blob: b12fbfda635d88601afd90f9686054b74c888be2 [file] [log] [blame]
/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2009 Ulrich Hecht <uli@suse.de>
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright (c) 2010 Richard Henderson <rth@twiddle.net>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* We only support generating code for 64-bit mode. */
#if TCG_TARGET_REG_BITS != 64
#error "unsupported code generation mode"
#endif
#include "../tcg-pool.c.inc"
#include "elf.h"
/* ??? The translation blocks produced by TCG are generally small enough to
be entirely reachable with a 16-bit displacement. Leaving the option for
a 32-bit displacement here Just In Case. */
#define USE_LONG_BRANCHES 0
#define TCG_CT_CONST_S16 0x100
#define TCG_CT_CONST_S32 0x200
#define TCG_CT_CONST_S33 0x400
#define TCG_CT_CONST_ZERO 0x800
#define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 16)
#define ALL_VECTOR_REGS MAKE_64BIT_MASK(32, 32)
/*
* For softmmu, we need to avoid conflicts with the first 3
* argument registers to perform the tlb lookup, and to call
* the helper function.
*/
#ifdef CONFIG_SOFTMMU
#define SOFTMMU_RESERVE_REGS MAKE_64BIT_MASK(TCG_REG_R2, 3)
#else
#define SOFTMMU_RESERVE_REGS 0
#endif
/* Several places within the instruction set 0 means "no register"
rather than TCG_REG_R0. */
#define TCG_REG_NONE 0
/* A scratch register that may be be used throughout the backend. */
#define TCG_TMP0 TCG_REG_R1
/* A scratch register that holds a pointer to the beginning of the TB.
We don't need this when we have pc-relative loads with the general
instructions extension facility. */
#define TCG_REG_TB TCG_REG_R12
#define USE_REG_TB (!HAVE_FACILITY(GEN_INST_EXT))
#ifndef CONFIG_SOFTMMU
#define TCG_GUEST_BASE_REG TCG_REG_R13
#endif
/* All of the following instructions are prefixed with their instruction
format, and are defined as 8- or 16-bit quantities, even when the two
halves of the 16-bit quantity may appear 32 bits apart in the insn.
This makes it easy to copy the values from the tables in Appendix B. */
typedef enum S390Opcode {
RIL_AFI = 0xc209,
RIL_AGFI = 0xc208,
RIL_ALFI = 0xc20b,
RIL_ALGFI = 0xc20a,
RIL_BRASL = 0xc005,
RIL_BRCL = 0xc004,
RIL_CFI = 0xc20d,
RIL_CGFI = 0xc20c,
RIL_CLFI = 0xc20f,
RIL_CLGFI = 0xc20e,
RIL_CLRL = 0xc60f,
RIL_CLGRL = 0xc60a,
RIL_CRL = 0xc60d,
RIL_CGRL = 0xc608,
RIL_IIHF = 0xc008,
RIL_IILF = 0xc009,
RIL_LARL = 0xc000,
RIL_LGFI = 0xc001,
RIL_LGRL = 0xc408,
RIL_LLIHF = 0xc00e,
RIL_LLILF = 0xc00f,
RIL_LRL = 0xc40d,
RIL_MSFI = 0xc201,
RIL_MSGFI = 0xc200,
RIL_NIHF = 0xc00a,
RIL_NILF = 0xc00b,
RIL_OIHF = 0xc00c,
RIL_OILF = 0xc00d,
RIL_SLFI = 0xc205,
RIL_SLGFI = 0xc204,
RIL_XIHF = 0xc006,
RIL_XILF = 0xc007,
RI_AGHI = 0xa70b,
RI_AHI = 0xa70a,
RI_BRC = 0xa704,
RI_CHI = 0xa70e,
RI_CGHI = 0xa70f,
RI_IIHH = 0xa500,
RI_IIHL = 0xa501,
RI_IILH = 0xa502,
RI_IILL = 0xa503,
RI_LGHI = 0xa709,
RI_LLIHH = 0xa50c,
RI_LLIHL = 0xa50d,
RI_LLILH = 0xa50e,
RI_LLILL = 0xa50f,
RI_MGHI = 0xa70d,
RI_MHI = 0xa70c,
RI_NIHH = 0xa504,
RI_NIHL = 0xa505,
RI_NILH = 0xa506,
RI_NILL = 0xa507,
RI_OIHH = 0xa508,
RI_OIHL = 0xa509,
RI_OILH = 0xa50a,
RI_OILL = 0xa50b,
RIE_CGIJ = 0xec7c,
RIE_CGRJ = 0xec64,
RIE_CIJ = 0xec7e,
RIE_CLGRJ = 0xec65,
RIE_CLIJ = 0xec7f,
RIE_CLGIJ = 0xec7d,
RIE_CLRJ = 0xec77,
RIE_CRJ = 0xec76,
RIE_LOCGHI = 0xec46,
RIE_RISBG = 0xec55,
RRE_AGR = 0xb908,
RRE_ALGR = 0xb90a,
RRE_ALCR = 0xb998,
RRE_ALCGR = 0xb988,
RRE_CGR = 0xb920,
RRE_CLGR = 0xb921,
RRE_DLGR = 0xb987,
RRE_DLR = 0xb997,
RRE_DSGFR = 0xb91d,
RRE_DSGR = 0xb90d,
RRE_FLOGR = 0xb983,
RRE_LGBR = 0xb906,
RRE_LCGR = 0xb903,
RRE_LGFR = 0xb914,
RRE_LGHR = 0xb907,
RRE_LGR = 0xb904,
RRE_LLGCR = 0xb984,
RRE_LLGFR = 0xb916,
RRE_LLGHR = 0xb985,
RRE_LRVR = 0xb91f,
RRE_LRVGR = 0xb90f,
RRE_LTGR = 0xb902,
RRE_MLGR = 0xb986,
RRE_MSGR = 0xb90c,
RRE_MSR = 0xb252,
RRE_NGR = 0xb980,
RRE_OGR = 0xb981,
RRE_SGR = 0xb909,
RRE_SLGR = 0xb90b,
RRE_SLBR = 0xb999,
RRE_SLBGR = 0xb989,
RRE_XGR = 0xb982,
RRF_LOCR = 0xb9f2,
RRF_LOCGR = 0xb9e2,
RRF_NRK = 0xb9f4,
RRF_NGRK = 0xb9e4,
RRF_ORK = 0xb9f6,
RRF_OGRK = 0xb9e6,
RRF_SRK = 0xb9f9,
RRF_SGRK = 0xb9e9,
RRF_SLRK = 0xb9fb,
RRF_SLGRK = 0xb9eb,
RRF_XRK = 0xb9f7,
RRF_XGRK = 0xb9e7,
RR_AR = 0x1a,
RR_ALR = 0x1e,
RR_BASR = 0x0d,
RR_BCR = 0x07,
RR_CLR = 0x15,
RR_CR = 0x19,
RR_DR = 0x1d,
RR_LCR = 0x13,
RR_LR = 0x18,
RR_LTR = 0x12,
RR_NR = 0x14,
RR_OR = 0x16,
RR_SR = 0x1b,
RR_SLR = 0x1f,
RR_XR = 0x17,
RSY_RLL = 0xeb1d,
RSY_RLLG = 0xeb1c,
RSY_SLLG = 0xeb0d,
RSY_SLLK = 0xebdf,
RSY_SRAG = 0xeb0a,
RSY_SRAK = 0xebdc,
RSY_SRLG = 0xeb0c,
RSY_SRLK = 0xebde,
RS_SLL = 0x89,
RS_SRA = 0x8a,
RS_SRL = 0x88,
RXY_AG = 0xe308,
RXY_AY = 0xe35a,
RXY_CG = 0xe320,
RXY_CLG = 0xe321,
RXY_CLY = 0xe355,
RXY_CY = 0xe359,
RXY_LAY = 0xe371,
RXY_LB = 0xe376,
RXY_LG = 0xe304,
RXY_LGB = 0xe377,
RXY_LGF = 0xe314,
RXY_LGH = 0xe315,
RXY_LHY = 0xe378,
RXY_LLGC = 0xe390,
RXY_LLGF = 0xe316,
RXY_LLGH = 0xe391,
RXY_LMG = 0xeb04,
RXY_LRV = 0xe31e,
RXY_LRVG = 0xe30f,
RXY_LRVH = 0xe31f,
RXY_LY = 0xe358,
RXY_NG = 0xe380,
RXY_OG = 0xe381,
RXY_STCY = 0xe372,
RXY_STG = 0xe324,
RXY_STHY = 0xe370,
RXY_STMG = 0xeb24,
RXY_STRV = 0xe33e,
RXY_STRVG = 0xe32f,
RXY_STRVH = 0xe33f,
RXY_STY = 0xe350,
RXY_XG = 0xe382,
RX_A = 0x5a,
RX_C = 0x59,
RX_L = 0x58,
RX_LA = 0x41,
RX_LH = 0x48,
RX_ST = 0x50,
RX_STC = 0x42,
RX_STH = 0x40,
VRIa_VGBM = 0xe744,
VRIa_VREPI = 0xe745,
VRIb_VGM = 0xe746,
VRIc_VREP = 0xe74d,
VRRa_VLC = 0xe7de,
VRRa_VLP = 0xe7df,
VRRa_VLR = 0xe756,
VRRc_VA = 0xe7f3,
VRRc_VCEQ = 0xe7f8, /* we leave the m5 cs field 0 */
VRRc_VCH = 0xe7fb, /* " */
VRRc_VCHL = 0xe7f9, /* " */
VRRc_VERLLV = 0xe773,
VRRc_VESLV = 0xe770,
VRRc_VESRAV = 0xe77a,
VRRc_VESRLV = 0xe778,
VRRc_VML = 0xe7a2,
VRRc_VMN = 0xe7fe,
VRRc_VMNL = 0xe7fc,
VRRc_VMX = 0xe7ff,
VRRc_VMXL = 0xe7fd,
VRRc_VN = 0xe768,
VRRc_VNC = 0xe769,
VRRc_VNO = 0xe76b,
VRRc_VO = 0xe76a,
VRRc_VOC = 0xe76f,
VRRc_VPKS = 0xe797, /* we leave the m5 cs field 0 */
VRRc_VS = 0xe7f7,
VRRa_VUPH = 0xe7d7,
VRRa_VUPL = 0xe7d6,
VRRc_VX = 0xe76d,
VRRe_VSEL = 0xe78d,
VRRf_VLVGP = 0xe762,
VRSa_VERLL = 0xe733,
VRSa_VESL = 0xe730,
VRSa_VESRA = 0xe73a,
VRSa_VESRL = 0xe738,
VRSb_VLVG = 0xe722,
VRSc_VLGV = 0xe721,
VRX_VL = 0xe706,
VRX_VLLEZ = 0xe704,
VRX_VLREP = 0xe705,
VRX_VST = 0xe70e,
VRX_VSTEF = 0xe70b,
VRX_VSTEG = 0xe70a,
NOP = 0x0707,
} S390Opcode;
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
"%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
"%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
"%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
};
#endif
/* Since R6 is a potential argument register, choose it last of the
call-saved registers. Likewise prefer the call-clobbered registers
in reverse order to maximize the chance of avoiding the arguments. */
static const int tcg_target_reg_alloc_order[] = {
/* Call saved registers. */
TCG_REG_R13,
TCG_REG_R12,
TCG_REG_R11,
TCG_REG_R10,
TCG_REG_R9,
TCG_REG_R8,
TCG_REG_R7,
TCG_REG_R6,
/* Call clobbered registers. */
TCG_REG_R14,
TCG_REG_R0,
TCG_REG_R1,
/* Argument registers, in reverse order of allocation. */
TCG_REG_R5,
TCG_REG_R4,
TCG_REG_R3,
TCG_REG_R2,
/* V8-V15 are call saved, and omitted. */
TCG_REG_V0,
TCG_REG_V1,
TCG_REG_V2,
TCG_REG_V3,
TCG_REG_V4,
TCG_REG_V5,
TCG_REG_V6,
TCG_REG_V7,
TCG_REG_V16,
TCG_REG_V17,
TCG_REG_V18,
TCG_REG_V19,
TCG_REG_V20,
TCG_REG_V21,
TCG_REG_V22,
TCG_REG_V23,
TCG_REG_V24,
TCG_REG_V25,
TCG_REG_V26,
TCG_REG_V27,
TCG_REG_V28,
TCG_REG_V29,
TCG_REG_V30,
TCG_REG_V31,
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_R2,
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
};
static const int tcg_target_call_oarg_regs[] = {
TCG_REG_R2,
};
#define S390_CC_EQ 8
#define S390_CC_LT 4
#define S390_CC_GT 2
#define S390_CC_OV 1
#define S390_CC_NE (S390_CC_LT | S390_CC_GT)
#define S390_CC_LE (S390_CC_LT | S390_CC_EQ)
#define S390_CC_GE (S390_CC_GT | S390_CC_EQ)
#define S390_CC_NEVER 0
#define S390_CC_ALWAYS 15
/* Condition codes that result from a COMPARE and COMPARE LOGICAL. */
static const uint8_t tcg_cond_to_s390_cond[] = {
[TCG_COND_EQ] = S390_CC_EQ,
[TCG_COND_NE] = S390_CC_NE,
[TCG_COND_LT] = S390_CC_LT,
[TCG_COND_LE] = S390_CC_LE,
[TCG_COND_GT] = S390_CC_GT,
[TCG_COND_GE] = S390_CC_GE,
[TCG_COND_LTU] = S390_CC_LT,
[TCG_COND_LEU] = S390_CC_LE,
[TCG_COND_GTU] = S390_CC_GT,
[TCG_COND_GEU] = S390_CC_GE,
};
/* Condition codes that result from a LOAD AND TEST. Here, we have no
unsigned instruction variation, however since the test is vs zero we
can re-map the outcomes appropriately. */
static const uint8_t tcg_cond_to_ltr_cond[] = {
[TCG_COND_EQ] = S390_CC_EQ,
[TCG_COND_NE] = S390_CC_NE,
[TCG_COND_LT] = S390_CC_LT,
[TCG_COND_LE] = S390_CC_LE,
[TCG_COND_GT] = S390_CC_GT,
[TCG_COND_GE] = S390_CC_GE,
[TCG_COND_LTU] = S390_CC_NEVER,
[TCG_COND_LEU] = S390_CC_EQ,
[TCG_COND_GTU] = S390_CC_NE,
[TCG_COND_GEU] = S390_CC_ALWAYS,
};
#ifdef CONFIG_SOFTMMU
static void * const qemu_ld_helpers[(MO_SSIZE | MO_BSWAP) + 1] = {
[MO_UB] = helper_ret_ldub_mmu,
[MO_SB] = helper_ret_ldsb_mmu,
[MO_LEUW] = helper_le_lduw_mmu,
[MO_LESW] = helper_le_ldsw_mmu,
[MO_LEUL] = helper_le_ldul_mmu,
[MO_LESL] = helper_le_ldsl_mmu,
[MO_LEUQ] = helper_le_ldq_mmu,
[MO_BEUW] = helper_be_lduw_mmu,
[MO_BESW] = helper_be_ldsw_mmu,
[MO_BEUL] = helper_be_ldul_mmu,
[MO_BESL] = helper_be_ldsl_mmu,
[MO_BEUQ] = helper_be_ldq_mmu,
};
static void * const qemu_st_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
[MO_UB] = helper_ret_stb_mmu,
[MO_LEUW] = helper_le_stw_mmu,
[MO_LEUL] = helper_le_stl_mmu,
[MO_LEUQ] = helper_le_stq_mmu,
[MO_BEUW] = helper_be_stw_mmu,
[MO_BEUL] = helper_be_stl_mmu,
[MO_BEUQ] = helper_be_stq_mmu,
};
#endif
static const tcg_insn_unit *tb_ret_addr;
uint64_t s390_facilities[3];
static inline bool is_general_reg(TCGReg r)
{
return r <= TCG_REG_R15;
}
static inline bool is_vector_reg(TCGReg r)
{
return r >= TCG_REG_V0 && r <= TCG_REG_V31;
}
static bool patch_reloc(tcg_insn_unit *src_rw, int type,
intptr_t value, intptr_t addend)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
intptr_t pcrel2;
uint32_t old;
value += addend;
pcrel2 = (tcg_insn_unit *)value - src_rx;
switch (type) {
case R_390_PC16DBL:
if (pcrel2 == (int16_t)pcrel2) {
tcg_patch16(src_rw, pcrel2);
return true;
}
break;
case R_390_PC32DBL:
if (pcrel2 == (int32_t)pcrel2) {
tcg_patch32(src_rw, pcrel2);
return true;
}
break;
case R_390_20:
if (value == sextract64(value, 0, 20)) {
old = *(uint32_t *)src_rw & 0xf00000ff;
old |= ((value & 0xfff) << 16) | ((value & 0xff000) >> 4);
tcg_patch32(src_rw, old);
return true;
}
break;
default:
g_assert_not_reached();
}
return false;
}
/* Test if a constant matches the constraint. */
static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
{
if (ct & TCG_CT_CONST) {
return 1;
}
if (type == TCG_TYPE_I32) {
val = (int32_t)val;
}
/* The following are mutually exclusive. */
if (ct & TCG_CT_CONST_S16) {
return val == (int16_t)val;
} else if (ct & TCG_CT_CONST_S32) {
return val == (int32_t)val;
} else if (ct & TCG_CT_CONST_S33) {
return val >= -0xffffffffll && val <= 0xffffffffll;
} else if (ct & TCG_CT_CONST_ZERO) {
return val == 0;
}
return 0;
}
/* Emit instructions according to the given instruction format. */
static void tcg_out_insn_RR(TCGContext *s, S390Opcode op, TCGReg r1, TCGReg r2)
{
tcg_out16(s, (op << 8) | (r1 << 4) | r2);
}
static void tcg_out_insn_RRE(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2)
{
tcg_out32(s, (op << 16) | (r1 << 4) | r2);
}
static void tcg_out_insn_RRF(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2, int m3)
{
tcg_out32(s, (op << 16) | (m3 << 12) | (r1 << 4) | r2);
}
static void tcg_out_insn_RI(TCGContext *s, S390Opcode op, TCGReg r1, int i2)
{
tcg_out32(s, (op << 16) | (r1 << 20) | (i2 & 0xffff));
}
static void tcg_out_insn_RIE(TCGContext *s, S390Opcode op, TCGReg r1,
int i2, int m3)
{
tcg_out16(s, (op & 0xff00) | (r1 << 4) | m3);
tcg_out32(s, (i2 << 16) | (op & 0xff));
}
static void tcg_out_insn_RIL(TCGContext *s, S390Opcode op, TCGReg r1, int i2)
{
tcg_out16(s, op | (r1 << 4));
tcg_out32(s, i2);
}
static void tcg_out_insn_RS(TCGContext *s, S390Opcode op, TCGReg r1,
TCGReg b2, TCGReg r3, int disp)
{
tcg_out32(s, (op << 24) | (r1 << 20) | (r3 << 16) | (b2 << 12)
| (disp & 0xfff));
}
static void tcg_out_insn_RSY(TCGContext *s, S390Opcode op, TCGReg r1,
TCGReg b2, TCGReg r3, int disp)
{
tcg_out16(s, (op & 0xff00) | (r1 << 4) | r3);
tcg_out32(s, (op & 0xff) | (b2 << 28)
| ((disp & 0xfff) << 16) | ((disp & 0xff000) >> 4));
}
#define tcg_out_insn_RX tcg_out_insn_RS
#define tcg_out_insn_RXY tcg_out_insn_RSY
static int RXB(TCGReg v1, TCGReg v2, TCGReg v3, TCGReg v4)
{
/*
* Shift bit 4 of each regno to its corresponding bit of RXB.
* RXB itself begins at bit 8 of the instruction so 8 - 4 = 4
* is the left-shift of the 4th operand.
*/
return ((v1 & 0x10) << (4 + 3))
| ((v2 & 0x10) << (4 + 2))
| ((v3 & 0x10) << (4 + 1))
| ((v4 & 0x10) << (4 + 0));
}
static void tcg_out_insn_VRIa(TCGContext *s, S390Opcode op,
TCGReg v1, uint16_t i2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4));
tcg_out16(s, i2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m3 << 12));
}
static void tcg_out_insn_VRIb(TCGContext *s, S390Opcode op,
TCGReg v1, uint8_t i2, uint8_t i3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4));
tcg_out16(s, (i2 << 8) | (i3 & 0xff));
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m4 << 12));
}
static void tcg_out_insn_VRIc(TCGContext *s, S390Opcode op,
TCGReg v1, uint16_t i2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v3 & 0xf));
tcg_out16(s, i2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRRa(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out32(s, (op & 0x00ff) | RXB(v1, v2, 0, 0) | (m3 << 12));
}
static void tcg_out_insn_VRRc(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out16(s, v3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, v2, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRRe(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, TCGReg v3, TCGReg v4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_debug_assert(is_vector_reg(v3));
tcg_debug_assert(is_vector_reg(v4));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out16(s, v3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, v2, v3, v4) | (v4 << 12));
}
static void tcg_out_insn_VRRf(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg r2, TCGReg r3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_general_reg(r2));
tcg_debug_assert(is_general_reg(r3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | r2);
tcg_out16(s, r3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0));
}
static void tcg_out_insn_VRSa(TCGContext *s, S390Opcode op, TCGReg v1,
intptr_t d2, TCGReg b2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v3 & 0xf));
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRSb(TCGContext *s, S390Opcode op, TCGReg v1,
intptr_t d2, TCGReg b2, TCGReg r3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_general_reg(r3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | r3);
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m4 << 12));
}
static void tcg_out_insn_VRSc(TCGContext *s, S390Opcode op, TCGReg r1,
intptr_t d2, TCGReg b2, TCGReg v3, int m4)
{
tcg_debug_assert(is_general_reg(r1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | (r1 << 4) | (v3 & 0xf));
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(0, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRX(TCGContext *s, S390Opcode op, TCGReg v1,
TCGReg b2, TCGReg x2, intptr_t d2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(x2));
tcg_debug_assert(is_general_reg(b2));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | x2);
tcg_out16(s, (b2 << 12) | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m3 << 12));
}
/* Emit an opcode with "type-checking" of the format. */
#define tcg_out_insn(S, FMT, OP, ...) \
glue(tcg_out_insn_,FMT)(S, glue(glue(FMT,_),OP), ## __VA_ARGS__)
/* emit 64-bit shifts */
static void tcg_out_sh64(TCGContext* s, S390Opcode op, TCGReg dest,
TCGReg src, TCGReg sh_reg, int sh_imm)
{
tcg_out_insn_RSY(s, op, dest, sh_reg, src, sh_imm);
}
/* emit 32-bit shifts */
static void tcg_out_sh32(TCGContext* s, S390Opcode op, TCGReg dest,
TCGReg sh_reg, int sh_imm)
{
tcg_out_insn_RS(s, op, dest, sh_reg, 0, sh_imm);
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg dst, TCGReg src)
{
if (src == dst) {
return true;
}
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(dst) && is_general_reg(src))) {
tcg_out_insn(s, RR, LR, dst, src);
break;
}
/* fallthru */
case TCG_TYPE_I64:
if (likely(is_general_reg(dst))) {
if (likely(is_general_reg(src))) {
tcg_out_insn(s, RRE, LGR, dst, src);
} else {
tcg_out_insn(s, VRSc, VLGV, dst, 0, 0, src, 3);
}
break;
} else if (is_general_reg(src)) {
tcg_out_insn(s, VRSb, VLVG, dst, 0, 0, src, 3);
break;
}
/* fallthru */
case TCG_TYPE_V64:
case TCG_TYPE_V128:
tcg_out_insn(s, VRRa, VLR, dst, src, 0);
break;
default:
g_assert_not_reached();
}
return true;
}
static const S390Opcode lli_insns[4] = {
RI_LLILL, RI_LLILH, RI_LLIHL, RI_LLIHH
};
static bool maybe_out_small_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long sval)
{
tcg_target_ulong uval = sval;
int i;
if (type == TCG_TYPE_I32) {
uval = (uint32_t)sval;
sval = (int32_t)sval;
}
/* Try all 32-bit insns that can load it in one go. */
if (sval >= -0x8000 && sval < 0x8000) {
tcg_out_insn(s, RI, LGHI, ret, sval);
return true;
}
for (i = 0; i < 4; i++) {
tcg_target_long mask = 0xffffull << i*16;
if ((uval & mask) == uval) {
tcg_out_insn_RI(s, lli_insns[i], ret, uval >> i*16);
return true;
}
}
return false;
}
/* load a register with an immediate value */
static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long sval, bool in_prologue)
{
tcg_target_ulong uval;
/* Try all 32-bit insns that can load it in one go. */
if (maybe_out_small_movi(s, type, ret, sval)) {
return;
}
uval = sval;
if (type == TCG_TYPE_I32) {
uval = (uint32_t)sval;
sval = (int32_t)sval;
}
/* Try all 48-bit insns that can load it in one go. */
if (HAVE_FACILITY(EXT_IMM)) {
if (sval == (int32_t)sval) {
tcg_out_insn(s, RIL, LGFI, ret, sval);
return;
}
if (uval <= 0xffffffff) {
tcg_out_insn(s, RIL, LLILF, ret, uval);
return;
}
if ((uval & 0xffffffff) == 0) {
tcg_out_insn(s, RIL, LLIHF, ret, uval >> 32);
return;
}
}
/* Try for PC-relative address load. For odd addresses,
attempt to use an offset from the start of the TB. */
if ((sval & 1) == 0) {
ptrdiff_t off = tcg_pcrel_diff(s, (void *)sval) >> 1;
if (off == (int32_t)off) {
tcg_out_insn(s, RIL, LARL, ret, off);
return;
}
} else if (USE_REG_TB && !in_prologue) {
ptrdiff_t off = tcg_tbrel_diff(s, (void *)sval);
if (off == sextract64(off, 0, 20)) {
/* This is certain to be an address within TB, and therefore
OFF will be negative; don't try RX_LA. */
tcg_out_insn(s, RXY, LAY, ret, TCG_REG_TB, TCG_REG_NONE, off);
return;
}
}
/* A 32-bit unsigned value can be loaded in 2 insns. And given
that LLILL, LLIHL, LLILF above did not succeed, we know that
both insns are required. */
if (uval <= 0xffffffff) {
tcg_out_insn(s, RI, LLILL, ret, uval);
tcg_out_insn(s, RI, IILH, ret, uval >> 16);
return;
}
/* Otherwise, stuff it in the constant pool. */
if (HAVE_FACILITY(GEN_INST_EXT)) {
tcg_out_insn(s, RIL, LGRL, ret, 0);
new_pool_label(s, sval, R_390_PC32DBL, s->code_ptr - 2, 2);
} else if (USE_REG_TB && !in_prologue) {
tcg_out_insn(s, RXY, LG, ret, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, sval, R_390_20, s->code_ptr - 2,
tcg_tbrel_diff(s, NULL));
} else {
TCGReg base = ret ? ret : TCG_TMP0;
tcg_out_insn(s, RIL, LARL, base, 0);
new_pool_label(s, sval, R_390_PC32DBL, s->code_ptr - 2, 2);
tcg_out_insn(s, RXY, LG, ret, base, TCG_REG_NONE, 0);
}
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long sval)
{
tcg_out_movi_int(s, type, ret, sval, false);
}
/* Emit a load/store type instruction. Inputs are:
DATA: The register to be loaded or stored.
BASE+OFS: The effective address.
OPC_RX: If the operation has an RX format opcode (e.g. STC), otherwise 0.
OPC_RXY: The RXY format opcode for the operation (e.g. STCY). */
static void tcg_out_mem(TCGContext *s, S390Opcode opc_rx, S390Opcode opc_rxy,
TCGReg data, TCGReg base, TCGReg index,
tcg_target_long ofs)
{
if (ofs < -0x80000 || ofs >= 0x80000) {
/* Combine the low 20 bits of the offset with the actual load insn;
the high 44 bits must come from an immediate load. */
tcg_target_long low = ((ofs & 0xfffff) ^ 0x80000) - 0x80000;
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - low);
ofs = low;
/* If we were already given an index register, add it in. */
if (index != TCG_REG_NONE) {
tcg_out_insn(s, RRE, AGR, TCG_TMP0, index);
}
index = TCG_TMP0;
}
if (opc_rx && ofs >= 0 && ofs < 0x1000) {
tcg_out_insn_RX(s, opc_rx, data, base, index, ofs);
} else {
tcg_out_insn_RXY(s, opc_rxy, data, base, index, ofs);
}
}
static void tcg_out_vrx_mem(TCGContext *s, S390Opcode opc_vrx,
TCGReg data, TCGReg base, TCGReg index,
tcg_target_long ofs, int m3)
{
if (ofs < 0 || ofs >= 0x1000) {
if (ofs >= -0x80000 && ofs < 0x80000) {
tcg_out_insn(s, RXY, LAY, TCG_TMP0, base, index, ofs);
base = TCG_TMP0;
index = TCG_REG_NONE;
ofs = 0;
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs);
if (index != TCG_REG_NONE) {
tcg_out_insn(s, RRE, AGR, TCG_TMP0, index);
}
index = TCG_TMP0;
ofs = 0;
}
}
tcg_out_insn_VRX(s, opc_vrx, data, base, index, ofs, m3);
}
/* load data without address translation or endianness conversion */
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, intptr_t ofs)
{
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, RX_L, RXY_LY, data, base, TCG_REG_NONE, ofs);
break;
}
tcg_out_vrx_mem(s, VRX_VLLEZ, data, base, TCG_REG_NONE, ofs, MO_32);
break;
case TCG_TYPE_I64:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, 0, RXY_LG, data, base, TCG_REG_NONE, ofs);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_out_vrx_mem(s, VRX_VLLEZ, data, base, TCG_REG_NONE, ofs, MO_64);
break;
case TCG_TYPE_V128:
/* Hint quadword aligned. */
tcg_out_vrx_mem(s, VRX_VL, data, base, TCG_REG_NONE, ofs, 4);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, intptr_t ofs)
{
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, RX_ST, RXY_STY, data, base, TCG_REG_NONE, ofs);
} else {
tcg_out_vrx_mem(s, VRX_VSTEF, data, base, TCG_REG_NONE, ofs, 1);
}
break;
case TCG_TYPE_I64:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, 0, RXY_STG, data, base, TCG_REG_NONE, ofs);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_out_vrx_mem(s, VRX_VSTEG, data, base, TCG_REG_NONE, ofs, 0);
break;
case TCG_TYPE_V128:
/* Hint quadword aligned. */
tcg_out_vrx_mem(s, VRX_VST, data, base, TCG_REG_NONE, ofs, 4);
break;
default:
g_assert_not_reached();
}
}
static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
return false;
}
/* load data from an absolute host address */
static void tcg_out_ld_abs(TCGContext *s, TCGType type,
TCGReg dest, const void *abs)
{
intptr_t addr = (intptr_t)abs;
if (HAVE_FACILITY(GEN_INST_EXT) && !(addr & 1)) {
ptrdiff_t disp = tcg_pcrel_diff(s, abs) >> 1;
if (disp == (int32_t)disp) {
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RIL, LRL, dest, disp);
} else {
tcg_out_insn(s, RIL, LGRL, dest, disp);
}
return;
}
}
if (USE_REG_TB) {
ptrdiff_t disp = tcg_tbrel_diff(s, abs);
if (disp == sextract64(disp, 0, 20)) {
tcg_out_ld(s, type, dest, TCG_REG_TB, disp);
return;
}
}
tcg_out_movi(s, TCG_TYPE_PTR, dest, addr & ~0xffff);
tcg_out_ld(s, type, dest, dest, addr & 0xffff);
}
static inline void tcg_out_risbg(TCGContext *s, TCGReg dest, TCGReg src,
int msb, int lsb, int ofs, int z)
{
/* Format RIE-f */
tcg_out16(s, (RIE_RISBG & 0xff00) | (dest << 4) | src);
tcg_out16(s, (msb << 8) | (z << 7) | lsb);
tcg_out16(s, (ofs << 8) | (RIE_RISBG & 0xff));
}
static void tgen_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
if (HAVE_FACILITY(EXT_IMM)) {
tcg_out_insn(s, RRE, LGBR, dest, src);
return;
}
if (type == TCG_TYPE_I32) {
if (dest == src) {
tcg_out_sh32(s, RS_SLL, dest, TCG_REG_NONE, 24);
} else {
tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 24);
}
tcg_out_sh32(s, RS_SRA, dest, TCG_REG_NONE, 24);
} else {
tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 56);
tcg_out_sh64(s, RSY_SRAG, dest, dest, TCG_REG_NONE, 56);
}
}
static void tgen_ext8u(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
if (HAVE_FACILITY(EXT_IMM)) {
tcg_out_insn(s, RRE, LLGCR, dest, src);
return;
}
if (dest == src) {
tcg_out_movi(s, type, TCG_TMP0, 0xff);
src = TCG_TMP0;
} else {
tcg_out_movi(s, type, dest, 0xff);
}
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, NR, dest, src);
} else {
tcg_out_insn(s, RRE, NGR, dest, src);
}
}
static void tgen_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
if (HAVE_FACILITY(EXT_IMM)) {
tcg_out_insn(s, RRE, LGHR, dest, src);
return;
}
if (type == TCG_TYPE_I32) {
if (dest == src) {
tcg_out_sh32(s, RS_SLL, dest, TCG_REG_NONE, 16);
} else {
tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 16);
}
tcg_out_sh32(s, RS_SRA, dest, TCG_REG_NONE, 16);
} else {
tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 48);
tcg_out_sh64(s, RSY_SRAG, dest, dest, TCG_REG_NONE, 48);
}
}
static void tgen_ext16u(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
if (HAVE_FACILITY(EXT_IMM)) {
tcg_out_insn(s, RRE, LLGHR, dest, src);
return;
}
if (dest == src) {
tcg_out_movi(s, type, TCG_TMP0, 0xffff);
src = TCG_TMP0;
} else {
tcg_out_movi(s, type, dest, 0xffff);
}
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, NR, dest, src);
} else {
tcg_out_insn(s, RRE, NGR, dest, src);
}
}
static inline void tgen_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LGFR, dest, src);
}
static inline void tgen_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LLGFR, dest, src);
}
/* Accept bit patterns like these:
0....01....1
1....10....0
1..10..01..1
0..01..10..0
Copied from gcc sources. */
static inline bool risbg_mask(uint64_t c)
{
uint64_t lsb;
/* We don't change the number of transitions by inverting,
so make sure we start with the LSB zero. */
if (c & 1) {
c = ~c;
}
/* Reject all zeros or all ones. */
if (c == 0) {
return false;
}
/* Find the first transition. */
lsb = c & -c;
/* Invert to look for a second transition. */
c = ~c;
/* Erase the first transition. */
c &= -lsb;
/* Find the second transition, if any. */
lsb = c & -c;
/* Match if all the bits are 1's, or if c is zero. */
return c == -lsb;
}
static void tgen_andi_risbg(TCGContext *s, TCGReg out, TCGReg in, uint64_t val)
{
int msb, lsb;
if ((val & 0x8000000000000001ull) == 0x8000000000000001ull) {
/* Achieve wraparound by swapping msb and lsb. */
msb = 64 - ctz64(~val);
lsb = clz64(~val) - 1;
} else {
msb = clz64(val);
lsb = 63 - ctz64(val);
}
tcg_out_risbg(s, out, in, msb, lsb, 0, 1);
}
static void tgen_andi(TCGContext *s, TCGType type, TCGReg dest, uint64_t val)
{
static const S390Opcode ni_insns[4] = {
RI_NILL, RI_NILH, RI_NIHL, RI_NIHH
};
static const S390Opcode nif_insns[2] = {
RIL_NILF, RIL_NIHF
};
uint64_t valid = (type == TCG_TYPE_I32 ? 0xffffffffull : -1ull);
int i;
/* Look for the zero-extensions. */
if ((val & valid) == 0xffffffff) {
tgen_ext32u(s, dest, dest);
return;
}
if (HAVE_FACILITY(EXT_IMM)) {
if ((val & valid) == 0xff) {
tgen_ext8u(s, TCG_TYPE_I64, dest, dest);
return;
}
if ((val & valid) == 0xffff) {
tgen_ext16u(s, TCG_TYPE_I64, dest, dest);
return;
}
}
/* Try all 32-bit insns that can perform it in one go. */
for (i = 0; i < 4; i++) {
tcg_target_ulong mask = ~(0xffffull << i*16);
if (((val | ~valid) & mask) == mask) {
tcg_out_insn_RI(s, ni_insns[i], dest, val >> i*16);
return;
}
}
/* Try all 48-bit insns that can perform it in one go. */
if (HAVE_FACILITY(EXT_IMM)) {
for (i = 0; i < 2; i++) {
tcg_target_ulong mask = ~(0xffffffffull << i*32);
if (((val | ~valid) & mask) == mask) {
tcg_out_insn_RIL(s, nif_insns[i], dest, val >> i*32);
return;
}
}
}
if (HAVE_FACILITY(GEN_INST_EXT) && risbg_mask(val)) {
tgen_andi_risbg(s, dest, dest, val);
return;
}
/* Use the constant pool if USE_REG_TB, but not for small constants. */
if (USE_REG_TB) {
if (!maybe_out_small_movi(s, type, TCG_TMP0, val)) {
tcg_out_insn(s, RXY, NG, dest, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, val & valid, R_390_20, s->code_ptr - 2,
tcg_tbrel_diff(s, NULL));
return;
}
} else {
tcg_out_movi(s, type, TCG_TMP0, val);
}
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, NR, dest, TCG_TMP0);
} else {
tcg_out_insn(s, RRE, NGR, dest, TCG_TMP0);
}
}
static void tgen_ori(TCGContext *s, TCGType type, TCGReg dest, uint64_t val)
{
static const S390Opcode oi_insns[4] = {
RI_OILL, RI_OILH, RI_OIHL, RI_OIHH
};
static const S390Opcode oif_insns[2] = {
RIL_OILF, RIL_OIHF
};
int i;
/* Look for no-op. */
if (unlikely(val == 0)) {
return;
}
/* Try all 32-bit insns that can perform it in one go. */
for (i = 0; i < 4; i++) {
tcg_target_ulong mask = (0xffffull << i*16);
if ((val & mask) != 0 && (val & ~mask) == 0) {
tcg_out_insn_RI(s, oi_insns[i], dest, val >> i*16);
return;
}
}
/* Try all 48-bit insns that can perform it in one go. */
if (HAVE_FACILITY(EXT_IMM)) {
for (i = 0; i < 2; i++) {
tcg_target_ulong mask = (0xffffffffull << i*32);
if ((val & mask) != 0 && (val & ~mask) == 0) {
tcg_out_insn_RIL(s, oif_insns[i], dest, val >> i*32);
return;
}
}
}
/* Use the constant pool if USE_REG_TB, but not for small constants. */
if (maybe_out_small_movi(s, type, TCG_TMP0, val)) {
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, OR, dest, TCG_TMP0);
} else {
tcg_out_insn(s, RRE, OGR, dest, TCG_TMP0);
}
} else if (USE_REG_TB) {
tcg_out_insn(s, RXY, OG, dest, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, val, R_390_20, s->code_ptr - 2,
tcg_tbrel_diff(s, NULL));
} else {
/* Perform the OR via sequential modifications to the high and
low parts. Do this via recursion to handle 16-bit vs 32-bit
masks in each half. */
tcg_debug_assert(HAVE_FACILITY(EXT_IMM));
tgen_ori(s, type, dest, val & 0x00000000ffffffffull);
tgen_ori(s, type, dest, val & 0xffffffff00000000ull);
}
}
static void tgen_xori(TCGContext *s, TCGType type, TCGReg dest, uint64_t val)
{
/* Try all 48-bit insns that can perform it in one go. */
if (HAVE_FACILITY(EXT_IMM)) {
if ((val & 0xffffffff00000000ull) == 0) {
tcg_out_insn(s, RIL, XILF, dest, val);
return;
}
if ((val & 0x00000000ffffffffull) == 0) {
tcg_out_insn(s, RIL, XIHF, dest, val >> 32);
return;
}
}
/* Use the constant pool if USE_REG_TB, but not for small constants. */
if (maybe_out_small_movi(s, type, TCG_TMP0, val)) {
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, XR, dest, TCG_TMP0);
} else {
tcg_out_insn(s, RRE, XGR, dest, TCG_TMP0);
}
} else if (USE_REG_TB) {
tcg_out_insn(s, RXY, XG, dest, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, val, R_390_20, s->code_ptr - 2,
tcg_tbrel_diff(s, NULL));
} else {
/* Perform the xor by parts. */
tcg_debug_assert(HAVE_FACILITY(EXT_IMM));
if (val & 0xffffffff) {
tcg_out_insn(s, RIL, XILF, dest, val);
}
if (val > 0xffffffff) {
tcg_out_insn(s, RIL, XIHF, dest, val >> 32);
}
}
}
static int tgen_cmp(TCGContext *s, TCGType type, TCGCond c, TCGReg r1,
TCGArg c2, bool c2const, bool need_carry)
{
bool is_unsigned = is_unsigned_cond(c);
S390Opcode op;
if (c2const) {
if (c2 == 0) {
if (!(is_unsigned && need_carry)) {
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, LTR, r1, r1);
} else {
tcg_out_insn(s, RRE, LTGR, r1, r1);
}
return tcg_cond_to_ltr_cond[c];
}
}
if (!is_unsigned && c2 == (int16_t)c2) {
op = (type == TCG_TYPE_I32 ? RI_CHI : RI_CGHI);
tcg_out_insn_RI(s, op, r1, c2);
goto exit;
}
if (HAVE_FACILITY(EXT_IMM)) {
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RIL_CLFI : RIL_CFI);
tcg_out_insn_RIL(s, op, r1, c2);
goto exit;
} else if (c2 == (is_unsigned ? (TCGArg)(uint32_t)c2 : (TCGArg)(int32_t)c2)) {
op = (is_unsigned ? RIL_CLGFI : RIL_CGFI);
tcg_out_insn_RIL(s, op, r1, c2);
goto exit;
}
}
/* Use the constant pool, but not for small constants. */
if (maybe_out_small_movi(s, type, TCG_TMP0, c2)) {
c2 = TCG_TMP0;
/* fall through to reg-reg */
} else if (USE_REG_TB) {
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RXY_CLY : RXY_CY);
tcg_out_insn_RXY(s, op, r1, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, (uint32_t)c2, R_390_20, s->code_ptr - 2,
4 - tcg_tbrel_diff(s, NULL));
} else {
op = (is_unsigned ? RXY_CLG : RXY_CG);
tcg_out_insn_RXY(s, op, r1, TCG_REG_TB, TCG_REG_NONE, 0);
new_pool_label(s, c2, R_390_20, s->code_ptr - 2,
tcg_tbrel_diff(s, NULL));
}
goto exit;
} else {
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RIL_CLRL : RIL_CRL);
tcg_out_insn_RIL(s, op, r1, 0);
new_pool_label(s, (uint32_t)c2, R_390_PC32DBL,
s->code_ptr - 2, 2 + 4);
} else {
op = (is_unsigned ? RIL_CLGRL : RIL_CGRL);
tcg_out_insn_RIL(s, op, r1, 0);
new_pool_label(s, c2, R_390_PC32DBL, s->code_ptr - 2, 2);
}
goto exit;
}
}
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RR_CLR : RR_CR);
tcg_out_insn_RR(s, op, r1, c2);
} else {
op = (is_unsigned ? RRE_CLGR : RRE_CGR);
tcg_out_insn_RRE(s, op, r1, c2);
}
exit:
return tcg_cond_to_s390_cond[c];
}
static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg c1, TCGArg c2, int c2const)
{
int cc;
bool have_loc;
/* With LOC2, we can always emit the minimum 3 insns. */
if (HAVE_FACILITY(LOAD_ON_COND2)) {
/* Emit: d = 0, d = (cc ? 1 : d). */
cc = tgen_cmp(s, type, cond, c1, c2, c2const, false);
tcg_out_movi(s, TCG_TYPE_I64, dest, 0);
tcg_out_insn(s, RIE, LOCGHI, dest, 1, cc);
return;
}
have_loc = HAVE_FACILITY(LOAD_ON_COND);
/* For HAVE_LOC, only the paths through GTU/GT/LEU/LE are smaller. */
restart:
switch (cond) {
case TCG_COND_NE:
/* X != 0 is X > 0. */
if (c2const && c2 == 0) {
cond = TCG_COND_GTU;
} else {
break;
}
/* fallthru */
case TCG_COND_GTU:
case TCG_COND_GT:
/* The result of a compare has CC=2 for GT and CC=3 unused.
ADD LOGICAL WITH CARRY considers (CC & 2) the carry bit. */
tgen_cmp(s, type, cond, c1, c2, c2const, true);
tcg_out_movi(s, type, dest, 0);
tcg_out_insn(s, RRE, ALCGR, dest, dest);
return;
case TCG_COND_EQ:
/* X == 0 is X <= 0. */
if (c2const && c2 == 0) {
cond = TCG_COND_LEU;
} else {
break;
}
/* fallthru */
case TCG_COND_LEU:
case TCG_COND_LE:
/* As above, but we're looking for borrow, or !carry.
The second insn computes d - d - borrow, or -1 for true
and 0 for false. So we must mask to 1 bit afterward. */
tgen_cmp(s, type, cond, c1, c2, c2const, true);
tcg_out_insn(s, RRE, SLBGR, dest, dest);
tgen_andi(s, type, dest, 1);
return;
case TCG_COND_GEU:
case TCG_COND_LTU:
case TCG_COND_LT:
case TCG_COND_GE:
/* Swap operands so that we can use LEU/GTU/GT/LE. */
if (c2const) {
if (have_loc) {
break;
}
tcg_out_movi(s, type, TCG_TMP0, c2);
c2 = c1;
c2const = 0;
c1 = TCG_TMP0;
} else {
TCGReg t = c1;
c1 = c2;
c2 = t;
}
cond = tcg_swap_cond(cond);
goto restart;
default:
g_assert_not_reached();
}
cc = tgen_cmp(s, type, cond, c1, c2, c2const, false);
if (have_loc) {
/* Emit: d = 0, t = 1, d = (cc ? t : d). */
tcg_out_movi(s, TCG_TYPE_I64, dest, 0);
tcg_out_movi(s, TCG_TYPE_I64, TCG_TMP0, 1);
tcg_out_insn(s, RRF, LOCGR, dest, TCG_TMP0, cc);
} else {
/* Emit: d = 1; if (cc) goto over; d = 0; over: */
tcg_out_movi(s, type, dest, 1);
tcg_out_insn(s, RI, BRC, cc, (4 + 4) >> 1);
tcg_out_movi(s, type, dest, 0);
}
}
static void tgen_movcond(TCGContext *s, TCGType type, TCGCond c, TCGReg dest,
TCGReg c1, TCGArg c2, int c2const,
TCGArg v3, int v3const)
{
int cc;
if (HAVE_FACILITY(LOAD_ON_COND)) {
cc = tgen_cmp(s, type, c, c1, c2, c2const, false);
if (v3const) {
tcg_out_insn(s, RIE, LOCGHI, dest, v3, cc);
} else {
tcg_out_insn(s, RRF, LOCGR, dest, v3, cc);
}
} else {
c = tcg_invert_cond(c);
cc = tgen_cmp(s, type, c, c1, c2, c2const, false);
/* Emit: if (cc) goto over; dest = r3; over: */
tcg_out_insn(s, RI, BRC, cc, (4 + 4) >> 1);
tcg_out_insn(s, RRE, LGR, dest, v3);
}
}
static void tgen_clz(TCGContext *s, TCGReg dest, TCGReg a1,
TCGArg a2, int a2const)
{
/* Since this sets both R and R+1, we have no choice but to store the
result into R0, allowing R1 == TCG_TMP0 to be clobbered as well. */
QEMU_BUILD_BUG_ON(TCG_TMP0 != TCG_REG_R1);
tcg_out_insn(s, RRE, FLOGR, TCG_REG_R0, a1);
if (a2const && a2 == 64) {
tcg_out_mov(s, TCG_TYPE_I64, dest, TCG_REG_R0);
} else {
if (a2const) {
tcg_out_movi(s, TCG_TYPE_I64, dest, a2);
} else {
tcg_out_mov(s, TCG_TYPE_I64, dest, a2);
}
if (HAVE_FACILITY(LOAD_ON_COND)) {
/* Emit: if (one bit found) dest = r0. */
tcg_out_insn(s, RRF, LOCGR, dest, TCG_REG_R0, 2);
} else {
/* Emit: if (no one bit found) goto over; dest = r0; over: */
tcg_out_insn(s, RI, BRC, 8, (4 + 4) >> 1);
tcg_out_insn(s, RRE, LGR, dest, TCG_REG_R0);
}
}
}
static void tgen_deposit(TCGContext *s, TCGReg dest, TCGReg src,
int ofs, int len, int z)
{
int lsb = (63 - ofs);
int msb = lsb - (len - 1);
tcg_out_risbg(s, dest, src, msb, lsb, ofs, z);
}
static void tgen_extract(TCGContext *s, TCGReg dest, TCGReg src,
int ofs, int len)
{
tcg_out_risbg(s, dest, src, 64 - len, 63, 64 - ofs, 1);
}
static void tgen_gotoi(TCGContext *s, int cc, const tcg_insn_unit *dest)
{
ptrdiff_t off = tcg_pcrel_diff(s, dest) >> 1;
if (off == (int16_t)off) {
tcg_out_insn(s, RI, BRC, cc, off);
} else if (off == (int32_t)off) {
tcg_out_insn(s, RIL, BRCL, cc, off);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)dest);
tcg_out_insn(s, RR, BCR, cc, TCG_TMP0);
}
}
static void tgen_branch(TCGContext *s, int cc, TCGLabel *l)
{
if (l->has_value) {
tgen_gotoi(s, cc, l->u.value_ptr);
} else if (USE_LONG_BRANCHES) {
tcg_out16(s, RIL_BRCL | (cc << 4));
tcg_out_reloc(s, s->code_ptr, R_390_PC32DBL, l, 2);
s->code_ptr += 2;
} else {
tcg_out16(s, RI_BRC | (cc << 4));
tcg_out_reloc(s, s->code_ptr, R_390_PC16DBL, l, 2);
s->code_ptr += 1;
}
}
static void tgen_compare_branch(TCGContext *s, S390Opcode opc, int cc,
TCGReg r1, TCGReg r2, TCGLabel *l)
{
tcg_out_reloc(s, s->code_ptr + 1, R_390_PC16DBL, l, 2);
tcg_out16(s, (opc & 0xff00) | (r1 << 4) | r2);
tcg_out16(s, 0);
tcg_out16(s, cc << 12 | (opc & 0xff));
}
static void tgen_compare_imm_branch(TCGContext *s, S390Opcode opc, int cc,
TCGReg r1, int i2, TCGLabel *l)
{
tcg_out_reloc(s, s->code_ptr + 1, R_390_PC16DBL, l, 2);
tcg_out16(s, (opc & 0xff00) | (r1 << 4) | cc);
tcg_out16(s, 0);
tcg_out16(s, (i2 << 8) | (opc & 0xff));
}
static void tgen_brcond(TCGContext *s, TCGType type, TCGCond c,
TCGReg r1, TCGArg c2, int c2const, TCGLabel *l)
{
int cc;
if (HAVE_FACILITY(GEN_INST_EXT)) {
bool is_unsigned = is_unsigned_cond(c);
bool in_range;
S390Opcode opc;
cc = tcg_cond_to_s390_cond[c];
if (!c2const) {
opc = (type == TCG_TYPE_I32
? (is_unsigned ? RIE_CLRJ : RIE_CRJ)
: (is_unsigned ? RIE_CLGRJ : RIE_CGRJ));
tgen_compare_branch(s, opc, cc, r1, c2, l);
return;
}
/* COMPARE IMMEDIATE AND BRANCH RELATIVE has an 8-bit immediate field.
If the immediate we've been given does not fit that range, we'll
fall back to separate compare and branch instructions using the
larger comparison range afforded by COMPARE IMMEDIATE. */
if (type == TCG_TYPE_I32) {
if (is_unsigned) {
opc = RIE_CLIJ;
in_range = (uint32_t)c2 == (uint8_t)c2;
} else {
opc = RIE_CIJ;
in_range = (int32_t)c2 == (int8_t)c2;
}
} else {
if (is_unsigned) {
opc = RIE_CLGIJ;
in_range = (uint64_t)c2 == (uint8_t)c2;
} else {
opc = RIE_CGIJ;
in_range = (int64_t)c2 == (int8_t)c2;
}
}
if (in_range) {
tgen_compare_imm_branch(s, opc, cc, r1, c2, l);
return;
}
}
cc = tgen_cmp(s, type, c, r1, c2, c2const, false);
tgen_branch(s, cc, l);
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest)
{
ptrdiff_t off = tcg_pcrel_diff(s, dest) >> 1;
if (off == (int32_t)off) {
tcg_out_insn(s, RIL, BRASL, TCG_REG_R14, off);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)dest);
tcg_out_insn(s, RR, BASR, TCG_REG_R14, TCG_TMP0);
}
}
static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp opc, TCGReg data,
TCGReg base, TCGReg index, int disp)
{
switch (opc & (MO_SSIZE | MO_BSWAP)) {
case MO_UB:
tcg_out_insn(s, RXY, LLGC, data, base, index, disp);
break;
case MO_SB:
tcg_out_insn(s, RXY, LGB, data, base, index, disp);
break;
case MO_UW | MO_BSWAP:
/* swapped unsigned halfword load with upper bits zeroed */
tcg_out_insn(s, RXY, LRVH, data, base, index, disp);
tgen_ext16u(s, TCG_TYPE_I64, data, data);
break;
case MO_UW:
tcg_out_insn(s, RXY, LLGH, data, base, index, disp);
break;
case MO_SW | MO_BSWAP:
/* swapped sign-extended halfword load */
tcg_out_insn(s, RXY, LRVH, data, base, index, disp);
tgen_ext16s(s, TCG_TYPE_I64, data, data);
break;
case MO_SW:
tcg_out_insn(s, RXY, LGH, data, base, index, disp);
break;
case MO_UL | MO_BSWAP:
/* swapped unsigned int load with upper bits zeroed */
tcg_out_insn(s, RXY, LRV, data, base, index, disp);
tgen_ext32u(s, data, data);
break;
case MO_UL:
tcg_out_insn(s, RXY, LLGF, data, base, index, disp);
break;
case MO_SL | MO_BSWAP:
/* swapped sign-extended int load */
tcg_out_insn(s, RXY, LRV, data, base, index, disp);
tgen_ext32s(s, data, data);
break;
case MO_SL:
tcg_out_insn(s, RXY, LGF, data, base, index, disp);
break;
case MO_UQ | MO_BSWAP:
tcg_out_insn(s, RXY, LRVG, data, base, index, disp);
break;
case MO_UQ:
tcg_out_insn(s, RXY, LG, data, base, index, disp);
break;
default:
tcg_abort();
}
}
static void tcg_out_qemu_st_direct(TCGContext *s, MemOp opc, TCGReg data,
TCGReg base, TCGReg index, int disp)
{
switch (opc & (MO_SIZE | MO_BSWAP)) {
case MO_UB:
if (disp >= 0 && disp < 0x1000) {
tcg_out_insn(s, RX, STC, data, base, index, disp);
} else {
tcg_out_insn(s, RXY, STCY, data, base, index, disp);
}
break;
case MO_UW | MO_BSWAP:
tcg_out_insn(s, RXY, STRVH, data, base, index, disp);
break;
case MO_UW:
if (disp >= 0 && disp < 0x1000) {
tcg_out_insn(s, RX, STH, data, base, index, disp);
} else {
tcg_out_insn(s, RXY, STHY, data, base, index, disp);
}
break;
case MO_UL | MO_BSWAP:
tcg_out_insn(s, RXY, STRV, data, base, index, disp);
break;
case MO_UL:
if (disp >= 0 && disp < 0x1000) {
tcg_out_insn(s, RX, ST, data, base, index, disp);
} else {
tcg_out_insn(s, RXY, STY, data, base, index, disp);
}
break;
case MO_UQ | MO_BSWAP:
tcg_out_insn(s, RXY, STRVG, data, base, index, disp);
break;
case MO_UQ:
tcg_out_insn(s, RXY, STG, data, base, index, disp);
break;
default:
tcg_abort();
}
}
#if defined(CONFIG_SOFTMMU)
#include "../tcg-ldst.c.inc"
/* We're expecting to use a 20-bit negative offset on the tlb memory ops. */
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 19));
/* Load and compare a TLB entry, leaving the flags set. Loads the TLB
addend into R2. Returns a register with the santitized guest address. */
static TCGReg tcg_out_tlb_read(TCGContext *s, TCGReg addr_reg, MemOp opc,
int mem_index, bool is_ld)
{
unsigned s_bits = opc & MO_SIZE;
unsigned a_bits = get_alignment_bits(opc);
unsigned s_mask = (1 << s_bits) - 1;
unsigned a_mask = (1 << a_bits) - 1;
int fast_off = TLB_MASK_TABLE_OFS(mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
int ofs, a_off;
uint64_t tlb_mask;
tcg_out_sh64(s, RSY_SRLG, TCG_REG_R2, addr_reg, TCG_REG_NONE,
TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
tcg_out_insn(s, RXY, NG, TCG_REG_R2, TCG_AREG0, TCG_REG_NONE, mask_off);
tcg_out_insn(s, RXY, AG, TCG_REG_R2, TCG_AREG0, TCG_REG_NONE, table_off);
/* For aligned accesses, we check the first byte and include the alignment
bits within the address. For unaligned access, we check that we don't
cross pages using the address of the last byte of the access. */
a_off = (a_bits >= s_bits ? 0 : s_mask - a_mask);
tlb_mask = (uint64_t)TARGET_PAGE_MASK | a_mask;
if (HAVE_FACILITY(GEN_INST_EXT) && a_off == 0) {
tgen_andi_risbg(s, TCG_REG_R3, addr_reg, tlb_mask);
} else {
tcg_out_insn(s, RX, LA, TCG_REG_R3, addr_reg, TCG_REG_NONE, a_off);
tgen_andi(s, TCG_TYPE_TL, TCG_REG_R3, tlb_mask);
}
if (is_ld) {
ofs = offsetof(CPUTLBEntry, addr_read);
} else {
ofs = offsetof(CPUTLBEntry, addr_write);
}
if (TARGET_LONG_BITS == 32) {
tcg_out_insn(s, RX, C, TCG_REG_R3, TCG_REG_R2, TCG_REG_NONE, ofs);
} else {
tcg_out_insn(s, RXY, CG, TCG_REG_R3, TCG_REG_R2, TCG_REG_NONE, ofs);
}
tcg_out_insn(s, RXY, LG, TCG_REG_R2, TCG_REG_R2, TCG_REG_NONE,
offsetof(CPUTLBEntry, addend));
if (TARGET_LONG_BITS == 32) {
tgen_ext32u(s, TCG_REG_R3, addr_reg);
return TCG_REG_R3;
}
return addr_reg;
}
static void add_qemu_ldst_label(TCGContext *s, bool is_ld, MemOpIdx oi,
TCGReg data, TCGReg addr,
tcg_insn_unit *raddr, tcg_insn_unit *label_ptr)
{
TCGLabelQemuLdst *label = new_ldst_label(s);
label->is_ld = is_ld;
label->oi = oi;
label->datalo_reg = data;
label->addrlo_reg = addr;
label->raddr = tcg_splitwx_to_rx(raddr);
label->label_ptr[0] = label_ptr;
}
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
TCGReg addr_reg = lb->addrlo_reg;
TCGReg data_reg = lb->datalo_reg;
MemOpIdx oi = lb->oi;
MemOp opc = get_memop(oi);
if (!patch_reloc(lb->label_ptr[0], R_390_PC16DBL,
(intptr_t)tcg_splitwx_to_rx(s->code_ptr), 2)) {
return false;
}
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_AREG0);
if (TARGET_LONG_BITS == 64) {
tcg_out_mov(s, TCG_TYPE_I64, TCG_REG_R3, addr_reg);
}
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R4, oi);
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R5, (uintptr_t)lb->raddr);
tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SSIZE)]);
tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_R2);
tgen_gotoi(s, S390_CC_ALWAYS, lb->raddr);
return true;
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
TCGReg addr_reg = lb->addrlo_reg;
TCGReg data_reg = lb->datalo_reg;
MemOpIdx oi = lb->oi;
MemOp opc = get_memop(oi);
if (!patch_reloc(lb->label_ptr[0], R_390_PC16DBL,
(intptr_t)tcg_splitwx_to_rx(s->code_ptr), 2)) {
return false;
}
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_AREG0);
if (TARGET_LONG_BITS == 64) {
tcg_out_mov(s, TCG_TYPE_I64, TCG_REG_R3, addr_reg);
}
switch (opc & MO_SIZE) {
case MO_UB:
tgen_ext8u(s, TCG_TYPE_I64, TCG_REG_R4, data_reg);
break;
case MO_UW:
tgen_ext16u(s, TCG_TYPE_I64, TCG_REG_R4, data_reg);
break;
case MO_UL:
tgen_ext32u(s, TCG_REG_R4, data_reg);
break;
case MO_UQ:
tcg_out_mov(s, TCG_TYPE_I64, TCG_REG_R4, data_reg);
break;
default:
tcg_abort();
}
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R5, oi);
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R6, (uintptr_t)lb->raddr);
tcg_out_call(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
tgen_gotoi(s, S390_CC_ALWAYS, lb->raddr);
return true;
}
#else
static void tcg_prepare_user_ldst(TCGContext *s, TCGReg *addr_reg,
TCGReg *index_reg, tcg_target_long *disp)
{
if (TARGET_LONG_BITS == 32) {
tgen_ext32u(s, TCG_TMP0, *addr_reg);
*addr_reg = TCG_TMP0;
}
if (guest_base < 0x80000) {
*index_reg = TCG_REG_NONE;
*disp = guest_base;
} else {
*index_reg = TCG_GUEST_BASE_REG;
*disp = 0;
}
}
#endif /* CONFIG_SOFTMMU */
static void tcg_out_qemu_ld(TCGContext* s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi)
{
MemOp opc = get_memop(oi);
#ifdef CONFIG_SOFTMMU
unsigned mem_index = get_mmuidx(oi);
tcg_insn_unit *label_ptr;
TCGReg base_reg;
base_reg = tcg_out_tlb_read(s, addr_reg, opc, mem_index, 1);
tcg_out16(s, RI_BRC | (S390_CC_NE << 4));
label_ptr = s->code_ptr;
s->code_ptr += 1;
tcg_out_qemu_ld_direct(s, opc, data_reg, base_reg, TCG_REG_R2, 0);
add_qemu_ldst_label(s, 1, oi, data_reg, addr_reg, s->code_ptr, label_ptr);
#else
TCGReg index_reg;
tcg_target_long disp;
tcg_prepare_user_ldst(s, &addr_reg, &index_reg, &disp);
tcg_out_qemu_ld_direct(s, opc, data_reg, addr_reg, index_reg, disp);
#endif
}
static void tcg_out_qemu_st(TCGContext* s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi)
{
MemOp opc = get_memop(oi);
#ifdef CONFIG_SOFTMMU
unsigned mem_index = get_mmuidx(oi);
tcg_insn_unit *label_ptr;
TCGReg base_reg;
base_reg = tcg_out_tlb_read(s, addr_reg, opc, mem_index, 0);
tcg_out16(s, RI_BRC | (S390_CC_NE << 4));
label_ptr = s->code_ptr;
s->code_ptr += 1;
tcg_out_qemu_st_direct(s, opc, data_reg, base_reg, TCG_REG_R2, 0);
add_qemu_ldst_label(s, 0, oi, data_reg, addr_reg, s->code_ptr, label_ptr);
#else
TCGReg index_reg;
tcg_target_long disp;
tcg_prepare_user_ldst(s, &addr_reg, &index_reg, &disp);
tcg_out_qemu_st_direct(s, opc, data_reg, addr_reg, index_reg, disp);
#endif
}
# define OP_32_64(x) \
case glue(glue(INDEX_op_,x),_i32): \
case glue(glue(INDEX_op_,x),_i64)
static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
S390Opcode op, op2;
TCGArg a0, a1, a2;
switch (opc) {
case INDEX_op_exit_tb:
/* Reuse the zeroing that exists for goto_ptr. */
a0 = args[0];
if (a0 == 0) {
tgen_gotoi(s, S390_CC_ALWAYS, tcg_code_gen_epilogue);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R2, a0);
tgen_gotoi(s, S390_CC_ALWAYS, tb_ret_addr);
}
break;
case INDEX_op_goto_tb:
a0 = args[0];
if (s->tb_jmp_insn_offset) {
/*
* branch displacement must be aligned for atomic patching;
* see if we need to add extra nop before branch
*/
if (!QEMU_PTR_IS_ALIGNED(s->code_ptr + 1, 4)) {
tcg_out16(s, NOP);
}
tcg_debug_assert(!USE_REG_TB);
tcg_out16(s, RIL_BRCL | (S390_CC_ALWAYS << 4));
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
s->code_ptr += 2;
} else {
/* load address stored at s->tb_jmp_target_addr + a0 */
tcg_out_ld_abs(s, TCG_TYPE_PTR, TCG_REG_TB,
tcg_splitwx_to_rx(s->tb_jmp_target_addr + a0));
/* and go there */
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, TCG_REG_TB);
}
set_jmp_reset_offset(s, a0);
/* For the unlinked path of goto_tb, we need to reset
TCG_REG_TB to the beginning of this TB. */
if (USE_REG_TB) {
int ofs = -tcg_current_code_size(s);
/* All TB are restricted to 64KiB by unwind info. */
tcg_debug_assert(ofs == sextract64(ofs, 0, 20));
tcg_out_insn(s, RXY, LAY, TCG_REG_TB,
TCG_REG_TB, TCG_REG_NONE, ofs);
}
break;
case INDEX_op_goto_ptr:
a0 = args[0];
if (USE_REG_TB) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, a0);
}
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, a0);
break;
OP_32_64(ld8u):
/* ??? LLC (RXY format) is only present with the extended-immediate
facility, whereas LLGC is always present. */
tcg_out_mem(s, 0, RXY_LLGC, args[0], args[1], TCG_REG_NONE, args[2]);
break;
OP_32_64(ld8s):
/* ??? LB is no smaller than LGB, so no point to using it. */
tcg_out_mem(s, 0, RXY_LGB, args[0], args[1], TCG_REG_NONE, args[2]);
break;
OP_32_64(ld16u):
/* ??? LLH (RXY format) is only present with the extended-immediate
facility, whereas LLGH is always present. */
tcg_out_mem(s, 0, RXY_LLGH, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld16s_i32:
tcg_out_mem(s, RX_LH, RXY_LHY, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld_i32:
tcg_out_ld(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
OP_32_64(st8):
tcg_out_mem(s, RX_STC, RXY_STCY, args[0], args[1],
TCG_REG_NONE, args[2]);
break;
OP_32_64(st16):
tcg_out_mem(s, RX_STH, RXY_STHY, args[0], args[1],
TCG_REG_NONE, args[2]);
break;
case INDEX_op_st_i32:
tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
case INDEX_op_add_i32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (const_args[2]) {
do_addi_32:
if (a0 == a1) {
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, AHI, a0, a2);
break;
}
if (HAVE_FACILITY(EXT_IMM)) {
tcg_out_insn(s, RIL, AFI, a0, a2);
break;
}
}
tcg_out_mem(s, RX_LA, RXY_LAY, a0, a1, TCG_REG_NONE, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, AR, a0, a2);
} else {
tcg_out_insn(s, RX, LA, a0, a1, a2, 0);
}
break;
case INDEX_op_sub_i32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (const_args[2]) {
a2 = -a2;
goto do_addi_32;
} else if (a0 == a1) {
tcg_out_insn(s, RR, SR, a0, a2);
} else {
tcg_out_insn(s, RRF, SRK, a0, a1, a2);
}
break;
case INDEX_op_and_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_andi(s, TCG_TYPE_I32, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, NR, a0, a2);
} else {
tcg_out_insn(s, RRF, NRK, a0, a1, a2);
}
break;
case INDEX_op_or_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_ori(s, TCG_TYPE_I32, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, OR, a0, a2);
} else {
tcg_out_insn(s, RRF, ORK, a0, a1, a2);
}
break;
case INDEX_op_xor_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_xori(s, TCG_TYPE_I32, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, XR, args[0], args[2]);
} else {
tcg_out_insn(s, RRF, XRK, a0, a1, a2);
}
break;
case INDEX_op_neg_i32:
tcg_out_insn(s, RR, LCR, args[0], args[1]);
break;
case INDEX_op_mul_i32:
if (const_args[2]) {
if ((int32_t)args[2] == (int16_t)args[2]) {
tcg_out_insn(s, RI, MHI, args[0], args[2]);
} else {
tcg_out_insn(s, RIL, MSFI, args[0], args[2]);
}
} else {
tcg_out_insn(s, RRE, MSR, args[0], args[2]);
}
break;
case INDEX_op_div2_i32:
tcg_out_insn(s, RR, DR, TCG_REG_R2, args[4]);
break;
case INDEX_op_divu2_i32:
tcg_out_insn(s, RRE, DLR, TCG_REG_R2, args[4]);
break;
case INDEX_op_shl_i32:
op = RS_SLL;
op2 = RSY_SLLK;
do_shift32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (a0 == a1) {
if (const_args[2]) {
tcg_out_sh32(s, op, a0, TCG_REG_NONE, a2);
} else {
tcg_out_sh32(s, op, a0, a2, 0);
}
} else {
/* Using tcg_out_sh64 here for the format; it is a 32-bit shift. */
if (const_args[2]) {
tcg_out_sh64(s, op2, a0, a1, TCG_REG_NONE, a2);
} else {
tcg_out_sh64(s, op2, a0, a1, a2, 0);
}
}
break;
case INDEX_op_shr_i32:
op = RS_SRL;
op2 = RSY_SRLK;
goto do_shift32;
case INDEX_op_sar_i32:
op = RS_SRA;
op2 = RSY_SRAK;
goto do_shift32;
case INDEX_op_rotl_i32:
/* ??? Using tcg_out_sh64 here for the format; it is a 32-bit rol. */
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, RSY_RLL, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_rotr_i32:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLL, args[0], args[1],
TCG_REG_NONE, (32 - args[2]) & 31);
} else {
tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]);
tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_TMP0, 0);
}
break;
case INDEX_op_ext8s_i32:
tgen_ext8s(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_ext16s_i32:
tgen_ext16s(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_ext8u_i32:
tgen_ext8u(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_ext16u_i32:
tgen_ext16u(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_bswap16_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_sh32(s, RS_SRA, a0, TCG_REG_NONE, 16);
} else {
tcg_out_sh32(s, RS_SRL, a0, TCG_REG_NONE, 16);
}
break;
case INDEX_op_bswap16_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVGR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_sh64(s, RSY_SRAG, a0, a0, TCG_REG_NONE, 48);
} else {
tcg_out_sh64(s, RSY_SRLG, a0, a0, TCG_REG_NONE, 48);
}
break;
case INDEX_op_bswap32_i32:
tcg_out_insn(s, RRE, LRVR, args[0], args[1]);
break;
case INDEX_op_bswap32_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tgen_ext32s(s, a0, a0);
} else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tgen_ext32u(s, a0, a0);
}
break;
case INDEX_op_add2_i32:
if (const_args[4]) {
tcg_out_insn(s, RIL, ALFI, args[0], args[4]);
} else {
tcg_out_insn(s, RR, ALR, args[0], args[4]);
}
tcg_out_insn(s, RRE, ALCR, args[1], args[5]);
break;
case INDEX_op_sub2_i32:
if (const_args[4]) {
tcg_out_insn(s, RIL, SLFI, args[0], args[4]);
} else {
tcg_out_insn(s, RR, SLR, args[0], args[4]);
}
tcg_out_insn(s, RRE, SLBR, args[1], args[5]);
break;
case INDEX_op_br:
tgen_branch(s, S390_CC_ALWAYS, arg_label(args[0]));
break;
case INDEX_op_brcond_i32:
tgen_brcond(s, TCG_TYPE_I32, args[2], args[0],
args[1], const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i32:
tgen_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i32:
tgen_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3]);
break;
case INDEX_op_qemu_ld_i32:
/* ??? Technically we can use a non-extending instruction. */
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, args[0], args[1], args[2]);
break;
case INDEX_op_qemu_st_i32:
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, args[0], args[1], args[2]);
break;
case INDEX_op_ld16s_i64:
tcg_out_mem(s, 0, RXY_LGH, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld32u_i64:
tcg_out_mem(s, 0, RXY_LLGF, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld32s_i64:
tcg_out_mem(s, 0, RXY_LGF, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld_i64:
tcg_out_ld(s, TCG_TYPE_I64, args[0], args[1], args[2]);
break;
case INDEX_op_st32_i64:
tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
case INDEX_op_st_i64:
tcg_out_st(s, TCG_TYPE_I64, args[0], args[1], args[2]);
break;
case INDEX_op_add_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
do_addi_64:
if (a0 == a1) {
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, AGHI, a0, a2);
break;
}
if (HAVE_FACILITY(EXT_IMM)) {
if (a2 == (int32_t)a2) {
tcg_out_insn(s, RIL, AGFI, a0, a2);
break;
} else if (a2 == (uint32_t)a2) {
tcg_out_insn(s, RIL, ALGFI, a0, a2);
break;
} else if (-a2 == (uint32_t)-a2) {
tcg_out_insn(s, RIL, SLGFI, a0, -a2);
break;
}
}
}
tcg_out_mem(s, RX_LA, RXY_LAY, a0, a1, TCG_REG_NONE, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RRE, AGR, a0, a2);
} else {
tcg_out_insn(s, RX, LA, a0, a1, a2, 0);
}
break;
case INDEX_op_sub_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
a2 = -a2;
goto do_addi_64;
} else if (a0 == a1) {
tcg_out_insn(s, RRE, SGR, a0, a2);
} else {
tcg_out_insn(s, RRF, SGRK, a0, a1, a2);
}
break;
case INDEX_op_and_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_andi(s, TCG_TYPE_I64, args[0], args[2]);
} else if (a0 == a1) {
tcg_out_insn(s, RRE, NGR, args[0], args[2]);
} else {
tcg_out_insn(s, RRF, NGRK, a0, a1, a2);
}
break;
case INDEX_op_or_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_ori(s, TCG_TYPE_I64, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RRE, OGR, a0, a2);
} else {
tcg_out_insn(s, RRF, OGRK, a0, a1, a2);
}
break;
case INDEX_op_xor_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_xori(s, TCG_TYPE_I64, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RRE, XGR, a0, a2);
} else {
tcg_out_insn(s, RRF, XGRK, a0, a1, a2);
}
break;
case INDEX_op_neg_i64:
tcg_out_insn(s, RRE, LCGR, args[0], args[1]);
break;
case INDEX_op_bswap64_i64:
tcg_out_insn(s, RRE, LRVGR, args[0], args[1]);
break;
case INDEX_op_mul_i64:
if (const_args[2]) {
if (args[2] == (int16_t)args[2]) {
tcg_out_insn(s, RI, MGHI, args[0], args[2]);
} else {
tcg_out_insn(s, RIL, MSGFI, args[0], args[2]);
}
} else {
tcg_out_insn(s, RRE, MSGR, args[0], args[2]);
}
break;
case INDEX_op_div2_i64:
/* ??? We get an unnecessary sign-extension of the dividend
into R3 with this definition, but as we do in fact always
produce both quotient and remainder using INDEX_op_div_i64
instead requires jumping through even more hoops. */
tcg_out_insn(s, RRE, DSGR, TCG_REG_R2, args[4]);
break;
case INDEX_op_divu2_i64:
tcg_out_insn(s, RRE, DLGR, TCG_REG_R2, args[4]);
break;
case INDEX_op_mulu2_i64:
tcg_out_insn(s, RRE, MLGR, TCG_REG_R2, args[3]);
break;
case INDEX_op_shl_i64:
op = RSY_SLLG;
do_shift64:
if (const_args[2]) {
tcg_out_sh64(s, op, args[0], args[1], TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, op, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_shr_i64:
op = RSY_SRLG;
goto do_shift64;
case INDEX_op_sar_i64:
op = RSY_SRAG;
goto do_shift64;
case INDEX_op_rotl_i64:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1],
TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_rotr_i64:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1],
TCG_REG_NONE, (64 - args[2]) & 63);
} else {
/* We can use the smaller 32-bit negate because only the
low 6 bits are examined for the rotate. */
tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]);
tcg_out_sh64(s, RSY_RLLG, args[0], args[1], TCG_TMP0, 0);
}
break;
case INDEX_op_ext8s_i64:
tgen_ext8s(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_ext16s_i64:
tgen_ext16s(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_ext_i32_i64:
case INDEX_op_ext32s_i64:
tgen_ext32s(s, args[0], args[1]);
break;
case INDEX_op_ext8u_i64:
tgen_ext8u(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_ext16u_i64:
tgen_ext16u(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_extu_i32_i64:
case INDEX_op_ext32u_i64:
tgen_ext32u(s, args[0], args[1]);
break;
case INDEX_op_add2_i64:
if (const_args[4]) {
if ((int64_t)args[4] >= 0) {
tcg_out_insn(s, RIL, ALGFI, args[0], args[4]);
} else {
tcg_out_insn(s, RIL, SLGFI, args[0], -args[4]);
}
} else {
tcg_out_insn(s, RRE, ALGR, args[0], args[4]);
}
tcg_out_insn(s, RRE, ALCGR, args[1], args[5]);
break;
case INDEX_op_sub2_i64:
if (const_args[4]) {
if ((int64_t)args[4] >= 0) {
tcg_out_insn(s, RIL, SLGFI, args[0], args[4]);
} else {
tcg_out_insn(s, RIL, ALGFI, args[0], -args[4]);
}
} else {
tcg_out_insn(s, RRE, SLGR, args[0], args[4]);
}
tcg_out_insn(s, RRE, SLBGR, args[1], args[5]);
break;
case INDEX_op_brcond_i64:
tgen_brcond(s, TCG_TYPE_I64, args[2], args[0],
args[1], const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i64:
tgen_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i64:
tgen_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3]);
break;
OP_32_64(deposit):
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
tgen_deposit(s, a0, a2, args[3], args[4], 1);
} else {
/* Since we can't support "0Z" as a constraint, we allow a1 in
any register. Fix things up as if a matching constraint. */
if (a0 != a1) {
TCGType type = (opc == INDEX_op_deposit_i64);
if (a0 == a2) {
tcg_out_mov(s, type, TCG_TMP0, a2);
a2 = TCG_TMP0;
}
tcg_out_mov(s, type, a0, a1);
}
tgen_deposit(s, a0, a2, args[3], args[4], 0);
}
break;
OP_32_64(extract):
tgen_extract(s, args[0], args[1], args[2], args[3]);
break;
case INDEX_op_clz_i64:
tgen_clz(s, args[0], args[1], args[2], const_args[2]);
break;
case INDEX_op_mb:
/* The host memory model is quite strong, we simply need to
serialize the instruction stream. */
if (args[0] & TCG_MO_ST_LD) {
tcg_out_insn(s, RR, BCR, HAVE_FACILITY(FAST_BCR_SER) ? 14 : 15, 0);
}
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
default:
tcg_abort();
}
}
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, TCGReg src)
{
if (is_general_reg(src)) {
/* Replicate general register into two MO_64. */
tcg_out_insn(s, VRRf, VLVGP, dst, src, src);
if (vece == MO_64) {
return true;
}
}
/*
* Recall that the "standard" integer, within a vector, is the
* rightmost element of the leftmost doubleword, a-la VLLEZ.
*/
tcg_out_insn(s, VRIc, VREP, dst, (8 >> vece) - 1, src, vece);
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, TCGReg base, intptr_t offset)
{
tcg_out_vrx_mem(s, VRX_VLREP, dst, base, TCG_REG_NONE, offset, vece);
return true;
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, int64_t val)
{
int i, mask, msb, lsb;
/* Look for int16_t elements. */
if (vece <= MO_16 ||
(vece == MO_32 ? (int32_t)val : val) == (int16_t)val) {
tcg_out_insn(s, VRIa, VREPI, dst, val, vece);
return;
}
/* Look for bit masks. */
if (vece == MO_32) {
if (risbg_mask((int32_t)val)) {
/* Handle wraparound by swapping msb and lsb. */
if ((val & 0x80000001u) == 0x80000001u) {
msb = 32 - ctz32(~val);
lsb = clz32(~val) - 1;
} else {
msb = clz32(val);
lsb = 31 - ctz32(val);
}
tcg_out_insn(s, VRIb, VGM, dst, lsb, msb, MO_32);
return;
}
} else {
if (risbg_mask(val)) {
/* Handle wraparound by swapping msb and lsb. */
if ((val & 0x8000000000000001ull) == 0x8000000000000001ull) {
/* Handle wraparound by swapping msb and lsb. */
msb = 64 - ctz64(~val);
lsb = clz64(~val) - 1;
} else {
msb = clz64(val);
lsb = 63 - ctz64(val);
}
tcg_out_insn(s, VRIb, VGM, dst, lsb, msb, MO_64);
return;
}
}
/* Look for all bytes 0x00 or 0xff. */
for (i = mask = 0; i < 8; i++) {
uint8_t byte = val >> (i * 8);
if (byte == 0xff) {
mask |= 1 << i;
} else if (byte != 0) {
break;
}
}
if (i == 8) {
tcg_out_insn(s, VRIa, VGBM, dst, mask * 0x0101, 0);
return;
}
/* Otherwise, stuff it in the constant pool. */
tcg_out_insn(s, RIL, LARL, TCG_TMP0, 0);
new_pool_label(s, val, R_390_PC32DBL, s->code_ptr - 2, 2);
tcg_out_insn(s, VRX, VLREP, dst, TCG_TMP0, TCG_REG_NONE, 0, MO_64);
}
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGType type = vecl + TCG_TYPE_V64;
TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
switch (opc) {
case INDEX_op_ld_vec:
tcg_out_ld(s, type, a0, a1, a2);
break;
case INDEX_op_st_vec:
tcg_out_st(s, type, a0, a1, a2);
break;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
break;
case INDEX_op_abs_vec:
tcg_out_insn(s, VRRa, VLP, a0, a1, vece);
break;
case INDEX_op_neg_vec:
tcg_out_insn(s, VRRa, VLC, a0, a1, vece);
break;
case INDEX_op_not_vec:
tcg_out_insn(s, VRRc, VNO, a0, a1, a1, 0);
break;
case INDEX_op_add_vec:
tcg_out_insn(s, VRRc, VA, a0, a1, a2, vece);
break;
case INDEX_op_sub_vec:
tcg_out_insn(s, VRRc, VS, a0, a1, a2, vece);
break;
case INDEX_op_and_vec:
tcg_out_insn(s, VRRc, VN, a0, a1, a2, 0);
break;
case INDEX_op_andc_vec:
tcg_out_insn(s, VRRc, VNC, a0, a1, a2, 0);
break;
case INDEX_op_mul_vec:
tcg_out_insn(s, VRRc, VML, a0, a1, a2, vece);
break;
case INDEX_op_or_vec:
tcg_out_insn(s, VRRc, VO, a0, a1, a2, 0);
break;
case INDEX_op_orc_vec:
tcg_out_insn(s, VRRc, VOC, a0, a1, a2, 0);
break;
case INDEX_op_xor_vec:
tcg_out_insn(s, VRRc, VX, a0, a1, a2, 0);
break;
case INDEX_op_shli_vec:
tcg_out_insn(s, VRSa, VESL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_shri_vec:
tcg_out_insn(s, VRSa, VESRL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_sari_vec:
tcg_out_insn(s, VRSa, VESRA, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_rotli_vec:
tcg_out_insn(s, VRSa, VERLL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_shls_vec:
tcg_out_insn(s, VRSa, VESL, a0, 0, a2, a1, vece);
break;
case INDEX_op_shrs_vec:
tcg_out_insn(s, VRSa, VESRL, a0, 0, a2, a1, vece);
break;
case INDEX_op_sars_vec:
tcg_out_insn(s, VRSa, VESRA, a0, 0, a2, a1, vece);
break;
case INDEX_op_rotls_vec:
tcg_out_insn(s, VRSa, VERLL, a0, 0, a2, a1, vece);
break;
case INDEX_op_shlv_vec:
tcg_out_insn(s, VRRc, VESLV, a0, a1, a2, vece);
break;
case INDEX_op_shrv_vec:
tcg_out_insn(s, VRRc, VESRLV, a0, a1, a2, vece);
break;
case INDEX_op_sarv_vec:
tcg_out_insn(s, VRRc, VESRAV, a0, a1, a2, vece);
break;
case INDEX_op_rotlv_vec:
tcg_out_insn(s, VRRc, VERLLV, a0, a1, a2, vece);
break;
case INDEX_op_smin_vec:
tcg_out_insn(s, VRRc, VMN, a0, a1, a2, vece);
break;
case INDEX_op_smax_vec:
tcg_out_insn(s, VRRc, VMX, a0, a1, a2, vece);
break;
case INDEX_op_umin_vec:
tcg_out_insn(s, VRRc, VMNL, a0, a1, a2, vece);
break;
case INDEX_op_umax_vec:
tcg_out_insn(s, VRRc, VMXL, a0, a1, a2, vece);
break;
case INDEX_op_bitsel_vec:
tcg_out_insn(s, VRRe, VSEL, a0, a1, a2, args[3]);
break;
case INDEX_op_cmp_vec:
switch ((TCGCond)args[3]) {
case TCG_COND_EQ:
tcg_out_insn(s, VRRc, VCEQ, a0, a1, a2, vece);
break;
case TCG_COND_GT:
tcg_out_insn(s, VRRc, VCH, a0, a1, a2, vece);
break;
case TCG_COND_GTU:
tcg_out_insn(s, VRRc, VCHL, a0, a1, a2, vece);
break;
default:
g_assert_not_reached();
}
break;
case INDEX_op_s390_vuph_vec:
tcg_out_insn(s, VRRa, VUPH, a0, a1, vece);
break;
case INDEX_op_s390_vupl_vec:
tcg_out_insn(s, VRRa, VUPL, a0, a1, vece);
break;
case INDEX_op_s390_vpks_vec:
tcg_out_insn(s, VRRc, VPKS, a0, a1, a2, vece);
break;
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
default:
g_assert_not_reached();
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_abs_vec:
case INDEX_op_add_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_bitsel_vec:
case INDEX_op_neg_vec:
case INDEX_op_not_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_rotli_vec:
case INDEX_op_rotls_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_sari_vec:
case INDEX_op_sars_vec:
case INDEX_op_sarv_vec:
case INDEX_op_shli_vec:
case INDEX_op_shls_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shri_vec:
case INDEX_op_shrs_vec:
case INDEX_op_shrv_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_sub_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_xor_vec:
return 1;
case INDEX_op_cmp_vec:
case INDEX_op_cmpsel_vec:
case INDEX_op_rotrv_vec:
return -1;
case INDEX_op_mul_vec:
return vece < MO_64;
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
return vece < MO_64 ? -1 : 0;
default:
return 0;
}
}
static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
{
bool need_swap = false, need_inv = false;
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_GT:
case TCG_COND_GTU:
break;
case TCG_COND_NE:
case TCG_COND_LE:
case TCG_COND_LEU:
need_inv = true;
break;
case TCG_COND_LT:
case TCG_COND_LTU:
need_swap = true;
break;
case TCG_COND_GE:
case TCG_COND_GEU:
need_swap = need_inv = true;
break;
default:
g_assert_not_reached();
}
if (need_inv) {
cond = tcg_invert_cond(cond);
}
if (need_swap) {
TCGv_vec t1;
t1 = v1, v1 = v2, v2 = t1;
cond = tcg_swap_cond(cond);
}
vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
return need_inv;
}
static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
{
if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
tcg_gen_not_vec(vece, v0, v0);
}
}
static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec c1, TCGv_vec c2,
TCGv_vec v3, TCGv_vec v4, TCGCond cond)
{
TCGv_vec t = tcg_temp_new_vec(type);
if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
/* Invert the sense of the compare by swapping arguments. */
tcg_gen_bitsel_vec(vece, v0, t, v4, v3);
} else {
tcg_gen_bitsel_vec(vece, v0, t, v3, v4);
}
tcg_temp_free_vec(t);
}
static void expand_vec_sat(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGOpcode add_sub_opc)
{
TCGv_vec h1 = tcg_temp_new_vec(type);
TCGv_vec h2 = tcg_temp_new_vec(type);
TCGv_vec l1 = tcg_temp_new_vec(type);
TCGv_vec l2 = tcg_temp_new_vec(type);
tcg_debug_assert (vece < MO_64);
/* Unpack with sign-extension. */
vec_gen_2(INDEX_op_s390_vuph_vec, type, vece,
tcgv_vec_arg(h1), tcgv_vec_arg(v1));
vec_gen_2(INDEX_op_s390_vuph_vec, type, vece,
tcgv_vec_arg(h2), tcgv_vec_arg(v2));
vec_gen_2(INDEX_op_s390_vupl_vec, type, vece,
tcgv_vec_arg(l1), tcgv_vec_arg(v1));
vec_gen_2(INDEX_op_s390_vupl_vec, type, vece,
tcgv_vec_arg(l2), tcgv_vec_arg(v2));
/* Arithmetic on a wider element size. */
vec_gen_3(add_sub_opc, type, vece + 1, tcgv_vec_arg(h1),
tcgv_vec_arg(h1), tcgv_vec_arg(h2));
vec_gen_3(add_sub_opc, type, vece + 1, tcgv_vec_arg(l1),
tcgv_vec_arg(l1), tcgv_vec_arg(l2));
/* Pack with saturation. */
vec_gen_3(INDEX_op_s390_vpks_vec, type, vece + 1,
tcgv_vec_arg(v0), tcgv_vec_arg(h1), tcgv_vec_arg(l1));
tcg_temp_free_vec(h1);
tcg_temp_free_vec(h2);
tcg_temp_free_vec(l1);
tcg_temp_free_vec(l2);
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
va_list va;
TCGv_vec v0, v1, v2, v3, v4, t0;
va_start(va, a0);
v0 = temp_tcgv_vec(arg_temp(a0));
v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
v2 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
switch (opc) {
case INDEX_op_cmp_vec:
expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
break;
case INDEX_op_cmpsel_vec:
v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
break;
case INDEX_op_rotrv_vec:
t0 = tcg_temp_new_vec(type);
tcg_gen_neg_vec(vece, t0, v2);
tcg_gen_rotlv_vec(vece, v0, v1, t0);
tcg_temp_free_vec(t0);
break;
case INDEX_op_ssadd_vec:
expand_vec_sat(type, vece, v0, v1, v2, INDEX_op_add_vec);
break;
case INDEX_op_sssub_vec:
expand_vec_sat(type, vece, v0, v1, v2, INDEX_op_sub_vec);
break;
default:
g_assert_not_reached();
}
va_end(va);
}
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
return C_O1_I1(r, r);
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return C_O0_I2(r, r);
case INDEX_op_add_i32:
case INDEX_op_add_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
case INDEX_op_rotl_i32:
case INDEX_op_rotl_i64:
case INDEX_op_rotr_i32:
case INDEX_op_rotr_i64:
case INDEX_op_clz_i64:
case INDEX_op_setcond_i32:
case INDEX_op_setcond_i64:
return C_O1_I2(r, r, ri);
case INDEX_op_sub_i32:
case INDEX_op_sub_i64:
case INDEX_op_and_i32:
case INDEX_op_and_i64:
case INDEX_op_or_i32:
case INDEX_op_or_i64:
case INDEX_op_xor_i32:
case INDEX_op_xor_i64:
return (HAVE_FACILITY(DISTINCT_OPS)
? C_O1_I2(r, r, ri)
: C_O1_I2(r, 0, ri));
case INDEX_op_mul_i32:
/* If we have the general-instruction-extensions, then we have
MULTIPLY SINGLE IMMEDIATE with a signed 32-bit, otherwise we
have only MULTIPLY HALFWORD IMMEDIATE, with a signed 16-bit. */
return (HAVE_FACILITY(GEN_INST_EXT)
? C_O1_I2(r, 0, ri)
: C_O1_I2(r, 0, rI));
case INDEX_op_mul_i64:
return (HAVE_FACILITY(GEN_INST_EXT)
? C_O1_I2(r, 0, rJ)
: C_O1_I2(r, 0, rI));
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
return (HAVE_FACILITY(DISTINCT_OPS)
? C_O1_I2(r, r, ri)
: C_O1_I2(r, 0, ri));
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
return C_O0_I2(r, ri);
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
case INDEX_op_bswap32_i32:
case INDEX_op_bswap32_i64:
case INDEX_op_bswap64_i64:
case INDEX_op_neg_i32:
case INDEX_op_neg_i64:
case INDEX_op_ext8s_i32:
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extract_i32:
case INDEX_op_extract_i64:
return C_O1_I1(r, r);
case INDEX_op_qemu_ld_i32:
case INDEX_op_qemu_ld_i64:
return C_O1_I1(r, L);
case INDEX_op_qemu_st_i64:
case INDEX_op_qemu_st_i32:
return C_O0_I2(L, L);
case INDEX_op_deposit_i32:
case INDEX_op_deposit_i64:
return C_O1_I2(r, rZ, r);
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
return (HAVE_FACILITY(LOAD_ON_COND2)
? C_O1_I4(r, r, ri, rI, 0)
: C_O1_I4(r, r, ri, r, 0));
case INDEX_op_div2_i32:
case INDEX_op_div2_i64:
case INDEX_op_divu2_i32:
case INDEX_op_divu2_i64:
return C_O2_I3(b, a, 0, 1, r);
case INDEX_op_mulu2_i64:
return C_O2_I2(b, a, 0, r);
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
return (HAVE_FACILITY(EXT_IMM)
? C_O2_I4(r, r, 0, 1, ri, r)
: C_O2_I4(r, r, 0, 1, r, r));
case INDEX_op_add2_i64:
case INDEX_op_sub2_i64:
return (HAVE_FACILITY(EXT_IMM)
? C_O2_I4(r, r, 0, 1, rA, r)
: C_O2_I4(r, r, 0, 1, r, r));
case INDEX_op_st_vec:
return C_O0_I2(v, r);
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
return C_O1_I1(v, r);
case INDEX_op_dup_vec:
return C_O1_I1(v, vr);
case INDEX_op_abs_vec:
case INDEX_op_neg_vec:
case INDEX_op_not_vec:
case INDEX_op_rotli_vec:
case INDEX_op_sari_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_s390_vuph_vec:
case INDEX_op_s390_vupl_vec:
return C_O1_I1(v, v);
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_xor_vec:
case INDEX_op_cmp_vec:
case INDEX_op_mul_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_s390_vpks_vec:
return C_O1_I2(v, v, v);
case INDEX_op_rotls_vec:
case INDEX_op_shls_vec:
case INDEX_op_shrs_vec:
case INDEX_op_sars_vec:
return C_O1_I2(v, v, r);
case INDEX_op_bitsel_vec:
return C_O1_I3(v, v, v, v);
default:
g_assert_not_reached();
}
}
/*
* Mainline glibc added HWCAP_S390_VX before it was kernel abi.
* Some distros have fixed this up locally, others have not.
*/
#ifndef HWCAP_S390_VXRS
#define HWCAP_S390_VXRS 2048
#endif
static void query_s390_facilities(void)
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
/* Is STORE FACILITY LIST EXTENDED available? Honestly, I believe this
is present on all 64-bit systems, but let's check for it anyway. */
if (hwcap & HWCAP_S390_STFLE) {
register int r0 __asm__("0") = ARRAY_SIZE(s390_facilities) - 1;
register void *r1 __asm__("1") = s390_facilities;
/* stfle 0(%r1) */
asm volatile(".word 0xb2b0,0x1000"
: "=r"(r0) : "r"(r0), "r"(r1) : "memory", "cc");
}
/*
* Use of vector registers requires os support beyond the facility bit.
* If the kernel does not advertise support, disable the facility bits.
* There is nothing else we currently care about in the 3rd word, so
* disable VECTOR with one store.
*/
if (!(hwcap & HWCAP_S390_VXRS)) {
s390_facilities[2] = 0;
}
}
static void tcg_target_init(TCGContext *s)
{
query_s390_facilities();
tcg_target_available_regs[TCG_TYPE_I32] = 0xffff;
tcg_target_available_regs[TCG_TYPE_I64] = 0xffff;
if (HAVE_FACILITY(VECTOR)) {
tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
}
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
/* The r6 register is technically call-saved, but it's also a parameter
register, so it can get killed by setup for the qemu_st helper. */
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
/* The return register can be considered call-clobbered. */
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R14);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V20);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V21);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V22);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V23);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V24);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V25);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V26);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V27);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V28);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V29);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V30);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V31);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_TMP0);
/* XXX many insns can't be used with R0, so we better avoid it for now */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
if (USE_REG_TB) {
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
}
}
#define FRAME_SIZE ((int)(TCG_TARGET_CALL_STACK_OFFSET \
+ TCG_STATIC_CALL_ARGS_SIZE \
+ CPU_TEMP_BUF_NLONGS * sizeof(long)))
static void tcg_target_qemu_prologue(TCGContext *s)
{
/* stmg %r6,%r15,48(%r15) (save registers) */
tcg_out_insn(s, RXY, STMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15, 48);
/* aghi %r15,-frame_size */
tcg_out_insn(s, RI, AGHI, TCG_REG_R15, -FRAME_SIZE);
tcg_set_frame(s, TCG_REG_CALL_STACK,
TCG_STATIC_CALL_ARGS_SIZE + TCG_TARGET_CALL_STACK_OFFSET,
CPU_TEMP_BUF_NLONGS * sizeof(long));
#ifndef CONFIG_SOFTMMU
if (guest_base >= 0x80000) {
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
if (USE_REG_TB) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB,
tcg_target_call_iarg_regs[1]);
}
/* br %r3 (go to TB) */
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, tcg_target_call_iarg_regs[1]);
/*
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
* and fall through to the rest of the epilogue.
*/
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R2, 0);
/* TB epilogue */
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
/* lmg %r6,%r15,fs+48(%r15) (restore registers) */
tcg_out_insn(s, RXY, LMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15,
FRAME_SIZE + 48);
/* br %r14 (return) */
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, TCG_REG_R14);
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
memset(p, 0x07, count * sizeof(tcg_insn_unit));
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[18];
} DebugFrame;
/* We're expecting a 2 byte uleb128 encoded value. */
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
#define ELF_HOST_MACHINE EM_S390
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = 8, /* sleb128 8 */
.h.cie.return_column = TCG_REG_R14,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, TCG_REG_CALL_STACK, /* DW_CFA_def_cfa %r15, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x86, 6, /* DW_CFA_offset, %r6, 48 */
0x87, 7, /* DW_CFA_offset, %r7, 56 */
0x88, 8, /* DW_CFA_offset, %r8, 64 */
0x89, 9, /* DW_CFA_offset, %r92, 72 */
0x8a, 10, /* DW_CFA_offset, %r10, 80 */
0x8b, 11, /* DW_CFA_offset, %r11, 88 */
0x8c, 12, /* DW_CFA_offset, %r12, 96 */
0x8d, 13, /* DW_CFA_offset, %r13, 104 */
0x8e, 14, /* DW_CFA_offset, %r14, 112 */
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}