu_env); |
| |
| if (is_signed) { |
| gen_helper_vfp_tosls(tmp, tmp, |
| tcg_shift, fpst); |
| } else { |
| gen_helper_vfp_touls(tmp, tmp, |
| tcg_shift, fpst); |
| } |
| |
| gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode, |
| cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| tcg_temp_free_i32(tcg_shift); |
| tcg_temp_free_ptr(fpst); |
| break; |
| } |
| case NEON_2RM_VRECPE: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_recpe_u32(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VRSQRTE: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_rsqrte_u32(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VRECPE_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_recpe_f32(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VRSQRTE_F: |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_rsqrte_f32(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCVT_FS: /* VCVT.F32.S32 */ |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_sitos(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCVT_FU: /* VCVT.F32.U32 */ |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_uitos(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCVT_SF: /* VCVT.S32.F32 */ |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_tosizs(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| case NEON_2RM_VCVT_UF: /* VCVT.U32.F32 */ |
| { |
| TCGv_ptr fpstatus = get_fpstatus_ptr(1); |
| gen_helper_vfp_touizs(tmp, tmp, fpstatus); |
| tcg_temp_free_ptr(fpstatus); |
| break; |
| } |
| default: |
| /* Reserved op values were caught by the |
| * neon_2rm_sizes[] check earlier. |
| */ |
| abort(); |
| } |
| neon_store_reg(rd, pass, tmp); |
| } |
| break; |
| } |
| } else if ((insn & (1 << 10)) == 0) { |
| /* VTBL, VTBX. */ |
| int n = ((insn >> 8) & 3) + 1; |
| if ((rn + n) > 32) { |
| /* This is UNPREDICTABLE; we choose to UNDEF to avoid the |
| * helper function running off the end of the register file. |
| */ |
| return 1; |
| } |
| n <<= 3; |
| if (insn & (1 << 6)) { |
| tmp = neon_load_reg(rd, 0); |
| } else { |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, 0); |
| } |
| tmp2 = neon_load_reg(rm, 0); |
| ptr1 = vfp_reg_ptr(true, rn); |
| tmp5 = tcg_const_i32(n); |
| gen_helper_neon_tbl(tmp2, tmp2, tmp, ptr1, tmp5); |
| tcg_temp_free_i32(tmp); |
| if (insn & (1 << 6)) { |
| tmp = neon_load_reg(rd, 1); |
| } else { |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, 0); |
| } |
| tmp3 = neon_load_reg(rm, 1); |
| gen_helper_neon_tbl(tmp3, tmp3, tmp, ptr1, tmp5); |
| tcg_temp_free_i32(tmp5); |
| tcg_temp_free_ptr(ptr1); |
| neon_store_reg(rd, 0, tmp2); |
| neon_store_reg(rd, 1, tmp3); |
| tcg_temp_free_i32(tmp); |
| } else if ((insn & 0x380) == 0) { |
| /* VDUP */ |
| int element; |
| MemOp size; |
| |
| if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) { |
| return 1; |
| } |
| if (insn & (1 << 16)) { |
| size = MO_8; |
| element = (insn >> 17) & 7; |
| } else if (insn & (1 << 17)) { |
| size = MO_16; |
| element = (insn >> 18) & 3; |
| } else { |
| size = MO_32; |
| element = (insn >> 19) & 1; |
| } |
| tcg_gen_gvec_dup_mem(size, neon_reg_offset(rd, 0), |
| neon_element_offset(rm, element, size), |
| q ? 16 : 8, q ? 16 : 8); |
| } else { |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int disas_coproc_insn(DisasContext *s, uint32_t insn) |
| { |
| int cpnum, is64, crn, crm, opc1, opc2, isread, rt, rt2; |
| const ARMCPRegInfo *ri; |
| |
| cpnum = (insn >> 8) & 0xf; |
| |
| /* First check for coprocessor space used for XScale/iwMMXt insns */ |
| if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cpnum < 2)) { |
| if (extract32(s->c15_cpar, cpnum, 1) == 0) { |
| return 1; |
| } |
| if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { |
| return disas_iwmmxt_insn(s, insn); |
| } else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { |
| return disas_dsp_insn(s, insn); |
| } |
| return 1; |
| } |
| |
| /* Otherwise treat as a generic register access */ |
| is64 = (insn & (1 << 25)) == 0; |
| if (!is64 && ((insn & (1 << 4)) == 0)) { |
| /* cdp */ |
| return 1; |
| } |
| |
| crm = insn & 0xf; |
| if (is64) { |
| crn = 0; |
| opc1 = (insn >> 4) & 0xf; |
| opc2 = 0; |
| rt2 = (insn >> 16) & 0xf; |
| } else { |
| crn = (insn >> 16) & 0xf; |
| opc1 = (insn >> 21) & 7; |
| opc2 = (insn >> 5) & 7; |
| rt2 = 0; |
| } |
| isread = (insn >> 20) & 1; |
| rt = (insn >> 12) & 0xf; |
| |
| ri = get_arm_cp_reginfo(s->cp_regs, |
| ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2)); |
| if (ri) { |
| bool need_exit_tb; |
| |
| /* Check access permissions */ |
| if (!cp_access_ok(s->current_el, ri, isread)) { |
| return 1; |
| } |
| |
| if (s->hstr_active || ri->accessfn || |
| (arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) { |
| /* Emit code to perform further access permissions checks at |
| * runtime; this may result in an exception. |
| * Note that on XScale all cp0..c13 registers do an access check |
| * call in order to handle c15_cpar. |
| */ |
| TCGv_ptr tmpptr; |
| TCGv_i32 tcg_syn, tcg_isread; |
| uint32_t syndrome; |
| |
| /* Note that since we are an implementation which takes an |
| * exception on a trapped conditional instruction only if the |
| * instruction passes its condition code check, we can take |
| * advantage of the clause in the ARM ARM that allows us to set |
| * the COND field in the instruction to 0xE in all cases. |
| * We could fish the actual condition out of the insn (ARM) |
| * or the condexec bits (Thumb) but it isn't necessary. |
| */ |
| switch (cpnum) { |
| case 14: |
| if (is64) { |
| syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2, |
| isread, false); |
| } else { |
| syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm, |
| rt, isread, false); |
| } |
| break; |
| case 15: |
| if (is64) { |
| syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2, |
| isread, false); |
| } else { |
| syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm, |
| rt, isread, false); |
| } |
| break; |
| default: |
| /* ARMv8 defines that only coprocessors 14 and 15 exist, |
| * so this can only happen if this is an ARMv7 or earlier CPU, |
| * in which case the syndrome information won't actually be |
| * guest visible. |
| */ |
| assert(!arm_dc_feature(s, ARM_FEATURE_V8)); |
| syndrome = syn_uncategorized(); |
| break; |
| } |
| |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| tmpptr = tcg_const_ptr(ri); |
| tcg_syn = tcg_const_i32(syndrome); |
| tcg_isread = tcg_const_i32(isread); |
| gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, |
| tcg_isread); |
| tcg_temp_free_ptr(tmpptr); |
| tcg_temp_free_i32(tcg_syn); |
| tcg_temp_free_i32(tcg_isread); |
| } else if (ri->type & ARM_CP_RAISES_EXC) { |
| /* |
| * The readfn or writefn might raise an exception; |
| * synchronize the CPU state in case it does. |
| */ |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| } |
| |
| /* Handle special cases first */ |
| switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) { |
| case ARM_CP_NOP: |
| return 0; |
| case ARM_CP_WFI: |
| if (isread) { |
| return 1; |
| } |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_WFI; |
| return 0; |
| default: |
| break; |
| } |
| |
| if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { |
| gen_io_start(); |
| } |
| |
| if (isread) { |
| /* Read */ |
| if (is64) { |
| TCGv_i64 tmp64; |
| TCGv_i32 tmp; |
| if (ri->type & ARM_CP_CONST) { |
| tmp64 = tcg_const_i64(ri->resetvalue); |
| } else if (ri->readfn) { |
| TCGv_ptr tmpptr; |
| tmp64 = tcg_temp_new_i64(); |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_get_cp_reg64(tmp64, cpu_env, tmpptr); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tmp64 = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset); |
| } |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, tmp64); |
| store_reg(s, rt, tmp); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrh_i64_i32(tmp, tmp64); |
| tcg_temp_free_i64(tmp64); |
| store_reg(s, rt2, tmp); |
| } else { |
| TCGv_i32 tmp; |
| if (ri->type & ARM_CP_CONST) { |
| tmp = tcg_const_i32(ri->resetvalue); |
| } else if (ri->readfn) { |
| TCGv_ptr tmpptr; |
| tmp = tcg_temp_new_i32(); |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_get_cp_reg(tmp, cpu_env, tmpptr); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tmp = load_cpu_offset(ri->fieldoffset); |
| } |
| if (rt == 15) { |
| /* Destination register of r15 for 32 bit loads sets |
| * the condition codes from the high 4 bits of the value |
| */ |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp); |
| } else { |
| store_reg(s, rt, tmp); |
| } |
| } |
| } else { |
| /* Write */ |
| if (ri->type & ARM_CP_CONST) { |
| /* If not forbidden by access permissions, treat as WI */ |
| return 0; |
| } |
| |
| if (is64) { |
| TCGv_i32 tmplo, tmphi; |
| TCGv_i64 tmp64 = tcg_temp_new_i64(); |
| tmplo = load_reg(s, rt); |
| tmphi = load_reg(s, rt2); |
| tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi); |
| tcg_temp_free_i32(tmplo); |
| tcg_temp_free_i32(tmphi); |
| if (ri->writefn) { |
| TCGv_ptr tmpptr = tcg_const_ptr(ri); |
| gen_helper_set_cp_reg64(cpu_env, tmpptr, tmp64); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset); |
| } |
| tcg_temp_free_i64(tmp64); |
| } else { |
| if (ri->writefn) { |
| TCGv_i32 tmp; |
| TCGv_ptr tmpptr; |
| tmp = load_reg(s, rt); |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_set_cp_reg(cpu_env, tmpptr, tmp); |
| tcg_temp_free_ptr(tmpptr); |
| tcg_temp_free_i32(tmp); |
| } else { |
| TCGv_i32 tmp = load_reg(s, rt); |
| store_cpu_offset(tmp, ri->fieldoffset); |
| } |
| } |
| } |
| |
| /* I/O operations must end the TB here (whether read or write) */ |
| need_exit_tb = ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && |
| (ri->type & ARM_CP_IO)); |
| |
| if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { |
| /* |
| * A write to any coprocessor register that ends a TB |
| * must rebuild the hflags for the next TB. |
| */ |
| TCGv_i32 tcg_el = tcg_const_i32(s->current_el); |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| gen_helper_rebuild_hflags_m32(cpu_env, tcg_el); |
| } else { |
| if (ri->type & ARM_CP_NEWEL) { |
| gen_helper_rebuild_hflags_a32_newel(cpu_env); |
| } else { |
| gen_helper_rebuild_hflags_a32(cpu_env, tcg_el); |
| } |
| } |
| tcg_temp_free_i32(tcg_el); |
| /* |
| * We default to ending the TB on a coprocessor register write, |
| * but allow this to be suppressed by the register definition |
| * (usually only necessary to work around guest bugs). |
| */ |
| need_exit_tb = true; |
| } |
| if (need_exit_tb) { |
| gen_lookup_tb(s); |
| } |
| |
| return 0; |
| } |
| |
| /* Unknown register; this might be a guest error or a QEMU |
| * unimplemented feature. |
| */ |
| if (is64) { |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " |
| "64 bit system register cp:%d opc1: %d crm:%d " |
| "(%s)\n", |
| isread ? "read" : "write", cpnum, opc1, crm, |
| s->ns ? "non-secure" : "secure"); |
| } else { |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " |
| "system register cp:%d opc1:%d crn:%d crm:%d opc2:%d " |
| "(%s)\n", |
| isread ? "read" : "write", cpnum, opc1, crn, crm, opc2, |
| s->ns ? "non-secure" : "secure"); |
| } |
| |
| return 1; |
| } |
| |
| |
| /* Store a 64-bit value to a register pair. Clobbers val. */ |
| static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) |
| { |
| TCGv_i32 tmp; |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, val); |
| store_reg(s, rlow, tmp); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrh_i64_i32(tmp, val); |
| store_reg(s, rhigh, tmp); |
| } |
| |
| /* load and add a 64-bit value from a register pair. */ |
| static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) |
| { |
| TCGv_i64 tmp; |
| TCGv_i32 tmpl; |
| TCGv_i32 tmph; |
| |
| /* Load 64-bit value rd:rn. */ |
| tmpl = load_reg(s, rlow); |
| tmph = load_reg(s, rhigh); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_concat_i32_i64(tmp, tmpl, tmph); |
| tcg_temp_free_i32(tmpl); |
| tcg_temp_free_i32(tmph); |
| tcg_gen_add_i64(val, val, tmp); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| /* Set N and Z flags from hi|lo. */ |
| static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi) |
| { |
| tcg_gen_mov_i32(cpu_NF, hi); |
| tcg_gen_or_i32(cpu_ZF, lo, hi); |
| } |
| |
| /* Load/Store exclusive instructions are implemented by remembering |
| the value/address loaded, and seeing if these are the same |
| when the store is performed. This should be sufficient to implement |
| the architecturally mandated semantics, and avoids having to monitor |
| regular stores. The compare vs the remembered value is done during |
| the cmpxchg operation, but we must compare the addresses manually. */ |
| static void gen_load_exclusive(DisasContext *s, int rt, int rt2, |
| TCGv_i32 addr, int size) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| MemOp opc = size | MO_ALIGN | s->be_data; |
| |
| s->is_ldex = true; |
| |
| if (size == 3) { |
| TCGv_i32 tmp2 = tcg_temp_new_i32(); |
| TCGv_i64 t64 = tcg_temp_new_i64(); |
| |
| /* For AArch32, architecturally the 32-bit word at the lowest |
| * address is always Rt and the one at addr+4 is Rt2, even if |
| * the CPU is big-endian. That means we don't want to do a |
| * gen_aa32_ld_i64(), which invokes gen_aa32_frob64() as if |
| * for an architecturally 64-bit access, but instead do a |
| * 64-bit access using MO_BE if appropriate and then split |
| * the two halves. |
| * This only makes a difference for BE32 user-mode, where |
| * frob64() must not flip the two halves of the 64-bit data |
| * but this code must treat BE32 user-mode like BE32 system. |
| */ |
| TCGv taddr = gen_aa32_addr(s, addr, opc); |
| |
| tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc); |
| tcg_temp_free(taddr); |
| tcg_gen_mov_i64(cpu_exclusive_val, t64); |
| if (s->be_data == MO_BE) { |
| tcg_gen_extr_i64_i32(tmp2, tmp, t64); |
| } else { |
| tcg_gen_extr_i64_i32(tmp, tmp2, t64); |
| } |
| tcg_temp_free_i64(t64); |
| |
| store_reg(s, rt2, tmp2); |
| } else { |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc); |
| tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp); |
| } |
| |
| store_reg(s, rt, tmp); |
| tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr); |
| } |
| |
| static void gen_clrex(DisasContext *s) |
| { |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, |
| TCGv_i32 addr, int size) |
| { |
| TCGv_i32 t0, t1, t2; |
| TCGv_i64 extaddr; |
| TCGv taddr; |
| TCGLabel *done_label; |
| TCGLabel *fail_label; |
| MemOp opc = size | MO_ALIGN | s->be_data; |
| |
| /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { |
| [addr] = {Rt}; |
| {Rd} = 0; |
| } else { |
| {Rd} = 1; |
| } */ |
| fail_label = gen_new_label(); |
| done_label = gen_new_label(); |
| extaddr = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(extaddr, addr); |
| tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label); |
| tcg_temp_free_i64(extaddr); |
| |
| taddr = gen_aa32_addr(s, addr, opc); |
| t0 = tcg_temp_new_i32(); |
| t1 = load_reg(s, rt); |
| if (size == 3) { |
| TCGv_i64 o64 = tcg_temp_new_i64(); |
| TCGv_i64 n64 = tcg_temp_new_i64(); |
| |
| t2 = load_reg(s, rt2); |
| /* For AArch32, architecturally the 32-bit word at the lowest |
| * address is always Rt and the one at addr+4 is Rt2, even if |
| * the CPU is big-endian. Since we're going to treat this as a |
| * single 64-bit BE store, we need to put the two halves in the |
| * opposite order for BE to LE, so that they end up in the right |
| * places. |
| * We don't want gen_aa32_frob64() because that does the wrong |
| * thing for BE32 usermode. |
| */ |
| if (s->be_data == MO_BE) { |
| tcg_gen_concat_i32_i64(n64, t2, t1); |
| } else { |
| tcg_gen_concat_i32_i64(n64, t1, t2); |
| } |
| tcg_temp_free_i32(t2); |
| |
| tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64, |
| get_mem_index(s), opc); |
| tcg_temp_free_i64(n64); |
| |
| tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val); |
| tcg_gen_extrl_i64_i32(t0, o64); |
| |
| tcg_temp_free_i64(o64); |
| } else { |
| t2 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val); |
| tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc); |
| tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2); |
| tcg_temp_free_i32(t2); |
| } |
| tcg_temp_free_i32(t1); |
| tcg_temp_free(taddr); |
| tcg_gen_mov_i32(cpu_R[rd], t0); |
| tcg_temp_free_i32(t0); |
| tcg_gen_br(done_label); |
| |
| gen_set_label(fail_label); |
| tcg_gen_movi_i32(cpu_R[rd], 1); |
| gen_set_label(done_label); |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| /* gen_srs: |
| * @env: CPUARMState |
| * @s: DisasContext |
| * @mode: mode field from insn (which stack to store to) |
| * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn |
| * @writeback: true if writeback bit set |
| * |
| * Generate code for the SRS (Store Return State) insn. |
| */ |
| static void gen_srs(DisasContext *s, |
| uint32_t mode, uint32_t amode, bool writeback) |
| { |
| int32_t offset; |
| TCGv_i32 addr, tmp; |
| bool undef = false; |
| |
| /* SRS is: |
| * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1 |
| * and specified mode is monitor mode |
| * - UNDEFINED in Hyp mode |
| * - UNPREDICTABLE in User or System mode |
| * - UNPREDICTABLE if the specified mode is: |
| * -- not implemented |
| * -- not a valid mode number |
| * -- a mode that's at a higher exception level |
| * -- Monitor, if we are Non-secure |
| * For the UNPREDICTABLE cases we choose to UNDEF. |
| */ |
| if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) { |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(), 3); |
| return; |
| } |
| |
| if (s->current_el == 0 || s->current_el == 2) { |
| undef = true; |
| } |
| |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_FIQ: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_SYS: |
| break; |
| case ARM_CPU_MODE_HYP: |
| if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| undef = true; |
| } |
| break; |
| case ARM_CPU_MODE_MON: |
| /* No need to check specifically for "are we non-secure" because |
| * we've already made EL0 UNDEF and handled the trap for S-EL1; |
| * so if this isn't EL3 then we must be non-secure. |
| */ |
| if (s->current_el != 3) { |
| undef = true; |
| } |
| break; |
| default: |
| undef = true; |
| } |
| |
| if (undef) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| addr = tcg_temp_new_i32(); |
| tmp = tcg_const_i32(mode); |
| /* get_r13_banked() will raise an exception if called from System mode */ |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| gen_helper_get_r13_banked(addr, cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| switch (amode) { |
| case 0: /* DA */ |
| offset = -4; |
| break; |
| case 1: /* IA */ |
| offset = 0; |
| break; |
| case 2: /* DB */ |
| offset = -8; |
| break; |
| case 3: /* IB */ |
| offset = 4; |
| break; |
| default: |
| abort(); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| tmp = load_reg(s, 14); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| tcg_temp_free_i32(tmp); |
| tmp = load_cpu_field(spsr); |
| tcg_gen_addi_i32(addr, addr, 4); |
| gen_aa32_st32(s, tmp, addr, get_mem_index(s)); |
| tcg_temp_free_i32(tmp); |
| if (writeback) { |
| switch (amode) { |
| case 0: |
| offset = -8; |
| break; |
| case 1: |
| offset = 4; |
| break; |
| case 2: |
| offset = -4; |
| break; |
| case 3: |
| offset = 0; |
| break; |
| default: |
| abort(); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| tmp = tcg_const_i32(mode); |
| gen_helper_set_r13_banked(cpu_env, tmp, addr); |
| tcg_temp_free_i32(tmp); |
| } |
| tcg_temp_free_i32(addr); |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| |
| /* Generate a label used for skipping this instruction */ |
| static void arm_gen_condlabel(DisasContext *s) |
| { |
| if (!s->condjmp) { |
| s->condlabel = gen_new_label(); |
| s->condjmp = 1; |
| } |
| } |
| |
| /* Skip this instruction if the ARM condition is false */ |
| static void arm_skip_unless(DisasContext *s, uint32_t cond) |
| { |
| arm_gen_condlabel(s); |
| arm_gen_test_cc(cond ^ 1, s->condlabel); |
| } |
| |
| |
| /* |
| * Constant expanders for the decoders. |
| */ |
| |
| static int negate(DisasContext *s, int x) |
| { |
| return -x; |
| } |
| |
| static int plus_2(DisasContext *s, int x) |
| { |
| return x + 2; |
| } |
| |
| static int times_2(DisasContext *s, int x) |
| { |
| return x * 2; |
| } |
| |
| static int times_4(DisasContext *s, int x) |
| { |
| return x * 4; |
| } |
| |
| /* Return only the rotation part of T32ExpandImm. */ |
| static int t32_expandimm_rot(DisasContext *s, int x) |
| { |
| return x & 0xc00 ? extract32(x, 7, 5) : 0; |
| } |
| |
| /* Return the unrotated immediate from T32ExpandImm. */ |
| static int t32_expandimm_imm(DisasContext *s, int x) |
| { |
| int imm = extract32(x, 0, 8); |
| |
| switch (extract32(x, 8, 4)) { |
| case 0: /* XY */ |
| /* Nothing to do. */ |
| break; |
| case 1: /* 00XY00XY */ |
| imm *= 0x00010001; |
| break; |
| case 2: /* XY00XY00 */ |
| imm *= 0x01000100; |
| break; |
| case 3: /* XYXYXYXY */ |
| imm *= 0x01010101; |
| break; |
| default: |
| /* Rotated constant. */ |
| imm |= 0x80; |
| break; |
| } |
| return imm; |
| } |
| |
| static int t32_branch24(DisasContext *s, int x) |
| { |
| /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */ |
| x ^= !(x < 0) * (3 << 21); |
| /* Append the final zero. */ |
| return x << 1; |
| } |
| |
| static int t16_setflags(DisasContext *s) |
| { |
| return s->condexec_mask == 0; |
| } |
| |
| static int t16_push_list(DisasContext *s, int x) |
| { |
| return (x & 0xff) | (x & 0x100) << (14 - 8); |
| } |
| |
| static int t16_pop_list(DisasContext *s, int x) |
| { |
| return (x & 0xff) | (x & 0x100) << (15 - 8); |
| } |
| |
| /* |
| * Include the generated decoders. |
| */ |
| |
| #include "decode-a32.inc.c" |
| #include "decode-a32-uncond.inc.c" |
| #include "decode-t32.inc.c" |
| #include "decode-t16.inc.c" |
| |
| /* Helpers to swap operands for reverse-subtract. */ |
| static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_sub_i32(dst, b, a); |
| } |
| |
| static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sub_CC(dst, b, a); |
| } |
| |
| static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sub_carry(dest, b, a); |
| } |
| |
| static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_sbc_CC(dest, b, a); |
| } |
| |
| /* |
| * Helpers for the data processing routines. |
| * |
| * After the computation store the results back. |
| * This may be suppressed altogether (STREG_NONE), require a runtime |
| * check against the stack limits (STREG_SP_CHECK), or generate an |
| * exception return. Oh, or store into a register. |
| * |
| * Always return true, indicating success for a trans_* function. |
| */ |
| typedef enum { |
| STREG_NONE, |
| STREG_NORMAL, |
| STREG_SP_CHECK, |
| STREG_EXC_RET, |
| } StoreRegKind; |
| |
| static bool store_reg_kind(DisasContext *s, int rd, |
| TCGv_i32 val, StoreRegKind kind) |
| { |
| switch (kind) { |
| case STREG_NONE: |
| tcg_temp_free_i32(val); |
| return true; |
| case STREG_NORMAL: |
| /* See ALUWritePC: Interworking only from a32 mode. */ |
| if (s->thumb) { |
| store_reg(s, rd, val); |
| } else { |
| store_reg_bx(s, rd, val); |
| } |
| return true; |
| case STREG_SP_CHECK: |
| store_sp_checked(s, val); |
| return true; |
| case STREG_EXC_RET: |
| gen_exception_return(s, val); |
| return true; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Data Processing (register) |
| * |
| * Operate, with set flags, one register source, |
| * one immediate shifted register source, and a destination. |
| */ |
| static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc); |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tmp2); |
| tcg_temp_free_i32(tmp2); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp; |
| |
| tmp = load_reg(s, a->rm); |
| gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc); |
| |
| gen(tmp, tmp); |
| if (logic_cc) { |
| gen_logic_CC(tmp); |
| } |
| return store_reg_kind(s, a->rd, tmp, kind); |
| } |
| |
| /* |
| * Data-processing (register-shifted register) |
| * |
| * Operate, with set flags, one register source, |
| * one register shifted register source, and a destination. |
| */ |
| static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp1 = load_reg(s, a->rs); |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tmp2); |
| tcg_temp_free_i32(tmp2); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| |
| tmp1 = load_reg(s, a->rs); |
| tmp2 = load_reg(s, a->rm); |
| gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); |
| |
| gen(tmp2, tmp2); |
| if (logic_cc) { |
| gen_logic_CC(tmp2); |
| } |
| return store_reg_kind(s, a->rd, tmp2, kind); |
| } |
| |
| /* |
| * Data-processing (immediate) |
| * |
| * Operate, with set flags, one register source, |
| * one rotated immediate, and a destination. |
| * |
| * Note that logic_cc && a->rot setting CF based on the msb of the |
| * immediate is the reason why we must pass in the unrotated form |
| * of the immediate. |
| */ |
| static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp1, tmp2; |
| uint32_t imm; |
| |
| imm = ror32(a->imm, a->rot); |
| if (logic_cc && a->rot) { |
| tcg_gen_movi_i32(cpu_CF, imm >> 31); |
| } |
| tmp2 = tcg_const_i32(imm); |
| tmp1 = load_reg(s, a->rn); |
| |
| gen(tmp1, tmp1, tmp2); |
| tcg_temp_free_i32(tmp2); |
| |
| if (logic_cc) { |
| gen_logic_CC(tmp1); |
| } |
| return store_reg_kind(s, a->rd, tmp1, kind); |
| } |
| |
| static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a, |
| void (*gen)(TCGv_i32, TCGv_i32), |
| int logic_cc, StoreRegKind kind) |
| { |
| TCGv_i32 tmp; |
| uint32_t imm; |
| |
| imm = ror32(a->imm, a->rot); |
| if (logic_cc && a->rot) { |
| tcg_gen_movi_i32(cpu_CF, imm >> 31); |
| } |
| tmp = tcg_const_i32(imm); |
| |
| gen(tmp, tmp); |
| if (logic_cc) { |
| gen_logic_CC(tmp); |
| } |
| return store_reg_kind(s, a->rd, tmp, kind); |
| } |
| |
| #define DO_ANY3(NAME, OP, L, K) \ |
| static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \ |
| { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); } |
| |
| #define DO_ANY2(NAME, OP, L, K) \ |
| static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \ |
| static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \ |
| { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); } |
| |
| #define DO_CMP2(NAME, OP, L) \ |
| static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \ |
| { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \ |
| static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \ |
| { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \ |
| static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \ |
| { return op_s_rri_rot(s, a, OP, L, STREG_NONE); } |
| |
| DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL) |
| DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL) |
| DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL) |
| DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL) |
| |
| DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL) |
| DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL) |
| DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL) |
| DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL) |
| |
| DO_CMP2(TST, tcg_gen_and_i32, true) |
| DO_CMP2(TEQ, tcg_gen_xor_i32, true) |
| DO_CMP2(CMN, gen_add_CC, false) |
| DO_CMP2(CMP, gen_sub_CC, false) |
| |
| DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false, |
| a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL) |
| |
| /* |
| * Note for the computation of StoreRegKind we return out of the |
| * middle of the functions that are expanded by DO_ANY3, and that |
| * we modify a->s via that parameter before it is used by OP. |
| */ |
| DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false, |
| ({ |
| StoreRegKind ret = STREG_NORMAL; |
| if (a->rd == 15 && a->s) { |
| /* |
| * See ALUExceptionReturn: |
| * In User mode, UNPREDICTABLE; we choose UNDEF. |
| * In Hyp mode, UNDEFINED. |
| */ |
| if (IS_USER(s) || s->current_el == 2) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* There is no writeback of nzcv to PSTATE. */ |
| a->s = 0; |
| ret = STREG_EXC_RET; |
| } else if (a->rd == 13 && a->rn == 13) { |
| ret = STREG_SP_CHECK; |
| } |
| ret; |
| })) |
| |
| DO_ANY2(MOV, tcg_gen_mov_i32, a->s, |
| ({ |
| StoreRegKind ret = STREG_NORMAL; |
| if (a->rd == 15 && a->s) { |
| /* |
| * See ALUExceptionReturn: |
| * In User mode, UNPREDICTABLE; we choose UNDEF. |
| * In Hyp mode, UNDEFINED. |
| */ |
| if (IS_USER(s) || s->current_el == 2) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* There is no writeback of nzcv to PSTATE. */ |
| a->s = 0; |
| ret = STREG_EXC_RET; |
| } else if (a->rd == 13) { |
| ret = STREG_SP_CHECK; |
| } |
| ret; |
| })) |
| |
| DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL) |
| |
| /* |
| * ORN is only available with T32, so there is no register-shifted-register |
| * form of the insn. Using the DO_ANY3 macro would create an unused function. |
| */ |
| static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a) |
| { |
| return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); |
| } |
| |
| static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a) |
| { |
| return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); |
| } |
| |
| #undef DO_ANY3 |
| #undef DO_ANY2 |
| #undef DO_CMP2 |
| |
| static bool trans_ADR(DisasContext *s, arg_ri *a) |
| { |
| store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm)); |
| return true; |
| } |
| |
| static bool trans_MOVW(DisasContext *s, arg_MOVW *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| |
| tmp = tcg_const_i32(a->imm); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_MOVT(DisasContext *s, arg_MOVW *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rd); |
| tcg_gen_ext16u_i32(tmp, tmp); |
| tcg_gen_ori_i32(tmp, tmp, a->imm << 16); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| /* |
| * Multiply and multiply accumulate |
| */ |
| |
| static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add) |
| { |
| TCGv_i32 t1, t2; |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_mul_i32(t1, t1, t2); |
| tcg_temp_free_i32(t2); |
| if (add) { |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add_i32(t1, t1, t2); |
| tcg_temp_free_i32(t2); |
| } |
| if (a->s) { |
| gen_logic_CC(t1); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_MUL(DisasContext *s, arg_MUL *a) |
| { |
| return op_mla(s, a, false); |
| } |
| |
| static bool trans_MLA(DisasContext *s, arg_MLA *a) |
| { |
| return op_mla(s, a, true); |
| } |
| |
| static bool trans_MLS(DisasContext *s, arg_MLS *a) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_mul_i32(t1, t1, t2); |
| tcg_temp_free_i32(t2); |
| t2 = load_reg(s, a->ra); |
| tcg_gen_sub_i32(t1, t2, t1); |
| tcg_temp_free_i32(t2); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add) |
| { |
| TCGv_i32 t0, t1, t2, t3; |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| if (uns) { |
| tcg_gen_mulu2_i32(t0, t1, t0, t1); |
| } else { |
| tcg_gen_muls2_i32(t0, t1, t0, t1); |
| } |
| if (add) { |
| t2 = load_reg(s, a->ra); |
| t3 = load_reg(s, a->rd); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t3); |
| } |
| if (a->s) { |
| gen_logicq_cc(t0, t1); |
| } |
| store_reg(s, a->ra, t0); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_UMULL(DisasContext *s, arg_UMULL *a) |
| { |
| return op_mlal(s, a, true, false); |
| } |
| |
| static bool trans_SMULL(DisasContext *s, arg_SMULL *a) |
| { |
| return op_mlal(s, a, false, false); |
| } |
| |
| static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a) |
| { |
| return op_mlal(s, a, true, true); |
| } |
| |
| static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a) |
| { |
| return op_mlal(s, a, false, true); |
| } |
| |
| static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a) |
| { |
| TCGv_i32 t0, t1, t2, zero; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| tcg_gen_mulu2_i32(t0, t1, t0, t1); |
| zero = tcg_const_i32(0); |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); |
| tcg_temp_free_i32(t2); |
| t2 = load_reg(s, a->rd); |
| tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(zero); |
| store_reg(s, a->ra, t0); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| /* |
| * Saturating addition and subtraction |
| */ |
| |
| static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rm); |
| t1 = load_reg(s, a->rn); |
| if (doub) { |
| gen_helper_add_saturate(t1, cpu_env, t1, t1); |
| } |
| if (add) { |
| gen_helper_add_saturate(t0, cpu_env, t0, t1); |
| } else { |
| gen_helper_sub_saturate(t0, cpu_env, t0, t1); |
| } |
| tcg_temp_free_i32(t1); |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| #define DO_QADDSUB(NAME, ADD, DOUB) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_qaddsub(s, a, ADD, DOUB); \ |
| } |
| |
| DO_QADDSUB(QADD, true, false) |
| DO_QADDSUB(QSUB, false, false) |
| DO_QADDSUB(QDADD, true, true) |
| DO_QADDSUB(QDSUB, false, true) |
| |
| #undef DO_QADDSUB |
| |
| /* |
| * Halfword multiply and multiply accumulate |
| */ |
| |
| static bool op_smlaxxx(DisasContext *s, arg_rrrr *a, |
| int add_long, bool nt, bool mt) |
| { |
| TCGv_i32 t0, t1, tl, th; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| gen_mulxy(t0, t1, nt, mt); |
| tcg_temp_free_i32(t1); |
| |
| switch (add_long) { |
| case 0: |
| store_reg(s, a->rd, t0); |
| break; |
| case 1: |
| t1 = load_reg(s, a->ra); |
| gen_helper_add_setq(t0, cpu_env, t0, t1); |
| tcg_temp_free_i32(t1); |
| store_reg(s, a->rd, t0); |
| break; |
| case 2: |
| tl = load_reg(s, a->ra); |
| th = load_reg(s, a->rd); |
| /* Sign-extend the 32-bit product to 64 bits. */ |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_sari_i32(t1, t0, 31); |
| tcg_gen_add2_i32(tl, th, tl, th, t0, t1); |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| store_reg(s, a->ra, tl); |
| store_reg(s, a->rd, th); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| #define DO_SMLAX(NAME, add, nt, mt) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ |
| { \ |
| return op_smlaxxx(s, a, add, nt, mt); \ |
| } |
| |
| DO_SMLAX(SMULBB, 0, 0, 0) |
| DO_SMLAX(SMULBT, 0, 0, 1) |
| DO_SMLAX(SMULTB, 0, 1, 0) |
| DO_SMLAX(SMULTT, 0, 1, 1) |
| |
| DO_SMLAX(SMLABB, 1, 0, 0) |
| DO_SMLAX(SMLABT, 1, 0, 1) |
| DO_SMLAX(SMLATB, 1, 1, 0) |
| DO_SMLAX(SMLATT, 1, 1, 1) |
| |
| DO_SMLAX(SMLALBB, 2, 0, 0) |
| DO_SMLAX(SMLALBT, 2, 0, 1) |
| DO_SMLAX(SMLALTB, 2, 1, 0) |
| DO_SMLAX(SMLALTT, 2, 1, 1) |
| |
| #undef DO_SMLAX |
| |
| static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| /* |
| * Since the nominal result is product<47:16>, shift the 16-bit |
| * input up by 16 bits, so that the result is at product<63:32>. |
| */ |
| if (mt) { |
| tcg_gen_andi_i32(t1, t1, 0xffff0000); |
| } else { |
| tcg_gen_shli_i32(t1, t1, 16); |
| } |
| tcg_gen_muls2_i32(t0, t1, t0, t1); |
| tcg_temp_free_i32(t0); |
| if (add) { |
| t0 = load_reg(s, a->ra); |
| gen_helper_add_setq(t1, cpu_env, t1, t0); |
| tcg_temp_free_i32(t0); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| #define DO_SMLAWX(NAME, add, mt) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ |
| { \ |
| return op_smlawx(s, a, add, mt); \ |
| } |
| |
| DO_SMLAWX(SMULWB, 0, 0) |
| DO_SMLAWX(SMULWT, 0, 1) |
| DO_SMLAWX(SMLAWB, 1, 0) |
| DO_SMLAWX(SMLAWT, 1, 1) |
| |
| #undef DO_SMLAWX |
| |
| /* |
| * MSR (immediate) and hints |
| */ |
| |
| static bool trans_YIELD(DisasContext *s, arg_YIELD *a) |
| { |
| /* |
| * When running single-threaded TCG code, use the helper to ensure that |
| * the next round-robin scheduled vCPU gets a crack. When running in |
| * MTTCG we don't generate jumps to the helper as it won't affect the |
| * scheduling of other vCPUs. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_YIELD; |
| } |
| return true; |
| } |
| |
| static bool trans_WFE(DisasContext *s, arg_WFE *a) |
| { |
| /* |
| * When running single-threaded TCG code, use the helper to ensure that |
| * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we |
| * just skip this instruction. Currently the SEV/SEVL instructions, |
| * which are *one* of many ways to wake the CPU from WFE, are not |
| * implemented so we can't sleep like WFI does. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_WFE; |
| } |
| return true; |
| } |
| |
| static bool trans_WFI(DisasContext *s, arg_WFI *a) |
| { |
| /* For WFI, halt the vCPU until an IRQ. */ |
| gen_set_pc_im(s, s->base.pc_next); |
| s->base.is_jmp = DISAS_WFI; |
| return true; |
| } |
| |
| static bool trans_NOP(DisasContext *s, arg_NOP *a) |
| { |
| return true; |
| } |
| |
| static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a) |
| { |
| uint32_t val = ror32(a->imm, a->rot * 2); |
| uint32_t mask = msr_mask(s, a->mask, a->r); |
| |
| if (gen_set_psr_im(s, mask, a->r, val)) { |
| unallocated_encoding(s); |
| } |
| return true; |
| } |
| |
| /* |
| * Cyclic Redundancy Check |
| */ |
| |
| static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz) |
| { |
| TCGv_i32 t1, t2, t3; |
| |
| if (!dc_isar_feature(aa32_crc32, s)) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| switch (sz) { |
| case MO_8: |
| gen_uxtb(t2); |
| break; |
| case MO_16: |
| gen_uxth(t2); |
| break; |
| case MO_32: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| t3 = tcg_const_i32(1 << sz); |
| if (c) { |
| gen_helper_crc32c(t1, t1, t2, t3); |
| } else { |
| gen_helper_crc32(t1, t1, t2, t3); |
| } |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t3); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| #define DO_CRC32(NAME, c, sz) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { return op_crc32(s, a, c, sz); } |
| |
| DO_CRC32(CRC32B, false, MO_8) |
| DO_CRC32(CRC32H, false, MO_16) |
| DO_CRC32(CRC32W, false, MO_32) |
| DO_CRC32(CRC32CB, true, MO_8) |
| DO_CRC32(CRC32CH, true, MO_16) |
| DO_CRC32(CRC32CW, true, MO_32) |
| |
| #undef DO_CRC32 |
| |
| /* |
| * Miscellaneous instructions |
| */ |
| |
| static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a) |
| { |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_mrs_banked(s, a->r, a->sysm, a->rd); |
| return true; |
| } |
| |
| static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a) |
| { |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_msr_banked(s, a->r, a->sysm, a->rn); |
| return true; |
| } |
| |
| static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (a->r) { |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| tmp = load_cpu_field(spsr); |
| } else { |
| tmp = tcg_temp_new_i32(); |
| gen_helper_cpsr_read(tmp, cpu_env); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a) |
| { |
| TCGv_i32 tmp; |
| uint32_t mask = msr_mask(s, a->mask, a->r); |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tmp = load_reg(s, a->rn); |
| if (gen_set_psr(s, mask, a->r, tmp)) { |
| unallocated_encoding(s); |
| } |
| return true; |
| } |
| |
| static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tmp = tcg_const_i32(a->sysm); |
| gen_helper_v7m_mrs(tmp, cpu_env, tmp); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a) |
| { |
| TCGv_i32 addr, reg; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| addr = tcg_const_i32((a->mask << 10) | a->sysm); |
| reg = load_reg(s, a->rn); |
| gen_helper_v7m_msr(cpu_env, addr, reg); |
| tcg_temp_free_i32(addr); |
| tcg_temp_free_i32(reg); |
| /* If we wrote to CONTROL, the EL might have changed */ |
| gen_helper_rebuild_hflags_m32_newel(cpu_env); |
| gen_lookup_tb(s); |
| return true; |
| } |
| |
| static bool trans_BX(DisasContext *s, arg_BX *a) |
| { |
| if (!ENABLE_ARCH_4T) { |
| return false; |
| } |
| gen_bx_excret(s, load_reg(s, a->rm)); |
| return true; |
| } |
| |
| static bool trans_BXJ(DisasContext *s, arg_BXJ *a) |
| { |
| if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| /* Trivial implementation equivalent to bx. */ |
| gen_bx(s, load_reg(s, a->rm)); |
| return true; |
| } |
| |
| static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = load_reg(s, a->rm); |
| tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| /* |
| * BXNS/BLXNS: only exist for v8M with the security extensions, |
| * and always UNDEF if NonSecure. We don't implement these in |
| * the user-only mode either (in theory you can use them from |
| * Secure User mode but they are too tied in to system emulation). |
| */ |
| static bool trans_BXNS(DisasContext *s, arg_BXNS *a) |
| { |
| if (!s->v8m_secure || IS_USER_ONLY) { |
| unallocated_encoding(s); |
| } else { |
| gen_bxns(s, a->rm); |
| } |
| return true; |
| } |
| |
| static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a) |
| { |
| if (!s->v8m_secure || IS_USER_ONLY) { |
| unallocated_encoding(s); |
| } else { |
| gen_blxns(s, a->rm); |
| } |
| return true; |
| } |
| |
| static bool trans_CLZ(DisasContext *s, arg_CLZ *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = load_reg(s, a->rm); |
| tcg_gen_clzi_i32(tmp, tmp, 32); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_ERET(DisasContext *s, arg_ERET *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| if (s->current_el == 2) { |
| /* ERET from Hyp uses ELR_Hyp, not LR */ |
| tmp = load_cpu_field(elr_el[2]); |
| } else { |
| tmp = load_reg(s, 14); |
| } |
| gen_exception_return(s, tmp); |
| return true; |
| } |
| |
| static bool trans_HLT(DisasContext *s, arg_HLT *a) |
| { |
| gen_hlt(s, a->imm); |
| return true; |
| } |
| |
| static bool trans_BKPT(DisasContext *s, arg_BKPT *a) |
| { |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| semihosting_enabled() && |
| #ifndef CONFIG_USER_ONLY |
| !IS_USER(s) && |
| #endif |
| (a->imm == 0xab)) { |
| gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST); |
| } else { |
| gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false)); |
| } |
| return true; |
| } |
| |
| static bool trans_HVC(DisasContext *s, arg_HVC *a) |
| { |
| if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| } else { |
| gen_hvc(s, a->imm); |
| } |
| return true; |
| } |
| |
| static bool trans_SMC(DisasContext *s, arg_SMC *a) |
| { |
| if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| } else { |
| gen_smc(s); |
| } |
| return true; |
| } |
| |
| static bool trans_SG(DisasContext *s, arg_SG *a) |
| { |
| if (!arm_dc_feature(s, ARM_FEATURE_M) || |
| !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return false; |
| } |
| /* |
| * SG (v8M only) |
| * The bulk of the behaviour for this instruction is implemented |
| * in v7m_handle_execute_nsc(), which deals with the insn when |
| * it is executed by a CPU in non-secure state from memory |
| * which is Secure & NonSecure-Callable. |
| * Here we only need to handle the remaining cases: |
| * * in NS memory (including the "security extension not |
| * implemented" case) : NOP |
| * * in S memory but CPU already secure (clear IT bits) |
| * We know that the attribute for the memory this insn is |
| * in must match the current CPU state, because otherwise |
| * get_phys_addr_pmsav8 would have generated an exception. |
| */ |
| if (s->v8m_secure) { |
| /* Like the IT insn, we don't need to generate any code */ |
| s->condexec_cond = 0; |
| s->condexec_mask = 0; |
| } |
| return true; |
| } |
| |
| static bool trans_TT(DisasContext *s, arg_TT *a) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M) || |
| !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return false; |
| } |
| if (a->rd == 13 || a->rd == 15 || a->rn == 15) { |
| /* We UNDEF for these UNPREDICTABLE cases */ |
| unallocated_encoding(s); |
| return true; |
| } |
| if (a->A && !s->v8m_secure) { |
| /* This case is UNDEFINED. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = tcg_const_i32((a->A << 1) | a->T); |
| gen_helper_v7m_tt(tmp, cpu_env, addr, tmp); |
| tcg_temp_free_i32(addr); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| /* |
| * Load/store register index |
| */ |
| |
| static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w) |
| { |
| ISSInfo ret; |
| |
| /* ISS not valid if writeback */ |
| if (p && !w) { |
| ret = rd; |
| if (s->base.pc_next - s->pc_curr == 2) { |
| ret |= ISSIs16Bit; |
| } |
| } else { |
| ret = ISSInvalid; |
| } |
| return ret; |
| } |
| |
| static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a) |
| { |
| TCGv_i32 addr = load_reg(s, a->rn); |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| gen_helper_v8m_stackcheck(cpu_env, addr); |
| } |
| |
| if (a->p) { |
| TCGv_i32 ofs = load_reg(s, a->rm); |
| gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); |
| if (a->u) { |
| tcg_gen_add_i32(addr, addr, ofs); |
| } else { |
| tcg_gen_sub_i32(addr, addr, ofs); |
| } |
| tcg_temp_free_i32(ofs); |
| } |
| return addr; |
| } |
| |
| static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a, |
| TCGv_i32 addr, int address_offset) |
| { |
| if (!a->p) { |
| TCGv_i32 ofs = load_reg(s, a->rm); |
| gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); |
| if (a->u) { |
| tcg_gen_add_i32(addr, addr, ofs); |
| } else { |
| tcg_gen_sub_i32(addr, addr, ofs); |
| } |
| tcg_temp_free_i32(ofs); |
| } else if (!a->w) { |
| tcg_temp_free_i32(addr); |
| return; |
| } |
| tcg_gen_addi_i32(addr, addr, address_offset); |
| store_reg(s, a->rn, addr); |
| } |
| |
| static bool op_load_rr(DisasContext *s, arg_ldst_rr *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop | s->be_data); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| /* |
| * Perform base writeback before the loaded value to |
| * ensure correct behavior with overlapping index registers. |
| */ |
| op_addr_rr_post(s, a, addr, 0); |
| store_reg_from_load(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool op_store_rr(DisasContext *s, arg_ldst_rr *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, mop | s->be_data); |
| disas_set_da_iss(s, mop, issinfo); |
| tcg_temp_free_i32(tmp); |
| |
| op_addr_rr_post(s, a, addr, 0); |
| return true; |
| } |
| |
| static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| store_reg(s, a->rt, tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| store_reg(s, a->rt + 1, tmp); |
| |
| /* LDRD w/ base writeback is undefined if the registers overlap. */ |
| op_addr_rr_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_5TE) { |
| return false; |
| } |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| addr = op_addr_rr_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| tcg_temp_free_i32(tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = load_reg(s, a->rt + 1); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| tcg_temp_free_i32(tmp); |
| |
| op_addr_rr_post(s, a, addr, -4); |
| return true; |
| } |
| |
| /* |
| * Load/store immediate index |
| */ |
| |
| static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a) |
| { |
| int ofs = a->imm; |
| |
| if (!a->u) { |
| ofs = -ofs; |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * Stackcheck. Here we know 'addr' is the current SP; |
| * U is set if we're moving SP up, else down. It is |
| * UNKNOWN whether the limit check triggers when SP starts |
| * below the limit and ends up above it; we chose to do so. |
| */ |
| if (!a->u) { |
| TCGv_i32 newsp = tcg_temp_new_i32(); |
| tcg_gen_addi_i32(newsp, cpu_R[13], ofs); |
| gen_helper_v8m_stackcheck(cpu_env, newsp); |
| tcg_temp_free_i32(newsp); |
| } else { |
| gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]); |
| } |
| } |
| |
| return add_reg_for_lit(s, a->rn, a->p ? ofs : 0); |
| } |
| |
| static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a, |
| TCGv_i32 addr, int address_offset) |
| { |
| if (!a->p) { |
| if (a->u) { |
| address_offset += a->imm; |
| } else { |
| address_offset -= a->imm; |
| } |
| } else if (!a->w) { |
| tcg_temp_free_i32(addr); |
| return; |
| } |
| tcg_gen_addi_i32(addr, addr, address_offset); |
| store_reg(s, a->rn, addr); |
| } |
| |
| static bool op_load_ri(DisasContext *s, arg_ldst_ri *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop | s->be_data); |
| disas_set_da_iss(s, mop, issinfo); |
| |
| /* |
| * Perform base writeback before the loaded value to |
| * ensure correct behavior with overlapping index registers. |
| */ |
| op_addr_ri_post(s, a, addr, 0); |
| store_reg_from_load(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, |
| MemOp mop, int mem_idx) |
| { |
| ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, mop | s->be_data); |
| disas_set_da_iss(s, mop, issinfo); |
| tcg_temp_free_i32(tmp); |
| |
| op_addr_ri_post(s, a, addr, 0); |
| return true; |
| } |
| |
| static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| store_reg(s, a->rt, tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| store_reg(s, rt2, tmp); |
| |
| /* LDRD w/ base writeback is undefined if the registers overlap. */ |
| op_addr_ri_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a) |
| { |
| if (!ENABLE_ARCH_5TE || (a->rt & 1)) { |
| return false; |
| } |
| return op_ldrd_ri(s, a, a->rt + 1); |
| } |
| |
| static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) |
| { |
| arg_ldst_ri b = { |
| .u = a->u, .w = a->w, .p = a->p, |
| .rn = a->rn, .rt = a->rt, .imm = a->imm |
| }; |
| return op_ldrd_ri(s, &b, a->rt2); |
| } |
| |
| static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) |
| { |
| int mem_idx = get_mem_index(s); |
| TCGv_i32 addr, tmp; |
| |
| addr = op_addr_ri_pre(s, a); |
| |
| tmp = load_reg(s, a->rt); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| tcg_temp_free_i32(tmp); |
| |
| tcg_gen_addi_i32(addr, addr, 4); |
| |
| tmp = load_reg(s, rt2); |
| gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data); |
| tcg_temp_free_i32(tmp); |
| |
| op_addr_ri_post(s, a, addr, -4); |
| return true; |
| } |
| |
| static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a) |
| { |
| if (!ENABLE_ARCH_5TE || (a->rt & 1)) { |
| return false; |
| } |
| return op_strd_ri(s, a, a->rt + 1); |
| } |
| |
| static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) |
| { |
| arg_ldst_ri b = { |
| .u = a->u, .w = a->w, .p = a->p, |
| .rn = a->rn, .rt = a->rt, .imm = a->imm |
| }; |
| return op_strd_ri(s, &b, a->rt2); |
| } |
| |
| #define DO_LDST(NAME, WHICH, MEMOP) \ |
| static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \ |
| { \ |
| return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \ |
| { \ |
| return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \ |
| { \ |
| return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \ |
| } \ |
| static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \ |
| { \ |
| return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \ |
| } |
| |
| DO_LDST(LDR, load, MO_UL) |
| DO_LDST(LDRB, load, MO_UB) |
| DO_LDST(LDRH, load, MO_UW) |
| DO_LDST(LDRSB, load, MO_SB) |
| DO_LDST(LDRSH, load, MO_SW) |
| |
| DO_LDST(STR, store, MO_UL) |
| DO_LDST(STRB, store, MO_UB) |
| DO_LDST(STRH, store, MO_UW) |
| |
| #undef DO_LDST |
| |
| /* |
| * Synchronization primitives |
| */ |
| |
| static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc) |
| { |
| TCGv_i32 addr, tmp; |
| TCGv taddr; |
| |
| opc |= s->be_data; |
| addr = load_reg(s, a->rn); |
| taddr = gen_aa32_addr(s, addr, opc); |
| tcg_temp_free_i32(addr); |
| |
| tmp = load_reg(s, a->rt2); |
| tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc); |
| tcg_temp_free(taddr); |
| |
| store_reg(s, a->rt, tmp); |
| return true; |
| } |
| |
| static bool trans_SWP(DisasContext *s, arg_SWP *a) |
| { |
| return op_swp(s, a, MO_UL | MO_ALIGN); |
| } |
| |
| static bool trans_SWPB(DisasContext *s, arg_SWP *a) |
| { |
| return op_swp(s, a, MO_UB); |
| } |
| |
| /* |
| * Load/Store Exclusive and Load-Acquire/Store-Release |
| */ |
| |
| static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel) |
| { |
| TCGv_i32 addr; |
| /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ |
| bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); |
| |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rd == 15 || a->rn == 15 || a->rt == 15 |
| || a->rd == a->rn || a->rd == a->rt |
| || (!v8a && s->thumb && (a->rd == 13 || a->rt == 13)) |
| || (mop == MO_64 |
| && (a->rt2 == 15 |
| || a->rd == a->rt2 |
| || (!v8a && s->thumb && a->rt2 == 13)))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| if (rel) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| |
| addr = tcg_temp_local_new_i32(); |
| load_reg_var(s, addr, a->rn); |
| tcg_gen_addi_i32(addr, addr, a->imm); |
| |
| gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop); |
| tcg_temp_free_i32(addr); |
| return true; |
| } |
| |
| static bool trans_STREX(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_strex(s, a, MO_32, false); |
| } |
| |
| static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_6K) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_strex(s, a, MO_64, false); |
| } |
| |
| static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a) |
| { |
| return op_strex(s, a, MO_64, false); |
| } |
| |
| static bool trans_STREXB(DisasContext *s, arg_STREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_strex(s, a, MO_8, false); |
| } |
| |
| static bool trans_STREXH(DisasContext *s, arg_STREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_strex(s, a, MO_16, false); |
| } |
| |
| static bool trans_STLEX(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_32, true); |
| } |
| |
| static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_strex(s, a, MO_64, true); |
| } |
| |
| static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_64, true); |
| } |
| |
| static bool trans_STLEXB(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_8, true); |
| } |
| |
| static bool trans_STLEXH(DisasContext *s, arg_STREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_strex(s, a, MO_16, true); |
| } |
| |
| static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = load_reg(s, a->rt); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | s->be_data); |
| disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(addr); |
| return true; |
| } |
| |
| static bool trans_STL(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UL); |
| } |
| |
| static bool trans_STLB(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UB); |
| } |
| |
| static bool trans_STLH(DisasContext *s, arg_STL *a) |
| { |
| return op_stl(s, a, MO_UW); |
| } |
| |
| static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq) |
| { |
| TCGv_i32 addr; |
| /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ |
| bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); |
| |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15 |
| || (!v8a && s->thumb && a->rt == 13) |
| || (mop == MO_64 |
| && (a->rt2 == 15 || a->rt == a->rt2 |
| || (!v8a && s->thumb && a->rt2 == 13)))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = tcg_temp_local_new_i32(); |
| load_reg_var(s, addr, a->rn); |
| tcg_gen_addi_i32(addr, addr, a->imm); |
| |
| gen_load_exclusive(s, a->rt, a->rt2, addr, mop); |
| tcg_temp_free_i32(addr); |
| |
| if (acq) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return true; |
| } |
| |
| static bool trans_LDREX(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_32, false); |
| } |
| |
| static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_6K) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_ldrex(s, a, MO_64, false); |
| } |
| |
| static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a) |
| { |
| return op_ldrex(s, a, MO_64, false); |
| } |
| |
| static bool trans_LDREXB(DisasContext *s, arg_LDREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_8, false); |
| } |
| |
| static bool trans_LDREXH(DisasContext *s, arg_LDREX *a) |
| { |
| if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_16, false); |
| } |
| |
| static bool trans_LDAEX(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_32, true); |
| } |
| |
| static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rt & 1) { |
| unallocated_encoding(s); |
| return true; |
| } |
| a->rt2 = a->rt + 1; |
| return op_ldrex(s, a, MO_64, true); |
| } |
| |
| static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_64, true); |
| } |
| |
| static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_8, true); |
| } |
| |
| static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a) |
| { |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| return op_ldrex(s, a, MO_16, true); |
| } |
| |
| static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop) |
| { |
| TCGv_i32 addr, tmp; |
| |
| if (!ENABLE_ARCH_8) { |
| return false; |
| } |
| /* We UNDEF for these UNPREDICTABLE cases. */ |
| if (a->rn == 15 || a->rt == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | s->be_data); |
| disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel); |
| tcg_temp_free_i32(addr); |
| |
| store_reg(s, a->rt, tmp); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| return true; |
| } |
| |
| static bool trans_LDA(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UL); |
| } |
| |
| static bool trans_LDAB(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UB); |
| } |
| |
| static bool trans_LDAH(DisasContext *s, arg_LDA *a) |
| { |
| return op_lda(s, a, MO_UW); |
| } |
| |
| /* |
| * Media instructions |
| */ |
| |
| static bool trans_USADA8(DisasContext *s, arg_USADA8 *a) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| gen_helper_usad8(t1, t1, t2); |
| tcg_temp_free_i32(t2); |
| if (a->ra != 15) { |
| t2 = load_reg(s, a->ra); |
| tcg_gen_add_i32(t1, t1, t2); |
| tcg_temp_free_i32(t2); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u) |
| { |
| TCGv_i32 tmp; |
| int width = a->widthm1 + 1; |
| int shift = a->lsb; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| if (shift + width > 32) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| tmp = load_reg(s, a->rn); |
| if (u) { |
| tcg_gen_extract_i32(tmp, tmp, shift, width); |
| } else { |
| tcg_gen_sextract_i32(tmp, tmp, shift, width); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SBFX(DisasContext *s, arg_SBFX *a) |
| { |
| return op_bfx(s, a, false); |
| } |
| |
| static bool trans_UBFX(DisasContext *s, arg_UBFX *a) |
| { |
| return op_bfx(s, a, true); |
| } |
| |
| static bool trans_BFCI(DisasContext *s, arg_BFCI *a) |
| { |
| TCGv_i32 tmp; |
| int msb = a->msb, lsb = a->lsb; |
| int width; |
| |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| if (msb < lsb) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| width = msb + 1 - lsb; |
| if (a->rn == 15) { |
| /* BFC */ |
| tmp = tcg_const_i32(0); |
| } else { |
| /* BFI */ |
| tmp = load_reg(s, a->rn); |
| } |
| if (width != 32) { |
| TCGv_i32 tmp2 = load_reg(s, a->rd); |
| tcg_gen_deposit_i32(tmp, tmp2, tmp, lsb, width); |
| tcg_temp_free_i32(tmp2); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_UDF(DisasContext *s, arg_UDF *a) |
| { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| /* |
| * Parallel addition and subtraction |
| */ |
| |
| static bool op_par_addsub(DisasContext *s, arg_rrr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0, t1; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| |
| gen(t0, t0, t1); |
| |
| tcg_temp_free_i32(t1); |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a, |
| void (*gen)(TCGv_i32, TCGv_i32, |
| TCGv_i32, TCGv_ptr)) |
| { |
| TCGv_i32 t0, t1; |
| TCGv_ptr ge; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t0 = load_reg(s, a->rn); |
| t1 = load_reg(s, a->rm); |
| |
| ge = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE)); |
| gen(t0, t0, t1, ge); |
| |
| tcg_temp_free_ptr(ge); |
| tcg_temp_free_i32(t1); |
| store_reg(s, a->rd, t0); |
| return true; |
| } |
| |
| #define DO_PAR_ADDSUB(NAME, helper) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_par_addsub(s, a, helper); \ |
| } |
| |
| #define DO_PAR_ADDSUB_GE(NAME, helper) \ |
| static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ |
| { \ |
| return op_par_addsub_ge(s, a, helper); \ |
| } |
| |
| DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16) |
| DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx) |
| DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx) |
| DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16) |
| DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8) |
| DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8) |
| |
| DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16) |
| DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx) |
| DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx) |
| DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16) |
| DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8) |
| DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8) |
| |
| DO_PAR_ADDSUB(QADD16, gen_helper_qadd16) |
| DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx) |
| DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx) |
| DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16) |
| DO_PAR_ADDSUB(QADD8, gen_helper_qadd8) |
| DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8) |
| |
| DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16) |
| DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx) |
| DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx) |
| DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16) |
| DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8) |
| DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8) |
| |
| DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16) |
| DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx) |
| DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx) |
| DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16) |
| DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8) |
| DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8) |
| |
| DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16) |
| DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx) |
| DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx) |
| DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16) |
| DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8) |
| DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8) |
| |
| #undef DO_PAR_ADDSUB |
| #undef DO_PAR_ADDSUB_GE |
| |
| /* |
| * Packing, unpacking, saturation, and reversal |
| */ |
| |
| static bool trans_PKH(DisasContext *s, arg_PKH *a) |
| { |
| TCGv_i32 tn, tm; |
| int shift = a->imm; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tn = load_reg(s, a->rn); |
| tm = load_reg(s, a->rm); |
| if (a->tb) { |
| /* PKHTB */ |
| if (shift == 0) { |
| shift = 31; |
| } |
| tcg_gen_sari_i32(tm, tm, shift); |
| tcg_gen_deposit_i32(tn, tn, tm, 0, 16); |
| } else { |
| /* PKHBT */ |
| tcg_gen_shli_i32(tm, tm, shift); |
| tcg_gen_deposit_i32(tn, tm, tn, 0, 16); |
| } |
| tcg_temp_free_i32(tm); |
| store_reg(s, a->rd, tn); |
| return true; |
| } |
| |
| static bool op_sat(DisasContext *s, arg_sat *a, |
| void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp, satimm; |
| int shift = a->imm; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rn); |
| if (a->sh) { |
| tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31); |
| } else { |
| tcg_gen_shli_i32(tmp, tmp, shift); |
| } |
| |
| satimm = tcg_const_i32(a->satimm); |
| gen(tmp, cpu_env, tmp, satimm); |
| tcg_temp_free_i32(satimm); |
| |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SSAT(DisasContext *s, arg_sat *a) |
| { |
| return op_sat(s, a, gen_helper_ssat); |
| } |
| |
| static bool trans_USAT(DisasContext *s, arg_sat *a) |
| { |
| return op_sat(s, a, gen_helper_usat); |
| } |
| |
| static bool trans_SSAT16(DisasContext *s, arg_sat *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_sat(s, a, gen_helper_ssat16); |
| } |
| |
| static bool trans_USAT16(DisasContext *s, arg_sat *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_sat(s, a, gen_helper_usat16); |
| } |
| |
| static bool op_xta(DisasContext *s, arg_rrr_rot *a, |
| void (*gen_extract)(TCGv_i32, TCGv_i32), |
| void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| tmp = load_reg(s, a->rm); |
| /* |
| * TODO: In many cases we could do a shift instead of a rotate. |
| * Combined with a simple extend, that becomes an extract. |
| */ |
| tcg_gen_rotri_i32(tmp, tmp, a->rot * 8); |
| gen_extract(tmp, tmp); |
| |
| if (a->rn != 15) { |
| TCGv_i32 tmp2 = load_reg(s, a->rn); |
| gen_add(tmp, tmp, tmp2); |
| tcg_temp_free_i32(tmp2); |
| } |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_xta(s, a, gen_helper_sxtb16, gen_add16); |
| } |
| |
| static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a) |
| { |
| return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32); |
| } |
| |
| static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a) |
| { |
| if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { |
| return false; |
| } |
| return op_xta(s, a, gen_helper_uxtb16, gen_add16); |
| } |
| |
| static bool trans_SEL(DisasContext *s, arg_rrr *a) |
| { |
| TCGv_i32 t1, t2, t3; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| t3 = tcg_temp_new_i32(); |
| tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE)); |
| gen_helper_sel_flags(t1, t3, t1, t2); |
| tcg_temp_free_i32(t3); |
| tcg_temp_free_i32(t2); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool op_rr(DisasContext *s, arg_rr *a, |
| void (*gen)(TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 tmp; |
| |
| tmp = load_reg(s, a->rm); |
| gen(tmp, tmp); |
| store_reg(s, a->rd, tmp); |
| return true; |
| } |
| |
| static bool trans_REV(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, tcg_gen_bswap32_i32); |
| } |
| |
| static bool trans_REV16(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, gen_rev16); |
| } |
| |
| static bool trans_REVSH(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| return op_rr(s, a, gen_revsh); |
| } |
| |
| static bool trans_RBIT(DisasContext *s, arg_rr *a) |
| { |
| if (!ENABLE_ARCH_6T2) { |
| return false; |
| } |
| return op_rr(s, a, gen_helper_rbit); |
| } |
| |
| /* |
| * Signed multiply, signed and unsigned divide |
| */ |
| |
| static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (m_swap) { |
| gen_swap_half(t2); |
| } |
| gen_smul_dual(t1, t2); |
| |
| if (sub) { |
| /* This subtraction cannot overflow. */ |
| tcg_gen_sub_i32(t1, t1, t2); |
| } else { |
| /* |
| * This addition cannot overflow 32 bits; however it may |
| * overflow considered as a signed operation, in which case |
| * we must set the Q flag. |
| */ |
| gen_helper_add_setq(t1, cpu_env, t1, t2); |
| } |
| tcg_temp_free_i32(t2); |
| |
| if (a->ra != 15) { |
| t2 = load_reg(s, a->ra); |
| gen_helper_add_setq(t1, cpu_env, t1, t2); |
| tcg_temp_free_i32(t2); |
| } |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SMLAD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, false, false); |
| } |
| |
| static bool trans_SMLADX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, true, false); |
| } |
| |
| static bool trans_SMLSD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, false, true); |
| } |
| |
| static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlad(s, a, true, true); |
| } |
| |
| static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| TCGv_i64 l1, l2; |
| |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (m_swap) { |
| gen_swap_half(t2); |
| } |
| gen_smul_dual(t1, t2); |
| |
| l1 = tcg_temp_new_i64(); |
| l2 = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(l1, t1); |
| tcg_gen_ext_i32_i64(l2, t2); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| |
| if (sub) { |
| tcg_gen_sub_i64(l1, l1, l2); |
| } else { |
| tcg_gen_add_i64(l1, l1, l2); |
| } |
| tcg_temp_free_i64(l2); |
| |
| gen_addq(s, l1, a->ra, a->rd); |
| gen_storeq_reg(s, a->ra, a->rd, l1); |
| tcg_temp_free_i64(l1); |
| return true; |
| } |
| |
| static bool trans_SMLALD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, false, false); |
| } |
| |
| static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, true, false); |
| } |
| |
| static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, false, true); |
| } |
| |
| static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smlald(s, a, true, true); |
| } |
| |
| static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (s->thumb |
| ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) |
| : !ENABLE_ARCH_6) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| tcg_gen_muls2_i32(t2, t1, t1, t2); |
| |
| if (a->ra != 15) { |
| TCGv_i32 t3 = load_reg(s, a->ra); |
| if (sub) { |
| /* |
| * For SMMLS, we need a 64-bit subtract. Borrow caused by |
| * a non-zero multiplicand lowpart, and the correct result |
| * lowpart for rounding. |
| */ |
| TCGv_i32 zero = tcg_const_i32(0); |
| tcg_gen_sub2_i32(t2, t1, zero, t3, t2, t1); |
| tcg_temp_free_i32(zero); |
| } else { |
| tcg_gen_add_i32(t1, t1, t3); |
| } |
| tcg_temp_free_i32(t3); |
| } |
| if (round) { |
| /* |
| * Adding 0x80000000 to the 64-bit quantity means that we have |
| * carry in to the high word when the low word has the msb set. |
| */ |
| tcg_gen_shri_i32(t2, t2, 31); |
| tcg_gen_add_i32(t1, t1, t2); |
| } |
| tcg_temp_free_i32(t2); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SMMLA(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, false, false); |
| } |
| |
| static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, true, false); |
| } |
| |
| static bool trans_SMMLS(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, false, true); |
| } |
| |
| static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a) |
| { |
| return op_smmla(s, a, true, true); |
| } |
| |
| static bool op_div(DisasContext *s, arg_rrr *a, bool u) |
| { |
| TCGv_i32 t1, t2; |
| |
| if (s->thumb |
| ? !dc_isar_feature(aa32_thumb_div, s) |
| : !dc_isar_feature(aa32_arm_div, s)) { |
| return false; |
| } |
| |
| t1 = load_reg(s, a->rn); |
| t2 = load_reg(s, a->rm); |
| if (u) { |
| gen_helper_udiv(t1, t1, t2); |
| } else { |
| gen_helper_sdiv(t1, t1, t2); |
| } |
| tcg_temp_free_i32(t2); |
| store_reg(s, a->rd, t1); |
| return true; |
| } |
| |
| static bool trans_SDIV(DisasContext *s, arg_rrr *a) |
| { |
| return op_div(s, a, false); |
| } |
| |
| static bool trans_UDIV(DisasContext *s, arg_rrr *a) |
| { |
| return op_div(s, a, true); |
| } |
| |
| /* |
| * Block data transfer |
| */ |
| |
| static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n) |
| { |
| TCGv_i32 addr = load_reg(s, a->rn); |
| |
| if (a->b) { |
| if (a->i) { |
| /* pre increment */ |
| tcg_gen_addi_i32(addr, addr, 4); |
| } else { |
| /* pre decrement */ |
| tcg_gen_addi_i32(addr, addr, -(n * 4)); |
| } |
| } else if (!a->i && n != 1) { |
| /* post decrement */ |
| tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * If the writeback is incrementing SP rather than |
| * decrementing it, and the initial SP is below the |
| * stack limit but the final written-back SP would |
| * be above, then then we must not perform any memory |
| * accesses, but it is IMPDEF whether we generate |
| * an exception. We choose to do so in this case. |
| * At this point 'addr' is the lowest address, so |
| * either the original SP (if incrementing) or our |
| * final SP (if decrementing), so that's what we check. |
| */ |
| gen_helper_v8m_stackcheck(cpu_env, addr); |
| } |
| |
| return addr; |
| } |
| |
| static void op_addr_block_post(DisasContext *s, arg_ldst_block *a, |
| TCGv_i32 addr, int n) |
| { |
| if (a->w) { |
| /* write back */ |
| if (!a->b) { |
| if (a->i) { |
| /* post increment */ |
| tcg_gen_addi_i32(addr, addr, 4); |
| } else { |
| /* post decrement */ |
| tcg_gen_addi_i32(addr, addr, -(n * 4)); |
| } |
| } else if (!a->i && n != 1) { |
| /* pre decrement */ |
| tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); |
| } |
| store_reg(s, a->rn, addr); |
| } else { |
| tcg_temp_free_i32(addr); |
| } |
| } |
| |
| static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n) |
| { |
| int i, j, n, list, mem_idx; |
| bool user = a->u; |
| TCGv_i32 addr, tmp, tmp2; |
| |
| if (user) { |
| /* STM (user) */ |
| if (IS_USER(s)) { |
| /* Only usable in supervisor mode. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| } |
| |
| list = a->list; |
| n = ctpop16(list); |
| if (n < min_n || a->rn == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = op_addr_block_pre(s, a, n); |
| mem_idx = get_mem_index(s); |
| |
| for (i = j = 0; i < 16; i++) { |
| if (!(list & (1 << i))) { |
| continue; |
| } |
| |
| if (user && i != 15) { |
| tmp = tcg_temp_new_i32(); |
| tmp2 = tcg_const_i32(i); |
| gen_helper_get_user_reg(tmp, cpu_env, tmp2); |
| tcg_temp_free_i32(tmp2); |
| } else { |
| tmp = load_reg(s, i); |
| } |
| gen_aa32_st32(s, tmp, addr, mem_idx); |
| tcg_temp_free_i32(tmp); |
| |
| /* No need to add after the last transfer. */ |
| if (++j != n) { |
| tcg_gen_addi_i32(addr, addr, 4); |
| } |
| } |
| |
| op_addr_block_post(s, a, addr, n); |
| return true; |
| } |
| |
| static bool trans_STM(DisasContext *s, arg_ldst_block *a) |
| { |
| /* BitCount(list) < 1 is UNPREDICTABLE */ |
| return op_stm(s, a, 1); |
| } |
| |
| static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback register in register list is UNPREDICTABLE for T32. */ |
| if (a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* BitCount(list) < 2 is UNPREDICTABLE */ |
| return op_stm(s, a, 2); |
| } |
| |
| static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n) |
| { |
| int i, j, n, list, mem_idx; |
| bool loaded_base; |
| bool user = a->u; |
| bool exc_return = false; |
| TCGv_i32 addr, tmp, tmp2, loaded_var; |
| |
| if (user) { |
| /* LDM (user), LDM (exception return) */ |
| if (IS_USER(s)) { |
| /* Only usable in supervisor mode. */ |
| unallocated_encoding(s); |
| return true; |
| } |
| if (extract32(a->list, 15, 1)) { |
| exc_return = true; |
| user = false; |
| } else { |
| /* LDM (user) does not allow writeback. */ |
| if (a->w) { |
| unallocated_encoding(s); |
| return true; |
| } |
| } |
| } |
| |
| list = a->list; |
| n = ctpop16(list); |
| if (n < min_n || a->rn == 15) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = op_addr_block_pre(s, a, n); |
| mem_idx = get_mem_index(s); |
| loaded_base = false; |
| loaded_var = NULL; |
| |
| for (i = j = 0; i < 16; i++) { |
| if (!(list & (1 << i))) { |
| continue; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, tmp, addr, mem_idx); |
| if (user) { |
| tmp2 = tcg_const_i32(i); |
| gen_helper_set_user_reg(cpu_env, tmp2, tmp); |
| tcg_temp_free_i32(tmp2); |
| tcg_temp_free_i32(tmp); |
| } else if (i == a->rn) { |
| loaded_var = tmp; |
| loaded_base = true; |
| } else if (i == 15 && exc_return) { |
| store_pc_exc_ret(s, tmp); |
| } else { |
| store_reg_from_load(s, i, tmp); |
| } |
| |
| /* No need to add after the last transfer. */ |
| if (++j != n) { |
| tcg_gen_addi_i32(addr, addr, 4); |
| } |
| } |
| |
| op_addr_block_post(s, a, addr, n); |
| |
| if (loaded_base) { |
| /* Note that we reject base == pc above. */ |
| store_reg(s, a->rn, loaded_var); |
| } |
| |
| if (exc_return) { |
| /* Restore CPSR from SPSR. */ |
| tmp = load_cpu_field(spsr); |
| if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { |
| gen_io_start(); |
| } |
| gen_helper_cpsr_write_eret(cpu_env, tmp); |
| if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { |
| gen_io_end(); |
| } |
| tcg_temp_free_i32(tmp); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| } |
| return true; |
| } |
| |
| static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* |
| * Writeback register in register list is UNPREDICTABLE |
| * for ArchVersion() >= 7. Prior to v7, A32 would write |
| * an UNKNOWN value to the base register. |
| */ |
| if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* BitCount(list) < 1 is UNPREDICTABLE */ |
| return do_ldm(s, a, 1); |
| } |
| |
| static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback register in register list is UNPREDICTABLE for T32. */ |
| if (a->w && (a->list & (1 << a->rn))) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* BitCount(list) < 2 is UNPREDICTABLE */ |
| return do_ldm(s, a, 2); |
| } |
| |
| static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a) |
| { |
| /* Writeback is conditional on the base register not being loaded. */ |
| a->w = !(a->list & (1 << a->rn)); |
| /* BitCount(list) < 1 is UNPREDICTABLE */ |
| return do_ldm(s, a, 1); |
| } |
| |
| /* |
| * Branch, branch with link |
| */ |
| |
| static bool trans_B(DisasContext *s, arg_i *a) |
| { |
| gen_jmp(s, read_pc(s) + a->imm); |
| return true; |
| } |
| |
| static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a) |
| { |
| /* This has cond from encoding, required to be outside IT block. */ |
| if (a->cond >= 0xe) { |
| return false; |
| } |
| if (s->condexec_mask) { |
| unallocated_encoding(s); |
| return true; |
| } |
| arm_skip_unless(s, a->cond); |
| gen_jmp(s, read_pc(s) + a->imm); |
| return true; |
| } |
| |
| static bool trans_BL(DisasContext *s, arg_i *a) |
| { |
| tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb); |
| gen_jmp(s, read_pc(s) + a->imm); |
| return true; |
| } |
| |
| static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a) |
| { |
| TCGv_i32 tmp; |
| |
| /* For A32, ARCH(5) is checked near the start of the uncond block. */ |
| if (s->thumb && (a->imm & 2)) { |
| return false; |
| } |
| tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb); |
| tmp = tcg_const_i32(!s->thumb); |
| store_cpu_field(tmp, thumb); |
| gen_jmp(s, (read_pc(s) & ~3) + a->imm); |
| return true; |
| } |
| |
| static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a) |
| { |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| tcg_gen_movi_i32(cpu_R[14], read_pc(s) + (a->imm << 12)); |
| return true; |
| } |
| |
| static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1); |
| tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a) |
| { |
| TCGv_i32 tmp; |
| |
| assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); |
| if (!ENABLE_ARCH_5) { |
| return false; |
| } |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1); |
| tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); |
| tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1); |
| gen_bx(s, tmp); |
| return true; |
| } |
| |
| static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half) |
| { |
| TCGv_i32 addr, tmp; |
| |
| tmp = load_reg(s, a->rm); |
| if (half) { |
| tcg_gen_add_i32(tmp, tmp, tmp); |
| } |
| addr = load_reg(s, a->rn); |
| tcg_gen_add_i32(addr, addr, tmp); |
| |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), |
| half ? MO_UW | s->be_data : MO_UB); |
| tcg_temp_free_i32(addr); |
| |
| tcg_gen_add_i32(tmp, tmp, tmp); |
| tcg_gen_addi_i32(tmp, tmp, read_pc(s)); |
| store_reg(s, 15, tmp); |
| return true; |
| } |
| |
| static bool trans_TBB(DisasContext *s, arg_tbranch *a) |
| { |
| return op_tbranch(s, a, false); |
| } |
| |
| static bool trans_TBH(DisasContext *s, arg_tbranch *a) |
| { |
| return op_tbranch(s, a, true); |
| } |
| |
| static bool trans_CBZ(DisasContext *s, arg_CBZ *a) |
| { |
| TCGv_i32 tmp = load_reg(s, a->rn); |
| |
| arm_gen_condlabel(s); |
| tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE, |
| tmp, 0, s->condlabel); |
| tcg_temp_free_i32(tmp); |
| gen_jmp(s, read_pc(s) + a->imm); |
| return true; |
| } |
| |
| /* |
| * Supervisor call - both T32 & A32 come here so we need to check |
| * which mode we are in when checking for semihosting. |
| */ |
| |
| static bool trans_SVC(DisasContext *s, arg_SVC *a) |
| { |
| const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M) && semihosting_enabled() && |
| #ifndef CONFIG_USER_ONLY |
| !IS_USER(s) && |
| #endif |
| (a->imm == semihost_imm)) { |
| gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST); |
| } else { |
| gen_set_pc_im(s, s->base.pc_next); |
| s->svc_imm = a->imm; |
| s->base.is_jmp = DISAS_SWI; |
| } |
| return true; |
| } |
| |
| /* |
| * Unconditional system instructions |
| */ |
| |
| static bool trans_RFE(DisasContext *s, arg_RFE *a) |
| { |
| static const int8_t pre_offset[4] = { |
| /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4 |
| }; |
| static const int8_t post_offset[4] = { |
| /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0 |
| }; |
| TCGv_i32 addr, t1, t2; |
| |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| unallocated_encoding(s); |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]); |
| |
| /* Load PC into tmp and CPSR into tmp2. */ |
| t1 = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, t1, addr, get_mem_index(s)); |
| tcg_gen_addi_i32(addr, addr, 4); |
| t2 = tcg_temp_new_i32(); |
| gen_aa32_ld32u(s, t2, addr, get_mem_index(s)); |
| |
| if (a->w) { |
| /* Base writeback. */ |
| tcg_gen_addi_i32(addr, addr, post_offset[a->pu]); |
| store_reg(s, a->rn, addr); |
| } else { |
| tcg_temp_free_i32(addr); |
| } |
| gen_rfe(s, t1, t2); |
| return true; |
| } |
| |
| static bool trans_SRS(DisasContext *s, arg_SRS *a) |
| { |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| gen_srs(s, a->mode, a->pu, a->w); |
| return true; |
| } |
| |
| static bool trans_CPS(DisasContext *s, arg_CPS *a) |
| { |
| uint32_t mask, val; |
| |
| if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| /* Implemented as NOP in user mode. */ |
| return true; |
| } |
| /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */ |
| |
| mask = val = 0; |
| if (a->imod & 2) { |
| if (a->A) { |
| mask |= CPSR_A; |
| } |
| if (a->I) { |
| mask |= CPSR_I; |
| } |
| if (a->F) { |
| mask |= CPSR_F; |
| } |
| if (a->imod & 1) { |
| val |= mask; |
| } |
| } |
| if (a->M) { |
| mask |= CPSR_M; |
| val |= a->mode; |
| } |
| if (mask) { |
| gen_set_psr_im(s, mask, 0, val); |
| } |
| return true; |
| } |
| |
| static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a) |
| { |
| TCGv_i32 tmp, addr, el; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| if (IS_USER(s)) { |
| /* Implemented as NOP in user mode. */ |
| return true; |
| } |
| |
| tmp = tcg_const_i32(a->im); |
| /* FAULTMASK */ |
| if (a->F) { |
| addr = tcg_const_i32(19); |
| gen_helper_v7m_msr(cpu_env, addr, tmp); |
| tcg_temp_free_i32(addr); |
| } |
| /* PRIMASK */ |
| if (a->I) { |
| addr = tcg_const_i32(16); |
| gen_helper_v7m_msr(cpu_env, addr, tmp); |
| tcg_temp_free_i32(addr); |
| } |
| el = tcg_const_i32(s->current_el); |
| gen_helper_rebuild_hflags_m32(cpu_env, el); |
| tcg_temp_free_i32(el); |
| tcg_temp_free_i32(tmp); |
| gen_lookup_tb(s); |
| return true; |
| } |
| |
| /* |
| * Clear-Exclusive, Barriers |
| */ |
| |
| static bool trans_CLREX(DisasContext *s, arg_CLREX *a) |
| { |
| if (s->thumb |
| ? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M) |
| : !ENABLE_ARCH_6K) { |
| return false; |
| } |
| gen_clrex(s); |
| return true; |
| } |
| |
| static bool trans_DSB(DisasContext *s, arg_DSB *a) |
| { |
| if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| return true; |
| } |
| |
| static bool trans_DMB(DisasContext *s, arg_DMB *a) |
| { |
| return trans_DSB(s, NULL); |
| } |
| |
| static bool trans_ISB(DisasContext *s, arg_ISB *a) |
| { |
| if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { |
| return false; |
| } |
| /* |
| * We need to break the TB after this insn to execute |
| * self-modifying code correctly and also to take |
| * any pending interrupts immediately. |
| */ |
| gen_goto_tb(s, 0, s->base.pc_next); |
| return true; |
| } |
| |
| static bool trans_SB(DisasContext *s, arg_SB *a) |
| { |
| if (!dc_isar_feature(aa32_sb, s)) { |
| return false; |
| } |
| /* |
| * TODO: There is no speculation barrier opcode |
| * for TCG; MB and end the TB instead. |
| */ |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| gen_goto_tb(s, 0, s->base.pc_next); |
| return true; |
| } |
| |
| static bool trans_SETEND(DisasContext *s, arg_SETEND *a) |
| { |
| if (!ENABLE_ARCH_6) { |
| return false; |
| } |
| if (a->E != (s->be_data == MO_BE)) { |
| gen_helper_setend(cpu_env); |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| return true; |
| } |
| |
| /* |
| * Preload instructions |
| * All are nops, contingent on the appropriate arch level. |
| */ |
| |
| static bool trans_PLD(DisasContext *s, arg_PLD *a) |
| { |
| return ENABLE_ARCH_5TE; |
| } |
| |
| static bool trans_PLDW(DisasContext *s, arg_PLD *a) |
| { |
| return arm_dc_feature(s, ARM_FEATURE_V7MP); |
| } |
| |
| static bool trans_PLI(DisasContext *s, arg_PLD *a) |
| { |
| return ENABLE_ARCH_7; |
| } |
| |
| /* |
| * If-then |
| */ |
| |
| static bool trans_IT(DisasContext *s, arg_IT *a) |
| { |
| int cond_mask = a->cond_mask; |
| |
| /* |
| * No actual code generated for this insn, just setup state. |
| * |
| * Combinations of firstcond and mask which set up an 0b1111 |
| * condition are UNPREDICTABLE; we take the CONSTRAINED |
| * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110, |
| * i.e. both meaning "execute always". |
| */ |
| s->condexec_cond = (cond_mask >> 4) & 0xe; |
| s->condexec_mask = cond_mask & 0x1f; |
| return true; |
| } |
| |
| /* |
| * Legacy decoder. |
| */ |
| |
| static void disas_arm_insn(DisasContext *s, unsigned int insn) |
| { |
| unsigned int cond = insn >> 28; |
| |
| /* M variants do not implement ARM mode; this must raise the INVSTATE |
| * UsageFault exception. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(), |
| default_exception_el(s)); |
| return; |
| } |
| |
| if (cond == 0xf) { |
| /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we |
| * choose to UNDEF. In ARMv5 and above the space is used |
| * for miscellaneous unconditional instructions. |
| */ |
| ARCH(5); |
| |
| /* Unconditional instructions. */ |
| /* TODO: Perhaps merge these into one decodetree output file. */ |
| if (disas_a32_uncond(s, insn) || |
| disas_vfp_uncond(s, insn) || |
| disas_neon_dp(s, insn) || |
| disas_neon_ls(s, insn) || |
| disas_neon_shared(s, insn)) { |
| return; |
| } |
| /* fall back to legacy decoder */ |
| |
| if (((insn >> 25) & 7) == 1) { |
| /* NEON Data processing. */ |
| if (disas_neon_data_insn(s, insn)) { |
| goto illegal_op; |
| } |
| return; |
| } |
| if ((insn & 0x0e000f00) == 0x0c000100) { |
| if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { |
| /* iWMMXt register transfer. */ |
| if (extract32(s->c15_cpar, 1, 1)) { |
| if (!disas_iwmmxt_insn(s, insn)) { |
| return; |
| } |
| } |
| } |
| } |
| goto illegal_op; |
| } |
| if (cond != 0xe) { |
| /* if not always execute, we generate a conditional jump to |
| next instruction */ |
| arm_skip_unless(s, cond); |
| } |
| |
| /* TODO: Perhaps merge these into one decodetree output file. */ |
| if (disas_a32(s, insn) || |
| disas_vfp(s, insn)) { |
| return; |
| } |
| /* fall back to legacy decoder */ |
| |
| switch ((insn >> 24) & 0xf) { |
| case 0xc: |
| case 0xd: |
| case 0xe: |
| if (((insn >> 8) & 0xe) == 10) { |
| /* VFP, but failed disas_vfp. */ |
| goto illegal_op; |
| } |
| if (disas_coproc_insn(s, insn)) { |
| /* Coprocessor. */ |
| goto illegal_op; |
| } |
| break; |
| default: |
| illegal_op: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn) |
| { |
| /* |
| * Return true if this is a 16 bit instruction. We must be precise |
| * about this (matching the decode). |
| */ |
| if ((insn >> 11) < 0x1d) { |
| /* Definitely a 16-bit instruction */ |
| return true; |
| } |
| |
| /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the |
| * first half of a 32-bit Thumb insn. Thumb-1 cores might |
| * end up actually treating this as two 16-bit insns, though, |
| * if it's half of a bl/blx pair that might span a page boundary. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_THUMB2) || |
| arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* Thumb2 cores (including all M profile ones) always treat |
| * 32-bit insns as 32-bit. |
| */ |
| return false; |
| } |
| |
| if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) { |
| /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix |
| * is not on the next page; we merge this into a 32-bit |
| * insn. |
| */ |
| return false; |
| } |
| /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF); |
| * 0b1111_1xxx_xxxx_xxxx : BL suffix; |
| * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page |
| * -- handle as single 16 bit insn |
| */ |
| return true; |
| } |
| |
| /* Translate a 32-bit thumb instruction. */ |
| static void disas_thumb2_insn(DisasContext *s, uint32_t insn) |
| { |
| /* |
| * ARMv6-M supports a limited subset of Thumb2 instructions. |
| * Other Thumb1 architectures allow only 32-bit |
| * combined BL/BLX prefix and suffix. |
| */ |
| if (arm_dc_feature(s, ARM_FEATURE_M) && |
| !arm_dc_feature(s, ARM_FEATURE_V7)) { |
| int i; |
| bool found = false; |
| static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */, |
| 0xf3b08040 /* dsb */, |
| 0xf3b08050 /* dmb */, |
| 0xf3b08060 /* isb */, |
| 0xf3e08000 /* mrs */, |
| 0xf000d000 /* bl */}; |
| static const uint32_t armv6m_mask[] = {0xffe0d000, |
| 0xfff0d0f0, |
| 0xfff0d0f0, |
| 0xfff0d0f0, |
| 0xffe0d000, |
| 0xf800d000}; |
| |
| for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) { |
| if ((insn & armv6m_mask[i]) == armv6m_insn[i]) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| goto illegal_op; |
| } |
| } else if ((insn & 0xf800e800) != 0xf000e800) { |
| ARCH(6T2); |
| } |
| |
| if ((insn & 0xef000000) == 0xef000000) { |
| /* |
| * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq |
| * transform into |
| * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq |
| */ |
| uint32_t a32_insn = (insn & 0xe2ffffff) | |
| ((insn & (1 << 28)) >> 4) | (1 << 28); |
| |
| if (disas_neon_dp(s, a32_insn)) { |
| return; |
| } |
| } |
| |
| if ((insn & 0xff100000) == 0xf9000000) { |
| /* |
| * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq |
| * transform into |
| * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq |
| */ |
| uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000; |
| |
| if (disas_neon_ls(s, a32_insn)) { |
| return; |
| } |
| } |
| |
| /* |
| * TODO: Perhaps merge these into one decodetree output file. |
| * Note disas_vfp is written for a32 with cond field in the |
| * top nibble. The t32 encoding requires 0xe in the top nibble. |
| */ |
| if (disas_t32(s, insn) || |
| disas_vfp_uncond(s, insn) || |
| disas_neon_shared(s, insn) || |
| ((insn >> 28) == 0xe && disas_vfp(s, insn))) { |
| return; |
| } |
| /* fall back to legacy decoder */ |
| |
| switch ((insn >> 25) & 0xf) { |
| case 0: case 1: case 2: case 3: |
| /* 16-bit instructions. Should never happen. */ |
| abort(); |
| case 6: case 7: case 14: case 15: |
| /* Coprocessor. */ |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* 0b111x_11xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx */ |
| if (extract32(insn, 24, 2) == 3) { |
| goto illegal_op; /* op0 = 0b11 : unallocated */ |
| } |
| |
| if (((insn >> 8) & 0xe) == 10 && |
| dc_isar_feature(aa32_fpsp_v2, s)) { |
| /* FP, and the CPU supports it */ |
| goto illegal_op; |
| } else { |
| /* All other insns: NOCP */ |
| gen_exception_insn(s, s->pc_curr, EXCP_NOCP, |
| syn_uncategorized(), |
| default_exception_el(s)); |
| } |
| break; |
| } |
| if (((insn >> 24) & 3) == 3) { |
| /* Translate into the equivalent ARM encoding. */ |
| insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28); |
| if (disas_neon_data_insn(s, insn)) { |
| goto illegal_op; |
| } |
| } else if (((insn >> 8) & 0xe) == 10) { |
| /* VFP, but failed disas_vfp. */ |
| goto illegal_op; |
| } else { |
| if (insn & (1 << 28)) |
| goto illegal_op; |
| if (disas_coproc_insn(s, insn)) { |
| goto illegal_op; |
| } |
| } |
| break; |
| case 12: |
| goto illegal_op; |
| default: |
| illegal_op: |
| unallocated_encoding(s); |
| } |
| } |
| |
| static void disas_thumb_insn(DisasContext *s, uint32_t insn) |
| { |
| if (!disas_t16(s, insn)) { |
| unallocated_encoding(s); |
| } |
| } |
| |
| static bool insn_crosses_page(CPUARMState *env, DisasContext *s) |
| { |
| /* Return true if the insn at dc->base.pc_next might cross a page boundary. |
| * (False positives are OK, false negatives are not.) |
| * We know this is a Thumb insn, and our caller ensures we are |
| * only called if dc->base.pc_next is less than 4 bytes from the page |
| * boundary, so we cross the page if the first 16 bits indicate |
| * that this is a 32 bit insn. |
| */ |
| uint16_t insn = arm_lduw_code(env, s->base.pc_next, s->sctlr_b); |
| |
| return !thumb_insn_is_16bit(s, s->base.pc_next, insn); |
| } |
| |
| static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cs->env_ptr; |
| ARMCPU *cpu = env_archcpu(env); |
| uint32_t tb_flags = dc->base.tb->flags; |
| uint32_t condexec, core_mmu_idx; |
| |
| dc->isar = &cpu->isar; |
| dc->condjmp = 0; |
| |
| dc->aarch64 = 0; |
| /* If we are coming from secure EL0 in a system with a 32-bit EL3, then |
| * there is no secure EL1, so we route exceptions to EL3. |
| */ |
| dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_el_is_aa64(env, 3); |
| dc->thumb = FIELD_EX32(tb_flags, TBFLAG_AM32, THUMB); |
| dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE; |
| condexec = FIELD_EX32(tb_flags, TBFLAG_AM32, CONDEXEC); |
| dc->condexec_mask = (condexec & 0xf) << 1; |
| dc->condexec_cond = condexec >> 4; |
| |
| core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX); |
| dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx); |
| dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); |
| #if !defined(CONFIG_USER_ONLY) |
| dc->user = (dc->current_el == 0); |
| #endif |
| dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL); |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| dc->vfp_enabled = 1; |
| dc->be_data = MO_TE; |
| dc->v7m_handler_mode = FIELD_EX32(tb_flags, TBFLAG_M32, HANDLER); |
| dc->v8m_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && |
| regime_is_secure(env, dc->mmu_idx); |
| dc->v8m_stackcheck = FIELD_EX32(tb_flags, TBFLAG_M32, STACKCHECK); |
| dc->v8m_fpccr_s_wrong = |
| FIELD_EX32(tb_flags, TBFLAG_M32, FPCCR_S_WRONG); |
| dc->v7m_new_fp_ctxt_needed = |
| FIELD_EX32(tb_flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED); |
| dc->v7m_lspact = FIELD_EX32(tb_flags, TBFLAG_M32, LSPACT); |
| } else { |
| dc->be_data = |
| FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE; |
| dc->debug_target_el = |
| FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL); |
| dc->sctlr_b = FIELD_EX32(tb_flags, TBFLAG_A32, SCTLR_B); |
| dc->hstr_active = FIELD_EX32(tb_flags, TBFLAG_A32, HSTR_ACTIVE); |
| dc->ns = FIELD_EX32(tb_flags, TBFLAG_A32, NS); |
| dc->vfp_enabled = FIELD_EX32(tb_flags, TBFLAG_A32, VFPEN); |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| dc->c15_cpar = FIELD_EX32(tb_flags, TBFLAG_A32, XSCALE_CPAR); |
| } else { |
| dc->vec_len = FIELD_EX32(tb_flags, TBFLAG_A32, VECLEN); |
| dc->vec_stride = FIELD_EX32(tb_flags, TBFLAG_A32, VECSTRIDE); |
| } |
| } |
| dc->cp_regs = cpu->cp_regs; |
| dc->features = env->features; |
| |
| /* Single step state. The code-generation logic here is: |
| * SS_ACTIVE == 0: |
| * generate code with no special handling for single-stepping (except |
| * that anything that can make us go to SS_ACTIVE == 1 must end the TB; |
| * this happens anyway because those changes are all system register or |
| * PSTATE writes). |
| * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) |
| * emit code for one insn |
| * emit code to clear PSTATE.SS |
| * emit code to generate software step exception for completed step |
| * end TB (as usual for having generated an exception) |
| * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) |
| * emit code to generate a software step exception |
| * end the TB |
| */ |
| dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE); |
| dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS); |
| dc->is_ldex = false; |
| |
| dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK; |
| |
| /* If architectural single step active, limit to 1. */ |
| if (is_singlestepping(dc)) { |
| dc->base.max_insns = 1; |
| } |
| |
| /* ARM is a fixed-length ISA. Bound the number of insns to execute |
| to those left on the page. */ |
| if (!dc->thumb) { |
| int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; |
| dc->base.max_insns = MIN(dc->base.max_insns, bound); |
| } |
| |
| cpu_V0 = tcg_temp_new_i64(); |
| cpu_V1 = tcg_temp_new_i64(); |
| /* FIXME: cpu_M0 can probably be the same as cpu_V0. */ |
| cpu_M0 = tcg_temp_new_i64(); |
| } |
| |
| static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| /* A note on handling of the condexec (IT) bits: |
| * |
| * We want to avoid the overhead of having to write the updated condexec |
| * bits back to the CPUARMState for every instruction in an IT block. So: |
| * (1) if the condexec bits are not already zero then we write |
| * zero back into the CPUARMState now. This avoids complications trying |
| * to do it at the end of the block. (For example if we don't do this |
| * it's hard to identify whether we can safely skip writing condexec |
| * at the end of the TB, which we definitely want to do for the case |
| * where a TB doesn't do anything with the IT state at all.) |
| * (2) if we are going to leave the TB then we call gen_set_condexec() |
| * which will write the correct value into CPUARMState if zero is wrong. |
| * This is done both for leaving the TB at the end, and for leaving |
| * it because of an exception we know will happen, which is done in |
| * gen_exception_insn(). The latter is necessary because we need to |
| * leave the TB with the PC/IT state just prior to execution of the |
| * instruction which caused the exception. |
| * (3) if we leave the TB unexpectedly (eg a data abort on a load) |
| * then the CPUARMState will be wrong and we need to reset it. |
| * This is handled in the same way as restoration of the |
| * PC in these situations; we save the value of the condexec bits |
| * for each PC via tcg_gen_insn_start(), and restore_state_to_opc() |
| * then uses this to restore them after an exception. |
| * |
| * Note that there are no instructions which can read the condexec |
| * bits, and none which can write non-static values to them, so |
| * we don't need to care about whether CPUARMState is correct in the |
| * middle of a TB. |
| */ |
| |
| /* Reset the conditional execution bits immediately. This avoids |
| complications trying to do it at the end of the block. */ |
| if (dc->condexec_mask || dc->condexec_cond) { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(tmp, 0); |
| store_cpu_field(tmp, condexec_bits); |
| } |
| } |
| |
| static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| tcg_gen_insn_start(dc->base.pc_next, |
| (dc->condexec_cond << 4) | (dc->condexec_mask >> 1), |
| 0); |
| dc->insn_start = tcg_last_op(); |
| } |
| |
| static bool arm_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu, |
| const CPUBreakpoint *bp) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| if (bp->flags & BP_CPU) { |
| gen_set_condexec(dc); |
| gen_set_pc_im(dc, dc->base.pc_next); |
| gen_helper_check_breakpoints(cpu_env); |
| /* End the TB early; it's likely not going to be executed */ |
| dc->base.is_jmp = DISAS_TOO_MANY; |
| } else { |
| gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG); |
| /* The address covered by the breakpoint must be |
| included in [tb->pc, tb->pc + tb->size) in order |
| to for it to be properly cleared -- thus we |
| increment the PC here so that the logic setting |
| tb->size below does the right thing. */ |
| /* TODO: Advance PC by correct instruction length to |
| * avoid disassembler error messages */ |
| dc->base.pc_next += 2; |
| dc->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| return true; |
| } |
| |
| static bool arm_pre_translate_insn(DisasContext *dc) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* Intercept jump to the magic kernel page. */ |
| if (dc->base.pc_next >= 0xffff0000) { |
| /* We always get here via a jump, so know we are not in a |
| conditional execution block. */ |
| gen_exception_internal(EXCP_KERNEL_TRAP); |
| dc->base.is_jmp = DISAS_NORETURN; |
| return true; |
| } |
| #endif |
| |
| if (dc->ss_active && !dc->pstate_ss) { |
| /* Singlestep state is Active-pending. |
| * If we're in this state at the start of a TB then either |
| * a) we just took an exception to an EL which is being debugged |
| * and this is the first insn in the exception handler |
| * b) debug exceptions were masked and we just unmasked them |
| * without changing EL (eg by clearing PSTATE.D) |
| * In either case we're going to take a swstep exception in the |
| * "did not step an insn" case, and so the syndrome ISV and EX |
| * bits should be zero. |
| */ |
| assert(dc->base.num_insns == 1); |
| gen_swstep_exception(dc, 0, 0); |
| dc->base.is_jmp = DISAS_NORETURN; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void arm_post_translate_insn(DisasContext *dc) |
| { |
| if (dc->condjmp && !dc->base.is_jmp) { |
| gen_set_label(dc->condlabel); |
| dc->condjmp = 0; |
| } |
| translator_loop_temp_check(&dc->base); |
| } |
| |
| static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu->env_ptr; |
| unsigned int insn; |
| |
| if (arm_pre_translate_insn(dc)) { |
| return; |
| } |
| |
| dc->pc_curr = dc->base.pc_next; |
| insn = arm_ldl_code(env, dc->base.pc_next, dc->sctlr_b); |
| dc->insn = insn; |
| dc->base.pc_next += 4; |
| disas_arm_insn(dc, insn); |
| |
| arm_post_translate_insn(dc); |
| |
| /* ARM is a fixed-length ISA. We performed the cross-page check |
| in init_disas_context by adjusting max_insns. */ |
| } |
| |
| static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn) |
| { |
| /* Return true if this Thumb insn is always unconditional, |
| * even inside an IT block. This is true of only a very few |
| * instructions: BKPT, HLT, and SG. |
| * |
| * A larger class of instructions are UNPREDICTABLE if used |
| * inside an IT block; we do not need to detect those here, because |
| * what we do by default (perform the cc check and update the IT |
| * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE |
| * choice for those situations. |
| * |
| * insn is either a 16-bit or a 32-bit instruction; the two are |
| * distinguishable because for the 16-bit case the top 16 bits |
| * are zeroes, and that isn't a valid 32-bit encoding. |
| */ |
| if ((insn & 0xffffff00) == 0xbe00) { |
| /* BKPT */ |
| return true; |
| } |
| |
| if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) && |
| !arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* HLT: v8A only. This is unconditional even when it is going to |
| * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3. |
| * For v7 cores this was a plain old undefined encoding and so |
| * honours its cc check. (We might be using the encoding as |
| * a semihosting trap, but we don't change the cc check behaviour |
| * on that account, because a debugger connected to a real v7A |
| * core and emulating semihosting traps by catching the UNDEF |
| * exception would also only see cases where the cc check passed. |
| * No guest code should be trying to do a HLT semihosting trap |
| * in an IT block anyway. |
| */ |
| return true; |
| } |
| |
| if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) && |
| arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* SG: v8M only */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu->env_ptr; |
| uint32_t insn; |
| bool is_16bit; |
| |
| if (arm_pre_translate_insn(dc)) { |
| return; |
| } |
| |
| dc->pc_curr = dc->base.pc_next; |
| insn = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b); |
| is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn); |
| dc->base.pc_next += 2; |
| if (!is_16bit) { |
| uint32_t insn2 = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b); |
| |
| insn = insn << 16 | insn2; |
| dc->base.pc_next += 2; |
| } |
| dc->insn = insn; |
| |
| if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) { |
| uint32_t cond = dc->condexec_cond; |
| |
| /* |
| * Conditionally skip the insn. Note that both 0xe and 0xf mean |
| * "always"; 0xf is not "never". |
| */ |
| if (cond < 0x0e) { |
| arm_skip_unless(dc, cond); |
| } |
| } |
| |
| if (is_16bit) { |
| disas_thumb_insn(dc, insn); |
| } else { |
| disas_thumb2_insn(dc, insn); |
| } |
| |
| /* Advance the Thumb condexec condition. */ |
| if (dc->condexec_mask) { |
| dc->condexec_cond = ((dc->condexec_cond & 0xe) | |
| ((dc->condexec_mask >> 4) & 1)); |
| dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; |
| if (dc->condexec_mask == 0) { |
| dc->condexec_cond = 0; |
| } |
| } |
| |
| arm_post_translate_insn(dc); |
| |
| /* Thumb is a variable-length ISA. Stop translation when the next insn |
| * will touch a new page. This ensures that prefetch aborts occur at |
| * the right place. |
| * |
| * We want to stop the TB if the next insn starts in a new page, |
| * or if it spans between this page and the next. This means that |
| * if we're looking at the last halfword in the page we need to |
| * see if it's a 16-bit Thumb insn (which will fit in this TB) |
| * or a 32-bit Thumb insn (which won't). |
| * This is to avoid generating a silly TB with a single 16-bit insn |
| * in it at the end of this page (which would execute correctly |
| * but isn't very efficient). |
| */ |
| if (dc->base.is_jmp == DISAS_NEXT |
| && (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE |
| || (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3 |
| && insn_crosses_page(env, dc)))) { |
| dc->base.is_jmp = DISAS_TOO_MANY; |
| } |
| } |
| |
| static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| if (tb_cflags(dc->base.tb) & CF_LAST_IO && dc->condjmp) { |
| /* FIXME: This can theoretically happen with self-modifying code. */ |
| cpu_abort(cpu, "IO on conditional branch instruction"); |
| } |
| |
| /* At this stage dc->condjmp will only be set when the skipped |
| instruction was a conditional branch or trap, and the PC has |
| already been written. */ |
| gen_set_condexec(dc); |
| if (dc->base.is_jmp == DISAS_BX_EXCRET) { |
| /* Exception return branches need some special case code at the |
| * end of the TB, which is complex enough that it has to |
| * handle the single-step vs not and the condition-failed |
| * insn codepath itself. |
| */ |
| gen_bx_excret_final_code(dc); |
| } else if (unlikely(is_singlestepping(dc))) { |
| /* Unconditional and "condition passed" instruction codepath. */ |
| switch (dc->base.is_jmp) { |
| case DISAS_SWI: |
| gen_ss_advance(dc); |
| gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb), |
| default_exception_el(dc)); |
| break; |
| case DISAS_HVC: |
| gen_ss_advance(dc); |
| gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); |
| break; |
| case DISAS_SMC: |
| gen_ss_advance(dc); |
| gen_exception(EXCP_SMC, syn_aa32_smc(), 3); |
| break; |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| case DISAS_UPDATE: |
| gen_set_pc_im(dc, dc->base.pc_next); |
| /* fall through */ |
| default: |
| /* FIXME: Single stepping a WFI insn will not halt the CPU. */ |
| gen_singlestep_exception(dc); |
| break; |
| case DISAS_NORETURN: |
| break; |
| } |
| } else { |
| /* While branches must always occur at the end of an IT block, |
| there are a few other things that can cause us to terminate |
| the TB in the middle of an IT block: |
| - Exception generating instructions (bkpt, swi, undefined). |
| - Page boundaries. |
| - Hardware watchpoints. |
| Hardware breakpoints have already been handled and skip this code. |
| */ |
| switch(dc->base.is_jmp) { |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| gen_goto_tb(dc, 1, dc->base.pc_next); |
| break; |
| case DISAS_JUMP: |
| gen_goto_ptr(); |
| break; |
| case DISAS_UPDATE: |
| gen_set_pc_im(dc, dc->base.pc_next); |
| /* fall through */ |
| default: |
| /* indicate that the hash table must be used to find the next TB */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| case DISAS_NORETURN: |
| /* nothing more to generate */ |
| break; |
| case DISAS_WFI: |
| { |
| TCGv_i32 tmp = tcg_const_i32((dc->thumb && |
| !(dc->insn & (1U << 31))) ? 2 : 4); |
| |
| gen_helper_wfi(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| /* The helper doesn't necessarily throw an exception, but we |
| * must go back to the main loop to check for interrupts anyway. |
| */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| } |
| case DISAS_WFE: |
| gen_helper_wfe(cpu_env); |
| break; |
| case DISAS_YIELD: |
| gen_helper_yield(cpu_env); |
| break; |
| case DISAS_SWI: |
| gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb), |
| default_exception_el(dc)); |
| break; |
| case DISAS_HVC: |
| gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); |
| break; |
| case DISAS_SMC: |
| gen_exception(EXCP_SMC, syn_aa32_smc(), 3); |
| break; |
| } |
| } |
| |
| if (dc->condjmp) { |
| /* "Condition failed" instruction codepath for the branch/trap insn */ |
| gen_set_label(dc->condlabel); |
| gen_set_condexec(dc); |
| if (unlikely(is_singlestepping(dc))) { |
| gen_set_pc_im(dc, dc->base.pc_next); |
| gen_singlestep_exception(dc); |
| } else { |
| gen_goto_tb(dc, 1, dc->base.pc_next); |
| } |
| } |
| } |
| |
| static void arm_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first)); |
| log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size); |
| } |
| |
| static const TranslatorOps arm_translator_ops = { |
| .init_disas_context = arm_tr_init_disas_context, |
| .tb_start = arm_tr_tb_start, |
| .insn_start = arm_tr_insn_start, |
| .breakpoint_check = arm_tr_breakpoint_check, |
| .translate_insn = arm_tr_translate_insn, |
| .tb_stop = arm_tr_tb_stop, |
| .disas_log = arm_tr_disas_log, |
| }; |
| |
| static const TranslatorOps thumb_translator_ops = { |
| .init_disas_context = arm_tr_init_disas_context, |
| .tb_start = arm_tr_tb_start, |
| .insn_start = arm_tr_insn_start, |
| .breakpoint_check = arm_tr_breakpoint_check, |
| .translate_insn = thumb_tr_translate_insn, |
| .tb_stop = arm_tr_tb_stop, |
| .disas_log = arm_tr_disas_log, |
| }; |
| |
| /* generate intermediate code for basic block 'tb'. */ |
| void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns) |
| { |
| DisasContext dc = { }; |
| const TranslatorOps *ops = &arm_translator_ops; |
| |
| if (FIELD_EX32(tb->flags, TBFLAG_AM32, THUMB)) { |
| ops = &thumb_translator_ops; |
| } |
| #ifdef TARGET_AARCH64 |
| if (FIELD_EX32(tb->flags, TBFLAG_ANY, AARCH64_STATE)) { |
| ops = &aarch64_translator_ops; |
| } |
| #endif |
| |
| translator_loop(ops, &dc.base, cpu, tb, max_insns); |
| } |
| |
| void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb, |
| target_ulong *data) |
| { |
| if (is_a64(env)) { |
| env->pc = data[0]; |
| env->condexec_bits = 0; |
| env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; |
| } else { |
| env->regs[15] = data[0]; |
| env->condexec_bits = data[1]; |
| env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; |
| } |
| } |