| /* |
| * ARM GICv3 support - common bits of emulated and KVM kernel model |
| * |
| * Copyright (c) 2012 Linaro Limited |
| * Copyright (c) 2015 Huawei. |
| * Copyright (c) 2015 Samsung Electronics Co., Ltd. |
| * Written by Peter Maydell |
| * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu/module.h" |
| #include "hw/core/cpu.h" |
| #include "hw/intc/arm_gicv3_common.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| #include "gicv3_internal.h" |
| #include "hw/arm/linux-boot-if.h" |
| #include "sysemu/kvm.h" |
| |
| |
| static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) |
| { |
| if (cs->gicd_no_migration_shift_bug) { |
| return; |
| } |
| |
| /* Older versions of QEMU had a bug in the handling of state save/restore |
| * to the KVM GICv3: they got the offset in the bitmap arrays wrong, |
| * so that instead of the data for external interrupts 32 and up |
| * starting at bit position 32 in the bitmap, it started at bit |
| * position 64. If we're receiving data from a QEMU with that bug, |
| * we must move the data down into the right place. |
| */ |
| memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, |
| sizeof(cs->group) - GIC_INTERNAL / 8); |
| memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, |
| sizeof(cs->grpmod) - GIC_INTERNAL / 8); |
| memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, |
| sizeof(cs->enabled) - GIC_INTERNAL / 8); |
| memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, |
| sizeof(cs->pending) - GIC_INTERNAL / 8); |
| memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, |
| sizeof(cs->active) - GIC_INTERNAL / 8); |
| memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, |
| sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); |
| |
| /* |
| * While this new version QEMU doesn't have this kind of bug as we fix it, |
| * so it needs to set the flag to true to indicate that and it's necessary |
| * for next migration to work from this new version QEMU. |
| */ |
| cs->gicd_no_migration_shift_bug = true; |
| } |
| |
| static int gicv3_pre_save(void *opaque) |
| { |
| GICv3State *s = (GICv3State *)opaque; |
| ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); |
| |
| if (c->pre_save) { |
| c->pre_save(s); |
| } |
| |
| return 0; |
| } |
| |
| static int gicv3_post_load(void *opaque, int version_id) |
| { |
| GICv3State *s = (GICv3State *)opaque; |
| ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); |
| |
| gicv3_gicd_no_migration_shift_bug_post_load(s); |
| |
| if (c->post_load) { |
| c->post_load(s); |
| } |
| return 0; |
| } |
| |
| static bool virt_state_needed(void *opaque) |
| { |
| GICv3CPUState *cs = opaque; |
| |
| return cs->num_list_regs != 0; |
| } |
| |
| static const VMStateDescription vmstate_gicv3_cpu_virt = { |
| .name = "arm_gicv3_cpu/virt", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = virt_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), |
| VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), |
| VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), |
| VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static int vmstate_gicv3_cpu_pre_load(void *opaque) |
| { |
| GICv3CPUState *cs = opaque; |
| |
| /* |
| * If the sre_el1 subsection is not transferred this |
| * means SRE_EL1 is 0x7 (which might not be the same as |
| * our reset value). |
| */ |
| cs->icc_sre_el1 = 0x7; |
| return 0; |
| } |
| |
| static bool icc_sre_el1_reg_needed(void *opaque) |
| { |
| GICv3CPUState *cs = opaque; |
| |
| return cs->icc_sre_el1 != 7; |
| } |
| |
| const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { |
| .name = "arm_gicv3_cpu/sre_el1", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = icc_sre_el1_reg_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_gicv3_cpu = { |
| .name = "arm_gicv3_cpu", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_load = vmstate_gicv3_cpu_pre_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(level, GICv3CPUState), |
| VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), |
| VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), |
| VMSTATE_UINT32(gicr_waker, GICv3CPUState), |
| VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), |
| VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), |
| VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), |
| VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), |
| VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), |
| VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), |
| VMSTATE_UINT32(edge_trigger, GICv3CPUState), |
| VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), |
| VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), |
| VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), |
| VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), |
| VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), |
| VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), |
| VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), |
| VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), |
| VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * []) { |
| &vmstate_gicv3_cpu_virt, |
| &vmstate_gicv3_cpu_sre_el1, |
| NULL |
| } |
| }; |
| |
| static int gicv3_pre_load(void *opaque) |
| { |
| GICv3State *cs = opaque; |
| |
| /* |
| * The gicd_no_migration_shift_bug flag is used for migration compatibility |
| * for old version QEMU which may have the GICD bmp shift bug under KVM mode. |
| * Strictly, what we want to know is whether the migration source is using |
| * KVM. Since we don't have any way to determine that, we look at whether the |
| * destination is using KVM; this is close enough because for the older QEMU |
| * versions with this bug KVM -> TCG migration didn't work anyway. If the |
| * source is a newer QEMU without this bug it will transmit the migration |
| * subsection which sets the flag to true; otherwise it will remain set to |
| * the value we select here. |
| */ |
| if (kvm_enabled()) { |
| cs->gicd_no_migration_shift_bug = false; |
| } |
| |
| return 0; |
| } |
| |
| static bool needed_always(void *opaque) |
| { |
| return true; |
| } |
| |
| const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { |
| .name = "arm_gicv3/gicd_no_migration_shift_bug", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = needed_always, |
| .fields = (VMStateField[]) { |
| VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_gicv3 = { |
| .name = "arm_gicv3", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_load = gicv3_pre_load, |
| .pre_save = gicv3_pre_save, |
| .post_load = gicv3_post_load, |
| .priority = MIG_PRI_GICV3, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(gicd_ctlr, GICv3State), |
| VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), |
| VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), |
| VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), |
| VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), |
| VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, |
| DIV_ROUND_UP(GICV3_MAXIRQ, 16)), |
| VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, |
| vmstate_gicv3_cpu, GICv3CPUState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * []) { |
| &vmstate_gicv3_gicd_no_migration_shift_bug, |
| NULL |
| } |
| }; |
| |
| void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, |
| const MemoryRegionOps *ops, Error **errp) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(s); |
| int rdist_capacity = 0; |
| int i; |
| |
| for (i = 0; i < s->nb_redist_regions; i++) { |
| rdist_capacity += s->redist_region_count[i]; |
| } |
| if (rdist_capacity < s->num_cpu) { |
| error_setg(errp, "Capacity of the redist regions(%d) " |
| "is less than number of vcpus(%d)", |
| rdist_capacity, s->num_cpu); |
| return; |
| } |
| |
| /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. |
| * GPIO array layout is thus: |
| * [0..N-1] spi |
| * [N..N+31] PPIs for CPU 0 |
| * [N+32..N+63] PPIs for CPU 1 |
| * ... |
| */ |
| i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; |
| qdev_init_gpio_in(DEVICE(s), handler, i); |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->cpu[i].parent_irq); |
| } |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); |
| } |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->cpu[i].parent_virq); |
| } |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); |
| } |
| |
| memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, |
| "gicv3_dist", 0x10000); |
| sysbus_init_mmio(sbd, &s->iomem_dist); |
| |
| s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); |
| for (i = 0; i < s->nb_redist_regions; i++) { |
| char *name = g_strdup_printf("gicv3_redist_region[%d]", i); |
| |
| memory_region_init_io(&s->iomem_redist[i], OBJECT(s), |
| ops ? &ops[1] : NULL, s, name, |
| s->redist_region_count[i] * GICV3_REDIST_SIZE); |
| sysbus_init_mmio(sbd, &s->iomem_redist[i]); |
| g_free(name); |
| } |
| } |
| |
| static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) |
| { |
| GICv3State *s = ARM_GICV3_COMMON(dev); |
| int i; |
| |
| /* revision property is actually reserved and currently used only in order |
| * to keep the interface compatible with GICv2 code, avoiding extra |
| * conditions. However, in future it could be used, for example, if we |
| * implement GICv4. |
| */ |
| if (s->revision != 3) { |
| error_setg(errp, "unsupported GIC revision %d", s->revision); |
| return; |
| } |
| |
| if (s->num_irq > GICV3_MAXIRQ) { |
| error_setg(errp, |
| "requested %u interrupt lines exceeds GIC maximum %d", |
| s->num_irq, GICV3_MAXIRQ); |
| return; |
| } |
| if (s->num_irq < GIC_INTERNAL) { |
| error_setg(errp, |
| "requested %u interrupt lines is below GIC minimum %d", |
| s->num_irq, GIC_INTERNAL); |
| return; |
| } |
| |
| /* ITLinesNumber is represented as (N / 32) - 1, so this is an |
| * implementation imposed restriction, not an architectural one, |
| * so we don't have to deal with bitfields where only some of the |
| * bits in a 32-bit word should be valid. |
| */ |
| if (s->num_irq % 32) { |
| error_setg(errp, |
| "%d interrupt lines unsupported: not divisible by 32", |
| s->num_irq); |
| return; |
| } |
| |
| s->cpu = g_new0(GICv3CPUState, s->num_cpu); |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| CPUState *cpu = qemu_get_cpu(i); |
| uint64_t cpu_affid; |
| int last; |
| |
| s->cpu[i].cpu = cpu; |
| s->cpu[i].gic = s; |
| /* Store GICv3CPUState in CPUARMState gicv3state pointer */ |
| gicv3_set_gicv3state(cpu, &s->cpu[i]); |
| |
| /* Pre-construct the GICR_TYPER: |
| * For our implementation: |
| * Top 32 bits are the affinity value of the associated CPU |
| * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) |
| * Processor_Number == CPU index starting from 0 |
| * DPGS == 0 (GICR_CTLR.DPG* not supported) |
| * Last == 1 if this is the last redistributor in a series of |
| * contiguous redistributor pages |
| * DirectLPI == 0 (direct injection of LPIs not supported) |
| * VLPIS == 0 (virtual LPIs not supported) |
| * PLPIS == 0 (physical LPIs not supported) |
| */ |
| cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); |
| last = (i == s->num_cpu - 1); |
| |
| /* The CPU mp-affinity property is in MPIDR register format; squash |
| * the affinity bytes into 32 bits as the GICR_TYPER has them. |
| */ |
| cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | |
| (cpu_affid & 0xFFFFFF); |
| s->cpu[i].gicr_typer = (cpu_affid << 32) | |
| (1 << 24) | |
| (i << 8) | |
| (last << 4); |
| } |
| } |
| |
| static void arm_gicv3_finalize(Object *obj) |
| { |
| GICv3State *s = ARM_GICV3_COMMON(obj); |
| |
| g_free(s->redist_region_count); |
| } |
| |
| static void arm_gicv3_common_reset(DeviceState *dev) |
| { |
| GICv3State *s = ARM_GICV3_COMMON(dev); |
| int i; |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| GICv3CPUState *cs = &s->cpu[i]; |
| |
| cs->level = 0; |
| cs->gicr_ctlr = 0; |
| cs->gicr_statusr[GICV3_S] = 0; |
| cs->gicr_statusr[GICV3_NS] = 0; |
| cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; |
| cs->gicr_propbaser = 0; |
| cs->gicr_pendbaser = 0; |
| /* If we're resetting a TZ-aware GIC as if secure firmware |
| * had set it up ready to start a kernel in non-secure, we |
| * need to set interrupts to group 1 so the kernel can use them. |
| * Otherwise they reset to group 0 like the hardware. |
| */ |
| if (s->irq_reset_nonsecure) { |
| cs->gicr_igroupr0 = 0xffffffff; |
| } else { |
| cs->gicr_igroupr0 = 0; |
| } |
| |
| cs->gicr_ienabler0 = 0; |
| cs->gicr_ipendr0 = 0; |
| cs->gicr_iactiver0 = 0; |
| cs->edge_trigger = 0xffff; |
| cs->gicr_igrpmodr0 = 0; |
| cs->gicr_nsacr = 0; |
| memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); |
| |
| cs->hppi.prio = 0xff; |
| |
| /* State in the CPU interface must *not* be reset here, because it |
| * is part of the CPU's reset domain, not the GIC device's. |
| */ |
| } |
| |
| /* For our implementation affinity routing is always enabled */ |
| if (s->security_extn) { |
| s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; |
| } else { |
| s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; |
| } |
| |
| s->gicd_statusr[GICV3_S] = 0; |
| s->gicd_statusr[GICV3_NS] = 0; |
| |
| memset(s->group, 0, sizeof(s->group)); |
| memset(s->grpmod, 0, sizeof(s->grpmod)); |
| memset(s->enabled, 0, sizeof(s->enabled)); |
| memset(s->pending, 0, sizeof(s->pending)); |
| memset(s->active, 0, sizeof(s->active)); |
| memset(s->level, 0, sizeof(s->level)); |
| memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); |
| memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); |
| memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); |
| memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); |
| /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must |
| * write these to get sane behaviour and we need not populate the |
| * pointer cache here; however having the cache be different for |
| * "happened to be 0 from reset" and "guest wrote 0" would be |
| * too confusing. |
| */ |
| gicv3_cache_all_target_cpustates(s); |
| |
| if (s->irq_reset_nonsecure) { |
| /* If we're resetting a TZ-aware GIC as if secure firmware |
| * had set it up ready to start a kernel in non-secure, we |
| * need to set interrupts to group 1 so the kernel can use them. |
| * Otherwise they reset to group 0 like the hardware. |
| */ |
| for (i = GIC_INTERNAL; i < s->num_irq; i++) { |
| gicv3_gicd_group_set(s, i); |
| } |
| } |
| s->gicd_no_migration_shift_bug = true; |
| } |
| |
| static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, |
| bool secure_boot) |
| { |
| GICv3State *s = ARM_GICV3_COMMON(obj); |
| |
| if (s->security_extn && !secure_boot) { |
| /* We're directly booting a kernel into NonSecure. If this GIC |
| * implements the security extensions then we must configure it |
| * to have all the interrupts be NonSecure (this is a job that |
| * is done by the Secure boot firmware in real hardware, and in |
| * this mode QEMU is acting as a minimalist firmware-and-bootloader |
| * equivalent). |
| */ |
| s->irq_reset_nonsecure = true; |
| } |
| } |
| |
| static Property arm_gicv3_common_properties[] = { |
| DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), |
| DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), |
| DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), |
| DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), |
| DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, |
| redist_region_count, qdev_prop_uint32, uint32_t), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); |
| |
| dc->reset = arm_gicv3_common_reset; |
| dc->realize = arm_gicv3_common_realize; |
| device_class_set_props(dc, arm_gicv3_common_properties); |
| dc->vmsd = &vmstate_gicv3; |
| albifc->arm_linux_init = arm_gic_common_linux_init; |
| } |
| |
| static const TypeInfo arm_gicv3_common_type = { |
| .name = TYPE_ARM_GICV3_COMMON, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(GICv3State), |
| .class_size = sizeof(ARMGICv3CommonClass), |
| .class_init = arm_gicv3_common_class_init, |
| .instance_finalize = arm_gicv3_finalize, |
| .abstract = true, |
| .interfaces = (InterfaceInfo []) { |
| { TYPE_ARM_LINUX_BOOT_IF }, |
| { }, |
| }, |
| }; |
| |
| static void register_types(void) |
| { |
| type_register_static(&arm_gicv3_common_type); |
| } |
| |
| type_init(register_types) |