| /* |
| * QEMU Crypto hash algorithms |
| * |
| * Copyright (c) 2015 Red Hat, Inc. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "crypto/init.h" |
| #include "crypto/hash.h" |
| |
| #define INPUT_TEXT "Hiss hisss Hissss hiss Hiss hisss Hiss hiss" |
| #define INPUT_TEXT1 "Hiss hisss " |
| #define INPUT_TEXT2 "Hissss hiss " |
| #define INPUT_TEXT3 "Hiss hisss Hiss hiss" |
| |
| #define OUTPUT_MD5 "628d206371563035ab8ef62f492bdec9" |
| #define OUTPUT_SHA1 "b2e74f26758a3a421e509cee045244b78753cc02" |
| #define OUTPUT_SHA224 "e2f7415aad33ef79f6516b0986d7175f" \ |
| "9ca3389a85bf6cfed078737b" |
| #define OUTPUT_SHA256 "bc757abb0436586f392b437e5dd24096" \ |
| "f7f224de6b74d4d86e2abc6121b160d0" |
| #define OUTPUT_SHA384 "887ce52efb4f46700376356583b7e279" \ |
| "4f612bd024e4495087ddb946c448c69d" \ |
| "56dbf7152a94a5e63a80f3ba9f0eed78" |
| #define OUTPUT_SHA512 "3a90d79638235ec6c4c11bebd84d83c0" \ |
| "549bc1e84edc4b6ec7086487641256cb" \ |
| "63b54e4cb2d2032b393994aa263c0dbb" \ |
| "e00a9f2fe9ef6037352232a1eec55ee7" |
| #define OUTPUT_RIPEMD160 "f3d658fad3fdfb2b52c9369cf0d441249ddfa8a0" |
| |
| #define OUTPUT_MD5_B64 "Yo0gY3FWMDWrjvYvSSveyQ==" |
| #define OUTPUT_SHA1_B64 "sudPJnWKOkIeUJzuBFJEt4dTzAI=" |
| #define OUTPUT_SHA224_B64 "4vdBWq0z73n2UWsJhtcXX5yjOJqFv2z+0Hhzew==" |
| #define OUTPUT_SHA256_B64 "vHV6uwQ2WG85K0N+XdJAlvfyJN5rdNTYbiq8YSGxYNA=" |
| #define OUTPUT_SHA384_B64 "iHzlLvtPRnADdjVlg7fieU9hK9Ak5ElQh925RsRI" \ |
| "xp1W2/cVKpSl5jqA87qfDu14" |
| #define OUTPUT_SHA512_B64 "OpDXljgjXsbEwRvr2E2DwFSbwehO3Etuxwhkh2QS" \ |
| "VstjtU5MstIDKzk5lKomPA274AqfL+nvYDc1IjKh" \ |
| "7sVe5w==" |
| #define OUTPUT_RIPEMD160_B64 "89ZY+tP9+ytSyTac8NRBJJ3fqKA=" |
| |
| static const char *expected_outputs[] = { |
| [QCRYPTO_HASH_ALGO_MD5] = OUTPUT_MD5, |
| [QCRYPTO_HASH_ALGO_SHA1] = OUTPUT_SHA1, |
| [QCRYPTO_HASH_ALGO_SHA224] = OUTPUT_SHA224, |
| [QCRYPTO_HASH_ALGO_SHA256] = OUTPUT_SHA256, |
| [QCRYPTO_HASH_ALGO_SHA384] = OUTPUT_SHA384, |
| [QCRYPTO_HASH_ALGO_SHA512] = OUTPUT_SHA512, |
| [QCRYPTO_HASH_ALGO_RIPEMD160] = OUTPUT_RIPEMD160, |
| }; |
| static const char *expected_outputs_b64[] = { |
| [QCRYPTO_HASH_ALGO_MD5] = OUTPUT_MD5_B64, |
| [QCRYPTO_HASH_ALGO_SHA1] = OUTPUT_SHA1_B64, |
| [QCRYPTO_HASH_ALGO_SHA224] = OUTPUT_SHA224_B64, |
| [QCRYPTO_HASH_ALGO_SHA256] = OUTPUT_SHA256_B64, |
| [QCRYPTO_HASH_ALGO_SHA384] = OUTPUT_SHA384_B64, |
| [QCRYPTO_HASH_ALGO_SHA512] = OUTPUT_SHA512_B64, |
| [QCRYPTO_HASH_ALGO_RIPEMD160] = OUTPUT_RIPEMD160_B64, |
| }; |
| static const int expected_lens[] = { |
| [QCRYPTO_HASH_ALGO_MD5] = 16, |
| [QCRYPTO_HASH_ALGO_SHA1] = 20, |
| [QCRYPTO_HASH_ALGO_SHA224] = 28, |
| [QCRYPTO_HASH_ALGO_SHA256] = 32, |
| [QCRYPTO_HASH_ALGO_SHA384] = 48, |
| [QCRYPTO_HASH_ALGO_SHA512] = 64, |
| [QCRYPTO_HASH_ALGO_RIPEMD160] = 20, |
| }; |
| |
| static const char hex[] = "0123456789abcdef"; |
| |
| /* Test with dynamic allocation */ |
| static void test_hash_alloc(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { |
| uint8_t *result = NULL; |
| size_t resultlen = 0; |
| int ret; |
| size_t j; |
| |
| if (!qcrypto_hash_supports(i)) { |
| continue; |
| } |
| |
| ret = qcrypto_hash_bytes(i, |
| INPUT_TEXT, |
| strlen(INPUT_TEXT), |
| &result, |
| &resultlen, |
| &error_fatal); |
| g_assert(ret == 0); |
| g_assert(resultlen == expected_lens[i]); |
| |
| for (j = 0; j < resultlen; j++) { |
| g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); |
| g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); |
| } |
| g_free(result); |
| } |
| } |
| |
| /* Test with caller preallocating */ |
| static void test_hash_prealloc(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { |
| uint8_t *result; |
| size_t resultlen; |
| int ret; |
| size_t j; |
| |
| if (!qcrypto_hash_supports(i)) { |
| continue; |
| } |
| |
| resultlen = expected_lens[i]; |
| result = g_new0(uint8_t, resultlen); |
| |
| ret = qcrypto_hash_bytes(i, |
| INPUT_TEXT, |
| strlen(INPUT_TEXT), |
| &result, |
| &resultlen, |
| &error_fatal); |
| g_assert(ret == 0); |
| |
| g_assert(resultlen == expected_lens[i]); |
| for (j = 0; j < resultlen; j++) { |
| g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); |
| g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); |
| } |
| g_free(result); |
| } |
| } |
| |
| |
| /* Test with dynamic allocation */ |
| static void test_hash_iov(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { |
| struct iovec iov[3] = { |
| { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) }, |
| { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) }, |
| { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) }, |
| }; |
| uint8_t *result = NULL; |
| size_t resultlen = 0; |
| int ret; |
| size_t j; |
| |
| if (!qcrypto_hash_supports(i)) { |
| continue; |
| } |
| |
| ret = qcrypto_hash_bytesv(i, |
| iov, 3, |
| &result, |
| &resultlen, |
| &error_fatal); |
| g_assert(ret == 0); |
| g_assert(resultlen == expected_lens[i]); |
| for (j = 0; j < resultlen; j++) { |
| g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); |
| g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); |
| } |
| g_free(result); |
| } |
| } |
| |
| |
| /* Test with printable hashing */ |
| static void test_hash_digest(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { |
| int ret; |
| char *digest; |
| size_t digestsize; |
| |
| if (!qcrypto_hash_supports(i)) { |
| continue; |
| } |
| |
| digestsize = qcrypto_hash_digest_len(i); |
| |
| g_assert_cmpint(digestsize * 2, ==, strlen(expected_outputs[i])); |
| |
| ret = qcrypto_hash_digest(i, |
| INPUT_TEXT, |
| strlen(INPUT_TEXT), |
| &digest, |
| &error_fatal); |
| g_assert(ret == 0); |
| g_assert_cmpstr(digest, ==, expected_outputs[i]); |
| g_free(digest); |
| } |
| } |
| |
| /* Test with base64 encoding */ |
| static void test_hash_base64(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { |
| int ret; |
| char *digest; |
| |
| if (!qcrypto_hash_supports(i)) { |
| continue; |
| } |
| |
| ret = qcrypto_hash_base64(i, |
| INPUT_TEXT, |
| strlen(INPUT_TEXT), |
| &digest, |
| &error_fatal); |
| g_assert(ret == 0); |
| g_assert_cmpstr(digest, ==, expected_outputs_b64[i]); |
| g_free(digest); |
| } |
| } |
| |
| int main(int argc, char **argv) |
| { |
| int ret = qcrypto_init(&error_fatal); |
| g_assert(ret == 0); |
| |
| g_test_init(&argc, &argv, NULL); |
| g_test_add_func("/crypto/hash/iov", test_hash_iov); |
| g_test_add_func("/crypto/hash/alloc", test_hash_alloc); |
| g_test_add_func("/crypto/hash/prealloc", test_hash_prealloc); |
| g_test_add_func("/crypto/hash/digest", test_hash_digest); |
| g_test_add_func("/crypto/hash/base64", test_hash_base64); |
| return g_test_run(); |
| } |