|  | /* | 
|  | * Copyright (C) 2021, Alexandre Iooss <erdnaxe@crans.org> | 
|  | * | 
|  | * Log instruction execution with memory access. | 
|  | * | 
|  | * License: GNU GPL, version 2 or later. | 
|  | *   See the COPYING file in the top-level directory. | 
|  | */ | 
|  | #include <glib.h> | 
|  | #include <inttypes.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <qemu-plugin.h> | 
|  |  | 
|  | QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; | 
|  |  | 
|  | /* Store last executed instruction on each vCPU as a GString */ | 
|  | static GPtrArray *last_exec; | 
|  | static GRWLock expand_array_lock; | 
|  |  | 
|  | static GPtrArray *imatches; | 
|  | static GArray *amatches; | 
|  |  | 
|  | /* | 
|  | * Expand last_exec array. | 
|  | * | 
|  | * As we could have multiple threads trying to do this we need to | 
|  | * serialise the expansion under a lock. | 
|  | */ | 
|  | static void expand_last_exec(int cpu_index) | 
|  | { | 
|  | g_rw_lock_writer_lock(&expand_array_lock); | 
|  | while (cpu_index >= last_exec->len) { | 
|  | GString *s = g_string_new(NULL); | 
|  | g_ptr_array_add(last_exec, s); | 
|  | } | 
|  | g_rw_lock_writer_unlock(&expand_array_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Add memory read or write information to current instruction log | 
|  | */ | 
|  | static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t info, | 
|  | uint64_t vaddr, void *udata) | 
|  | { | 
|  | GString *s; | 
|  |  | 
|  | /* Find vCPU in array */ | 
|  | g_rw_lock_reader_lock(&expand_array_lock); | 
|  | g_assert(cpu_index < last_exec->len); | 
|  | s = g_ptr_array_index(last_exec, cpu_index); | 
|  | g_rw_lock_reader_unlock(&expand_array_lock); | 
|  |  | 
|  | /* Indicate type of memory access */ | 
|  | if (qemu_plugin_mem_is_store(info)) { | 
|  | g_string_append(s, ", store"); | 
|  | } else { | 
|  | g_string_append(s, ", load"); | 
|  | } | 
|  |  | 
|  | /* If full system emulation log physical address and device name */ | 
|  | struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(info, vaddr); | 
|  | if (hwaddr) { | 
|  | uint64_t addr = qemu_plugin_hwaddr_phys_addr(hwaddr); | 
|  | const char *name = qemu_plugin_hwaddr_device_name(hwaddr); | 
|  | g_string_append_printf(s, ", 0x%08"PRIx64", %s", addr, name); | 
|  | } else { | 
|  | g_string_append_printf(s, ", 0x%08"PRIx64, vaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Log instruction execution | 
|  | */ | 
|  | static void vcpu_insn_exec(unsigned int cpu_index, void *udata) | 
|  | { | 
|  | GString *s; | 
|  |  | 
|  | /* Find or create vCPU in array */ | 
|  | g_rw_lock_reader_lock(&expand_array_lock); | 
|  | if (cpu_index >= last_exec->len) { | 
|  | g_rw_lock_reader_unlock(&expand_array_lock); | 
|  | expand_last_exec(cpu_index); | 
|  | g_rw_lock_reader_lock(&expand_array_lock); | 
|  | } | 
|  | s = g_ptr_array_index(last_exec, cpu_index); | 
|  | g_rw_lock_reader_unlock(&expand_array_lock); | 
|  |  | 
|  | /* Print previous instruction in cache */ | 
|  | if (s->len) { | 
|  | qemu_plugin_outs(s->str); | 
|  | qemu_plugin_outs("\n"); | 
|  | } | 
|  |  | 
|  | /* Store new instruction in cache */ | 
|  | /* vcpu_mem will add memory access information to last_exec */ | 
|  | g_string_printf(s, "%u, ", cpu_index); | 
|  | g_string_append(s, (char *)udata); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * On translation block new translation | 
|  | * | 
|  | * QEMU convert code by translation block (TB). By hooking here we can then hook | 
|  | * a callback on each instruction and memory access. | 
|  | */ | 
|  | static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) | 
|  | { | 
|  | struct qemu_plugin_insn *insn; | 
|  | bool skip = (imatches || amatches); | 
|  |  | 
|  | size_t n = qemu_plugin_tb_n_insns(tb); | 
|  | for (size_t i = 0; i < n; i++) { | 
|  | char *insn_disas; | 
|  | uint64_t insn_vaddr; | 
|  |  | 
|  | /* | 
|  | * `insn` is shared between translations in QEMU, copy needed data here. | 
|  | * `output` is never freed as it might be used multiple times during | 
|  | * the emulation lifetime. | 
|  | * We only consider the first 32 bits of the instruction, this may be | 
|  | * a limitation for CISC architectures. | 
|  | */ | 
|  | insn = qemu_plugin_tb_get_insn(tb, i); | 
|  | insn_disas = qemu_plugin_insn_disas(insn); | 
|  | insn_vaddr = qemu_plugin_insn_vaddr(insn); | 
|  |  | 
|  | /* | 
|  | * If we are filtering we better check out if we have any | 
|  | * hits. The skip "latches" so we can track memory accesses | 
|  | * after the instruction we care about. | 
|  | */ | 
|  | if (skip && imatches) { | 
|  | int j; | 
|  | for (j = 0; j < imatches->len && skip; j++) { | 
|  | char *m = g_ptr_array_index(imatches, j); | 
|  | if (g_str_has_prefix(insn_disas, m)) { | 
|  | skip = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skip && amatches) { | 
|  | int j; | 
|  | for (j = 0; j < amatches->len && skip; j++) { | 
|  | uint64_t v = g_array_index(amatches, uint64_t, j); | 
|  | if (v == insn_vaddr) { | 
|  | skip = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skip) { | 
|  | g_free(insn_disas); | 
|  | } else { | 
|  | uint32_t insn_opcode; | 
|  | insn_opcode = *((uint32_t *)qemu_plugin_insn_data(insn)); | 
|  | char *output = g_strdup_printf("0x%"PRIx64", 0x%"PRIx32", \"%s\"", | 
|  | insn_vaddr, insn_opcode, insn_disas); | 
|  |  | 
|  | /* Register callback on memory read or write */ | 
|  | qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, | 
|  | QEMU_PLUGIN_CB_NO_REGS, | 
|  | QEMU_PLUGIN_MEM_RW, NULL); | 
|  |  | 
|  | /* Register callback on instruction */ | 
|  | qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, | 
|  | QEMU_PLUGIN_CB_NO_REGS, output); | 
|  |  | 
|  | /* reset skip */ | 
|  | skip = (imatches || amatches); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * On plugin exit, print last instruction in cache | 
|  | */ | 
|  | static void plugin_exit(qemu_plugin_id_t id, void *p) | 
|  | { | 
|  | guint i; | 
|  | GString *s; | 
|  | for (i = 0; i < last_exec->len; i++) { | 
|  | s = g_ptr_array_index(last_exec, i); | 
|  | if (s->str) { | 
|  | qemu_plugin_outs(s->str); | 
|  | qemu_plugin_outs("\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add a match to the array of matches */ | 
|  | static void parse_insn_match(char *match) | 
|  | { | 
|  | if (!imatches) { | 
|  | imatches = g_ptr_array_new(); | 
|  | } | 
|  | g_ptr_array_add(imatches, match); | 
|  | } | 
|  |  | 
|  | static void parse_vaddr_match(char *match) | 
|  | { | 
|  | uint64_t v = g_ascii_strtoull(match, NULL, 16); | 
|  |  | 
|  | if (!amatches) { | 
|  | amatches = g_array_new(false, true, sizeof(uint64_t)); | 
|  | } | 
|  | g_array_append_val(amatches, v); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Install the plugin | 
|  | */ | 
|  | QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, | 
|  | const qemu_info_t *info, int argc, | 
|  | char **argv) | 
|  | { | 
|  | /* | 
|  | * Initialize dynamic array to cache vCPU instruction. In user mode | 
|  | * we don't know the size before emulation. | 
|  | */ | 
|  | if (info->system_emulation) { | 
|  | last_exec = g_ptr_array_sized_new(info->system.max_vcpus); | 
|  | } else { | 
|  | last_exec = g_ptr_array_new(); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < argc; i++) { | 
|  | char *opt = argv[i]; | 
|  | g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); | 
|  | if (g_strcmp0(tokens[0], "ifilter") == 0) { | 
|  | parse_insn_match(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "afilter") == 0) { | 
|  | parse_vaddr_match(tokens[1]); | 
|  | } else { | 
|  | fprintf(stderr, "option parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Register translation block and exit callbacks */ | 
|  | qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); | 
|  | qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); | 
|  |  | 
|  | return 0; | 
|  | } |