blob: 707487c636662cdf5b8009d6bbd674feaf4a7072 [file] [log] [blame]
/*
* QEMU VMWARE VMXNET3 paravirtual NIC
*
* Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
*
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Tamir Shomer <tamirs@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This work is licensed under the terms of the GNU GPL, version 2.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "net/tap.h"
#include "net/checksum.h"
#include "sysemu/sysemu.h"
#include "qemu/bswap.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/pci/msix.h"
#include "hw/pci/msi.h"
#include "migration/register.h"
#include "migration/vmstate.h"
#include "vmxnet3.h"
#include "vmxnet3_defs.h"
#include "vmxnet_debug.h"
#include "vmware_utils.h"
#include "net_tx_pkt.h"
#include "net_rx_pkt.h"
#include "qom/object.h"
#define PCI_DEVICE_ID_VMWARE_VMXNET3_REVISION 0x1
#define VMXNET3_MSIX_BAR_SIZE 0x2000
/* Compatibility flags for migration */
#define VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT 0
#define VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS \
(1 << VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT)
#define VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT 1
#define VMXNET3_COMPAT_FLAG_DISABLE_PCIE \
(1 << VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT)
#define VMXNET3_EXP_EP_OFFSET (0x48)
#define VMXNET3_MSI_OFFSET(s) \
((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0x50 : 0x84)
#define VMXNET3_MSIX_OFFSET(s) \
((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0 : 0x9c)
#define VMXNET3_DSN_OFFSET (0x100)
#define VMXNET3_BAR0_IDX (0)
#define VMXNET3_BAR1_IDX (1)
#define VMXNET3_MSIX_BAR_IDX (2)
#define VMXNET3_OFF_MSIX_TABLE (0x000)
#define VMXNET3_OFF_MSIX_PBA(s) \
((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0x800 : 0x1000)
/* Link speed in Mbps should be shifted by 16 */
#define VMXNET3_LINK_SPEED (1000 << 16)
/* Link status: 1 - up, 0 - down. */
#define VMXNET3_LINK_STATUS_UP 0x1
/* Least significant bit should be set for revision and version */
#define VMXNET3_UPT_REVISION 0x1
#define VMXNET3_DEVICE_REVISION 0x1
/* Number of interrupt vectors for non-MSIx modes */
#define VMXNET3_MAX_NMSIX_INTRS (1)
/* Macros for rings descriptors access */
#define VMXNET3_READ_TX_QUEUE_DESCR8(_d, dpa, field) \
(vmw_shmem_ld8(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field)))
#define VMXNET3_WRITE_TX_QUEUE_DESCR8(_d, dpa, field, value) \
(vmw_shmem_st8(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field, value)))
#define VMXNET3_READ_TX_QUEUE_DESCR32(_d, dpa, field) \
(vmw_shmem_ld32(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field)))
#define VMXNET3_WRITE_TX_QUEUE_DESCR32(_d, dpa, field, value) \
(vmw_shmem_st32(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field), value))
#define VMXNET3_READ_TX_QUEUE_DESCR64(_d, dpa, field) \
(vmw_shmem_ld64(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field)))
#define VMXNET3_WRITE_TX_QUEUE_DESCR64(_d, dpa, field, value) \
(vmw_shmem_st64(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field), value))
#define VMXNET3_READ_RX_QUEUE_DESCR64(_d, dpa, field) \
(vmw_shmem_ld64(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field)))
#define VMXNET3_READ_RX_QUEUE_DESCR32(_d, dpa, field) \
(vmw_shmem_ld32(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field)))
#define VMXNET3_WRITE_RX_QUEUE_DESCR64(_d, dpa, field, value) \
(vmw_shmem_st64(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field), value))
#define VMXNET3_WRITE_RX_QUEUE_DESCR8(_d, dpa, field, value) \
(vmw_shmem_st8(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field), value))
/* Macros for guest driver shared area access */
#define VMXNET3_READ_DRV_SHARED64(_d, shpa, field) \
(vmw_shmem_ld64(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field)))
#define VMXNET3_READ_DRV_SHARED32(_d, shpa, field) \
(vmw_shmem_ld32(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field)))
#define VMXNET3_WRITE_DRV_SHARED32(_d, shpa, field, val) \
(vmw_shmem_st32(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field), val))
#define VMXNET3_READ_DRV_SHARED16(_d, shpa, field) \
(vmw_shmem_ld16(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field)))
#define VMXNET3_READ_DRV_SHARED8(_d, shpa, field) \
(vmw_shmem_ld8(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field)))
#define VMXNET3_READ_DRV_SHARED(_d, shpa, field, b, l) \
(vmw_shmem_read(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field), b, l))
#define VMXNET_FLAG_IS_SET(field, flag) (((field) & (flag)) == (flag))
struct VMXNET3Class {
PCIDeviceClass parent_class;
DeviceRealize parent_dc_realize;
};
typedef struct VMXNET3Class VMXNET3Class;
DECLARE_CLASS_CHECKERS(VMXNET3Class, VMXNET3_DEVICE,
TYPE_VMXNET3)
static inline void vmxnet3_ring_init(PCIDevice *d,
Vmxnet3Ring *ring,
hwaddr pa,
uint32_t size,
uint32_t cell_size,
bool zero_region)
{
ring->pa = pa;
ring->size = size;
ring->cell_size = cell_size;
ring->gen = VMXNET3_INIT_GEN;
ring->next = 0;
if (zero_region) {
vmw_shmem_set(d, pa, 0, size * cell_size);
}
}
#define VMXNET3_RING_DUMP(macro, ring_name, ridx, r) \
macro("%s#%d: base %" PRIx64 " size %u cell_size %u gen %d next %u", \
(ring_name), (ridx), \
(r)->pa, (r)->size, (r)->cell_size, (r)->gen, (r)->next)
static inline void vmxnet3_ring_inc(Vmxnet3Ring *ring)
{
if (++ring->next >= ring->size) {
ring->next = 0;
ring->gen ^= 1;
}
}
static inline void vmxnet3_ring_dec(Vmxnet3Ring *ring)
{
if (ring->next-- == 0) {
ring->next = ring->size - 1;
ring->gen ^= 1;
}
}
static inline hwaddr vmxnet3_ring_curr_cell_pa(Vmxnet3Ring *ring)
{
return ring->pa + ring->next * ring->cell_size;
}
static inline void vmxnet3_ring_read_curr_cell(PCIDevice *d, Vmxnet3Ring *ring,
void *buff)
{
vmw_shmem_read(d, vmxnet3_ring_curr_cell_pa(ring), buff, ring->cell_size);
}
static inline void vmxnet3_ring_write_curr_cell(PCIDevice *d, Vmxnet3Ring *ring,
void *buff)
{
vmw_shmem_write(d, vmxnet3_ring_curr_cell_pa(ring), buff, ring->cell_size);
}
static inline size_t vmxnet3_ring_curr_cell_idx(Vmxnet3Ring *ring)
{
return ring->next;
}
static inline uint8_t vmxnet3_ring_curr_gen(Vmxnet3Ring *ring)
{
return ring->gen;
}
/* Debug trace-related functions */
static inline void
vmxnet3_dump_tx_descr(struct Vmxnet3_TxDesc *descr)
{
VMW_PKPRN("TX DESCR: "
"addr %" PRIx64 ", len: %d, gen: %d, rsvd: %d, "
"dtype: %d, ext1: %d, msscof: %d, hlen: %d, om: %d, "
"eop: %d, cq: %d, ext2: %d, ti: %d, tci: %d",
descr->addr, descr->len, descr->gen, descr->rsvd,
descr->dtype, descr->ext1, descr->msscof, descr->hlen, descr->om,
descr->eop, descr->cq, descr->ext2, descr->ti, descr->tci);
}
static inline void
vmxnet3_dump_virt_hdr(struct virtio_net_hdr *vhdr)
{
VMW_PKPRN("VHDR: flags 0x%x, gso_type: 0x%x, hdr_len: %d, gso_size: %d, "
"csum_start: %d, csum_offset: %d",
vhdr->flags, vhdr->gso_type, vhdr->hdr_len, vhdr->gso_size,
vhdr->csum_start, vhdr->csum_offset);
}
static inline void
vmxnet3_dump_rx_descr(struct Vmxnet3_RxDesc *descr)
{
VMW_PKPRN("RX DESCR: addr %" PRIx64 ", len: %d, gen: %d, rsvd: %d, "
"dtype: %d, ext1: %d, btype: %d",
descr->addr, descr->len, descr->gen,
descr->rsvd, descr->dtype, descr->ext1, descr->btype);
}
/* Interrupt management */
/*
* This function returns sign whether interrupt line is in asserted state
* This depends on the type of interrupt used. For INTX interrupt line will
* be asserted until explicit deassertion, for MSI(X) interrupt line will
* be deasserted automatically due to notification semantics of the MSI(X)
* interrupts
*/
static bool _vmxnet3_assert_interrupt_line(VMXNET3State *s, uint32_t int_idx)
{
PCIDevice *d = PCI_DEVICE(s);
if (s->msix_used && msix_enabled(d)) {
VMW_IRPRN("Sending MSI-X notification for vector %u", int_idx);
msix_notify(d, int_idx);
return false;
}
if (msi_enabled(d)) {
VMW_IRPRN("Sending MSI notification for vector %u", int_idx);
msi_notify(d, int_idx);
return false;
}
VMW_IRPRN("Asserting line for interrupt %u", int_idx);
pci_irq_assert(d);
return true;
}
static void _vmxnet3_deassert_interrupt_line(VMXNET3State *s, int lidx)
{
PCIDevice *d = PCI_DEVICE(s);
/*
* This function should never be called for MSI(X) interrupts
* because deassertion never required for message interrupts
*/
assert(!s->msix_used || !msix_enabled(d));
/*
* This function should never be called for MSI(X) interrupts
* because deassertion never required for message interrupts
*/
assert(!msi_enabled(d));
VMW_IRPRN("Deasserting line for interrupt %u", lidx);
pci_irq_deassert(d);
}
static void vmxnet3_update_interrupt_line_state(VMXNET3State *s, int lidx)
{
if (!s->interrupt_states[lidx].is_pending &&
s->interrupt_states[lidx].is_asserted) {
VMW_IRPRN("New interrupt line state for index %d is DOWN", lidx);
_vmxnet3_deassert_interrupt_line(s, lidx);
s->interrupt_states[lidx].is_asserted = false;
return;
}
if (s->interrupt_states[lidx].is_pending &&
!s->interrupt_states[lidx].is_masked &&
!s->interrupt_states[lidx].is_asserted) {
VMW_IRPRN("New interrupt line state for index %d is UP", lidx);
s->interrupt_states[lidx].is_asserted =
_vmxnet3_assert_interrupt_line(s, lidx);
s->interrupt_states[lidx].is_pending = false;
return;
}
}
static void vmxnet3_trigger_interrupt(VMXNET3State *s, int lidx)
{
PCIDevice *d = PCI_DEVICE(s);
s->interrupt_states[lidx].is_pending = true;
vmxnet3_update_interrupt_line_state(s, lidx);
if (s->msix_used && msix_enabled(d) && s->auto_int_masking) {
goto do_automask;
}
if (msi_enabled(d) && s->auto_int_masking) {
goto do_automask;
}
return;
do_automask:
s->interrupt_states[lidx].is_masked = true;
vmxnet3_update_interrupt_line_state(s, lidx);
}
static bool vmxnet3_interrupt_asserted(VMXNET3State *s, int lidx)
{
return s->interrupt_states[lidx].is_asserted;
}
static void vmxnet3_clear_interrupt(VMXNET3State *s, int int_idx)
{
s->interrupt_states[int_idx].is_pending = false;
if (s->auto_int_masking) {
s->interrupt_states[int_idx].is_masked = true;
}
vmxnet3_update_interrupt_line_state(s, int_idx);
}
static void
vmxnet3_on_interrupt_mask_changed(VMXNET3State *s, int lidx, bool is_masked)
{
s->interrupt_states[lidx].is_masked = is_masked;
vmxnet3_update_interrupt_line_state(s, lidx);
}
static bool vmxnet3_verify_driver_magic(PCIDevice *d, hwaddr dshmem)
{
return (VMXNET3_READ_DRV_SHARED32(d, dshmem, magic) == VMXNET3_REV1_MAGIC);
}
#define VMXNET3_GET_BYTE(x, byte_num) (((x) >> (byte_num)*8) & 0xFF)
#define VMXNET3_MAKE_BYTE(byte_num, val) \
(((uint32_t)((val) & 0xFF)) << (byte_num)*8)
static void vmxnet3_set_variable_mac(VMXNET3State *s, uint32_t h, uint32_t l)
{
s->conf.macaddr.a[0] = VMXNET3_GET_BYTE(l, 0);
s->conf.macaddr.a[1] = VMXNET3_GET_BYTE(l, 1);
s->conf.macaddr.a[2] = VMXNET3_GET_BYTE(l, 2);
s->conf.macaddr.a[3] = VMXNET3_GET_BYTE(l, 3);
s->conf.macaddr.a[4] = VMXNET3_GET_BYTE(h, 0);
s->conf.macaddr.a[5] = VMXNET3_GET_BYTE(h, 1);
VMW_CFPRN("Variable MAC: " MAC_FMT, MAC_ARG(s->conf.macaddr.a));
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static uint64_t vmxnet3_get_mac_low(MACAddr *addr)
{
return VMXNET3_MAKE_BYTE(0, addr->a[0]) |
VMXNET3_MAKE_BYTE(1, addr->a[1]) |
VMXNET3_MAKE_BYTE(2, addr->a[2]) |
VMXNET3_MAKE_BYTE(3, addr->a[3]);
}
static uint64_t vmxnet3_get_mac_high(MACAddr *addr)
{
return VMXNET3_MAKE_BYTE(0, addr->a[4]) |
VMXNET3_MAKE_BYTE(1, addr->a[5]);
}
static void
vmxnet3_inc_tx_consumption_counter(VMXNET3State *s, int qidx)
{
vmxnet3_ring_inc(&s->txq_descr[qidx].tx_ring);
}
static inline void
vmxnet3_inc_rx_consumption_counter(VMXNET3State *s, int qidx, int ridx)
{
vmxnet3_ring_inc(&s->rxq_descr[qidx].rx_ring[ridx]);
}
static inline void
vmxnet3_inc_tx_completion_counter(VMXNET3State *s, int qidx)
{
vmxnet3_ring_inc(&s->txq_descr[qidx].comp_ring);
}
static void
vmxnet3_inc_rx_completion_counter(VMXNET3State *s, int qidx)
{
vmxnet3_ring_inc(&s->rxq_descr[qidx].comp_ring);
}
static void
vmxnet3_dec_rx_completion_counter(VMXNET3State *s, int qidx)
{
vmxnet3_ring_dec(&s->rxq_descr[qidx].comp_ring);
}
static void vmxnet3_complete_packet(VMXNET3State *s, int qidx, uint32_t tx_ridx)
{
struct Vmxnet3_TxCompDesc txcq_descr;
PCIDevice *d = PCI_DEVICE(s);
VMXNET3_RING_DUMP(VMW_RIPRN, "TXC", qidx, &s->txq_descr[qidx].comp_ring);
memset(&txcq_descr, 0, sizeof(txcq_descr));
txcq_descr.txdIdx = tx_ridx;
txcq_descr.gen = vmxnet3_ring_curr_gen(&s->txq_descr[qidx].comp_ring);
txcq_descr.val1 = cpu_to_le32(txcq_descr.val1);
txcq_descr.val2 = cpu_to_le32(txcq_descr.val2);
vmxnet3_ring_write_curr_cell(d, &s->txq_descr[qidx].comp_ring, &txcq_descr);
/* Flush changes in TX descriptor before changing the counter value */
smp_wmb();
vmxnet3_inc_tx_completion_counter(s, qidx);
vmxnet3_trigger_interrupt(s, s->txq_descr[qidx].intr_idx);
}
static bool
vmxnet3_setup_tx_offloads(VMXNET3State *s)
{
switch (s->offload_mode) {
case VMXNET3_OM_NONE:
return net_tx_pkt_build_vheader(s->tx_pkt, false, false, 0);
case VMXNET3_OM_CSUM:
VMW_PKPRN("L4 CSO requested\n");
return net_tx_pkt_build_vheader(s->tx_pkt, false, true, 0);
case VMXNET3_OM_TSO:
VMW_PKPRN("GSO offload requested.");
if (!net_tx_pkt_build_vheader(s->tx_pkt, true, true,
s->cso_or_gso_size)) {
return false;
}
net_tx_pkt_update_ip_checksums(s->tx_pkt);
break;
default:
g_assert_not_reached();
return false;
}
return true;
}
static void
vmxnet3_tx_retrieve_metadata(VMXNET3State *s,
const struct Vmxnet3_TxDesc *txd)
{
s->offload_mode = txd->om;
s->cso_or_gso_size = txd->msscof;
s->tci = txd->tci;
s->needs_vlan = txd->ti;
}
typedef enum {
VMXNET3_PKT_STATUS_OK,
VMXNET3_PKT_STATUS_ERROR,
VMXNET3_PKT_STATUS_DISCARD,/* only for tx */
VMXNET3_PKT_STATUS_OUT_OF_BUF /* only for rx */
} Vmxnet3PktStatus;
static void
vmxnet3_on_tx_done_update_stats(VMXNET3State *s, int qidx,
Vmxnet3PktStatus status)
{
size_t tot_len = net_tx_pkt_get_total_len(s->tx_pkt);
struct UPT1_TxStats *stats = &s->txq_descr[qidx].txq_stats;
switch (status) {
case VMXNET3_PKT_STATUS_OK:
switch (net_tx_pkt_get_packet_type(s->tx_pkt)) {
case ETH_PKT_BCAST:
stats->bcastPktsTxOK++;
stats->bcastBytesTxOK += tot_len;
break;
case ETH_PKT_MCAST:
stats->mcastPktsTxOK++;
stats->mcastBytesTxOK += tot_len;
break;
case ETH_PKT_UCAST:
stats->ucastPktsTxOK++;
stats->ucastBytesTxOK += tot_len;
break;
default:
g_assert_not_reached();
}
if (s->offload_mode == VMXNET3_OM_TSO) {
/*
* According to VMWARE headers this statistic is a number
* of packets after segmentation but since we don't have
* this information in QEMU model, the best we can do is to
* provide number of non-segmented packets
*/
stats->TSOPktsTxOK++;
stats->TSOBytesTxOK += tot_len;
}
break;
case VMXNET3_PKT_STATUS_DISCARD:
stats->pktsTxDiscard++;
break;
case VMXNET3_PKT_STATUS_ERROR:
stats->pktsTxError++;
break;
default:
g_assert_not_reached();
}
}
static void
vmxnet3_on_rx_done_update_stats(VMXNET3State *s,
int qidx,
Vmxnet3PktStatus status)
{
struct UPT1_RxStats *stats = &s->rxq_descr[qidx].rxq_stats;
size_t tot_len = net_rx_pkt_get_total_len(s->rx_pkt);
switch (status) {
case VMXNET3_PKT_STATUS_OUT_OF_BUF:
stats->pktsRxOutOfBuf++;
break;
case VMXNET3_PKT_STATUS_ERROR:
stats->pktsRxError++;
break;
case VMXNET3_PKT_STATUS_OK:
switch (net_rx_pkt_get_packet_type(s->rx_pkt)) {
case ETH_PKT_BCAST:
stats->bcastPktsRxOK++;
stats->bcastBytesRxOK += tot_len;
break;
case ETH_PKT_MCAST:
stats->mcastPktsRxOK++;
stats->mcastBytesRxOK += tot_len;
break;
case ETH_PKT_UCAST:
stats->ucastPktsRxOK++;
stats->ucastBytesRxOK += tot_len;
break;
default:
g_assert_not_reached();
}
if (tot_len > s->mtu) {
stats->LROPktsRxOK++;
stats->LROBytesRxOK += tot_len;
}
break;
default:
g_assert_not_reached();
}
}
static inline void
vmxnet3_ring_read_curr_txdesc(PCIDevice *pcidev, Vmxnet3Ring *ring,
struct Vmxnet3_TxDesc *txd)
{
vmxnet3_ring_read_curr_cell(pcidev, ring, txd);
txd->addr = le64_to_cpu(txd->addr);
txd->val1 = le32_to_cpu(txd->val1);
txd->val2 = le32_to_cpu(txd->val2);
}
static inline bool
vmxnet3_pop_next_tx_descr(VMXNET3State *s,
int qidx,
struct Vmxnet3_TxDesc *txd,
uint32_t *descr_idx)
{
Vmxnet3Ring *ring = &s->txq_descr[qidx].tx_ring;
PCIDevice *d = PCI_DEVICE(s);
vmxnet3_ring_read_curr_txdesc(d, ring, txd);
if (txd->gen == vmxnet3_ring_curr_gen(ring)) {
/* Only read after generation field verification */
smp_rmb();
/* Re-read to be sure we got the latest version */
vmxnet3_ring_read_curr_txdesc(d, ring, txd);
VMXNET3_RING_DUMP(VMW_RIPRN, "TX", qidx, ring);
*descr_idx = vmxnet3_ring_curr_cell_idx(ring);
vmxnet3_inc_tx_consumption_counter(s, qidx);
return true;
}
return false;
}
static bool
vmxnet3_send_packet(VMXNET3State *s, uint32_t qidx)
{
Vmxnet3PktStatus status = VMXNET3_PKT_STATUS_OK;
if (!vmxnet3_setup_tx_offloads(s)) {
status = VMXNET3_PKT_STATUS_ERROR;
goto func_exit;
}
/* debug prints */
vmxnet3_dump_virt_hdr(net_tx_pkt_get_vhdr(s->tx_pkt));
net_tx_pkt_dump(s->tx_pkt);
if (!net_tx_pkt_send(s->tx_pkt, qemu_get_queue(s->nic))) {
status = VMXNET3_PKT_STATUS_DISCARD;
goto func_exit;
}
func_exit:
vmxnet3_on_tx_done_update_stats(s, qidx, status);
return (status == VMXNET3_PKT_STATUS_OK);
}
static void vmxnet3_process_tx_queue(VMXNET3State *s, int qidx)
{
struct Vmxnet3_TxDesc txd;
uint32_t txd_idx;
uint32_t data_len;
hwaddr data_pa;
for (;;) {
if (!vmxnet3_pop_next_tx_descr(s, qidx, &txd, &txd_idx)) {
break;
}
vmxnet3_dump_tx_descr(&txd);
if (!s->skip_current_tx_pkt) {
data_len = (txd.len > 0) ? txd.len : VMXNET3_MAX_TX_BUF_SIZE;
data_pa = txd.addr;
if (!net_tx_pkt_add_raw_fragment_pci(s->tx_pkt, PCI_DEVICE(s),
data_pa, data_len)) {
s->skip_current_tx_pkt = true;
}
}
if (s->tx_sop) {
vmxnet3_tx_retrieve_metadata(s, &txd);
s->tx_sop = false;
}
if (txd.eop) {
if (!s->skip_current_tx_pkt && net_tx_pkt_parse(s->tx_pkt)) {
if (s->needs_vlan) {
net_tx_pkt_setup_vlan_header(s->tx_pkt, s->tci);
}
vmxnet3_send_packet(s, qidx);
} else {
vmxnet3_on_tx_done_update_stats(s, qidx,
VMXNET3_PKT_STATUS_ERROR);
}
vmxnet3_complete_packet(s, qidx, txd_idx);
s->tx_sop = true;
s->skip_current_tx_pkt = false;
net_tx_pkt_reset(s->tx_pkt,
net_tx_pkt_unmap_frag_pci, PCI_DEVICE(s));
}
}
net_tx_pkt_reset(s->tx_pkt, net_tx_pkt_unmap_frag_pci, PCI_DEVICE(s));
}
static inline void
vmxnet3_read_next_rx_descr(VMXNET3State *s, int qidx, int ridx,
struct Vmxnet3_RxDesc *dbuf, uint32_t *didx)
{
PCIDevice *d = PCI_DEVICE(s);
Vmxnet3Ring *ring = &s->rxq_descr[qidx].rx_ring[ridx];
*didx = vmxnet3_ring_curr_cell_idx(ring);
vmxnet3_ring_read_curr_cell(d, ring, dbuf);
dbuf->addr = le64_to_cpu(dbuf->addr);
dbuf->val1 = le32_to_cpu(dbuf->val1);
dbuf->ext1 = le32_to_cpu(dbuf->ext1);
}
static inline uint8_t
vmxnet3_get_rx_ring_gen(VMXNET3State *s, int qidx, int ridx)
{
return s->rxq_descr[qidx].rx_ring[ridx].gen;
}
static inline hwaddr
vmxnet3_pop_rxc_descr(VMXNET3State *s, int qidx, uint32_t *descr_gen)
{
uint8_t ring_gen;
struct Vmxnet3_RxCompDesc rxcd;
hwaddr daddr =
vmxnet3_ring_curr_cell_pa(&s->rxq_descr[qidx].comp_ring);
pci_dma_read(PCI_DEVICE(s),
daddr, &rxcd, sizeof(struct Vmxnet3_RxCompDesc));
rxcd.val1 = le32_to_cpu(rxcd.val1);
rxcd.val2 = le32_to_cpu(rxcd.val2);
rxcd.val3 = le32_to_cpu(rxcd.val3);
ring_gen = vmxnet3_ring_curr_gen(&s->rxq_descr[qidx].comp_ring);
if (rxcd.gen != ring_gen) {
*descr_gen = ring_gen;
vmxnet3_inc_rx_completion_counter(s, qidx);
return daddr;
}
return 0;
}
static inline void
vmxnet3_revert_rxc_descr(VMXNET3State *s, int qidx)
{
vmxnet3_dec_rx_completion_counter(s, qidx);
}
#define RXQ_IDX (0)
#define RX_HEAD_BODY_RING (0)
#define RX_BODY_ONLY_RING (1)
static bool
vmxnet3_get_next_head_rx_descr(VMXNET3State *s,
struct Vmxnet3_RxDesc *descr_buf,
uint32_t *descr_idx,
uint32_t *ridx)
{
for (;;) {
uint32_t ring_gen;
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING,
descr_buf, descr_idx);
/* If no more free descriptors - return */
ring_gen = vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_HEAD_BODY_RING);
if (descr_buf->gen != ring_gen) {
return false;
}
/* Only read after generation field verification */
smp_rmb();
/* Re-read to be sure we got the latest version */
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING,
descr_buf, descr_idx);
/* Mark current descriptor as used/skipped */
vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_HEAD_BODY_RING);
/* If this is what we are looking for - return */
if (descr_buf->btype == VMXNET3_RXD_BTYPE_HEAD) {
*ridx = RX_HEAD_BODY_RING;
return true;
}
}
}
static bool
vmxnet3_get_next_body_rx_descr(VMXNET3State *s,
struct Vmxnet3_RxDesc *d,
uint32_t *didx,
uint32_t *ridx)
{
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, d, didx);
/* Try to find corresponding descriptor in head/body ring */
if (d->gen == vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_HEAD_BODY_RING)) {
/* Only read after generation field verification */
smp_rmb();
/* Re-read to be sure we got the latest version */
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, d, didx);
if (d->btype == VMXNET3_RXD_BTYPE_BODY) {
vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_HEAD_BODY_RING);
*ridx = RX_HEAD_BODY_RING;
return true;
}
}
/*
* If there is no free descriptors on head/body ring or next free
* descriptor is a head descriptor switch to body only ring
*/
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_BODY_ONLY_RING, d, didx);
/* If no more free descriptors - return */
if (d->gen == vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_BODY_ONLY_RING)) {
/* Only read after generation field verification */
smp_rmb();
/* Re-read to be sure we got the latest version */
vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_BODY_ONLY_RING, d, didx);
assert(d->btype == VMXNET3_RXD_BTYPE_BODY);
*ridx = RX_BODY_ONLY_RING;
vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_BODY_ONLY_RING);
return true;
}
return false;
}
static inline bool
vmxnet3_get_next_rx_descr(VMXNET3State *s, bool is_head,
struct Vmxnet3_RxDesc *descr_buf,
uint32_t *descr_idx,
uint32_t *ridx)
{
if (is_head || !s->rx_packets_compound) {
return vmxnet3_get_next_head_rx_descr(s, descr_buf, descr_idx, ridx);
} else {
return vmxnet3_get_next_body_rx_descr(s, descr_buf, descr_idx, ridx);
}
}
/* In case packet was csum offloaded (either NEEDS_CSUM or DATA_VALID),
* the implementation always passes an RxCompDesc with a "Checksum
* calculated and found correct" to the OS (cnc=0 and tuc=1, see
* vmxnet3_rx_update_descr). This emulates the observed ESXi behavior.
*
* Therefore, if packet has the NEEDS_CSUM set, we must calculate
* and place a fully computed checksum into the tcp/udp header.
* Otherwise, the OS driver will receive a checksum-correct indication
* (CHECKSUM_UNNECESSARY), but with the actual tcp/udp checksum field
* having just the pseudo header csum value.
*
* While this is not a problem if packet is destined for local delivery,
* in the case the host OS performs forwarding, it will forward an
* incorrectly checksummed packet.
*/
static void vmxnet3_rx_need_csum_calculate(struct NetRxPkt *pkt,
const void *pkt_data,
size_t pkt_len)
{
struct virtio_net_hdr *vhdr;
bool hasip4, hasip6;
EthL4HdrProto l4hdr_proto;
uint8_t *data;
int len;
vhdr = net_rx_pkt_get_vhdr(pkt);
if (!VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
return;
}
net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
if (!(hasip4 || hasip6) ||
(l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
l4hdr_proto != ETH_L4_HDR_PROTO_UDP)) {
return;
}
vmxnet3_dump_virt_hdr(vhdr);
/* Validate packet len: csum_start + scum_offset + length of csum field */
if (pkt_len < (vhdr->csum_start + vhdr->csum_offset + 2)) {
VMW_PKPRN("packet len:%zu < csum_start(%d) + csum_offset(%d) + 2, "
"cannot calculate checksum",
pkt_len, vhdr->csum_start, vhdr->csum_offset);
return;
}
data = (uint8_t *)pkt_data + vhdr->csum_start;
len = pkt_len - vhdr->csum_start;
/* Put the checksum obtained into the packet */
stw_be_p(data + vhdr->csum_offset,
net_checksum_finish_nozero(net_checksum_add(len, data)));
vhdr->flags &= ~VIRTIO_NET_HDR_F_NEEDS_CSUM;
vhdr->flags |= VIRTIO_NET_HDR_F_DATA_VALID;
}
static void vmxnet3_rx_update_descr(struct NetRxPkt *pkt,
struct Vmxnet3_RxCompDesc *rxcd)
{
int csum_ok, is_gso;
bool hasip4, hasip6;
EthL4HdrProto l4hdr_proto;
struct virtio_net_hdr *vhdr;
uint8_t offload_type;
if (net_rx_pkt_is_vlan_stripped(pkt)) {
rxcd->ts = 1;
rxcd->tci = net_rx_pkt_get_vlan_tag(pkt);
}
vhdr = net_rx_pkt_get_vhdr(pkt);
/*
* Checksum is valid when lower level tell so or when lower level
* requires checksum offload telling that packet produced/bridged
* locally and did travel over network after last checksum calculation
* or production
*/
csum_ok = VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_DATA_VALID) ||
VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_NEEDS_CSUM);
offload_type = vhdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
is_gso = (offload_type != VIRTIO_NET_HDR_GSO_NONE) ? 1 : 0;
if (!csum_ok && !is_gso) {
goto nocsum;
}
net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
if ((l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
l4hdr_proto != ETH_L4_HDR_PROTO_UDP) ||
(!hasip4 && !hasip6)) {
goto nocsum;
}
rxcd->cnc = 0;
rxcd->v4 = hasip4 ? 1 : 0;
rxcd->v6 = hasip6 ? 1 : 0;
rxcd->tcp = l4hdr_proto == ETH_L4_HDR_PROTO_TCP;
rxcd->udp = l4hdr_proto == ETH_L4_HDR_PROTO_UDP;
rxcd->fcs = rxcd->tuc = rxcd->ipc = 1;
return;
nocsum:
rxcd->cnc = 1;
return;
}
static void
vmxnet3_pci_dma_writev(PCIDevice *pci_dev,
const struct iovec *iov,
size_t start_iov_off,
hwaddr target_addr,
size_t bytes_to_copy)
{
size_t curr_off = 0;
size_t copied = 0;
while (bytes_to_copy) {
if (start_iov_off < (curr_off + iov->iov_len)) {
size_t chunk_len =
MIN((curr_off + iov->iov_len) - start_iov_off, bytes_to_copy);
pci_dma_write(pci_dev, target_addr + copied,
iov->iov_base + start_iov_off - curr_off,
chunk_len);
copied += chunk_len;
start_iov_off += chunk_len;
curr_off = start_iov_off;
bytes_to_copy -= chunk_len;
} else {
curr_off += iov->iov_len;
}
iov++;
}
}
static void
vmxnet3_pci_dma_write_rxcd(PCIDevice *pcidev, dma_addr_t pa,
struct Vmxnet3_RxCompDesc *rxcd)
{
rxcd->val1 = cpu_to_le32(rxcd->val1);
rxcd->val2 = cpu_to_le32(rxcd->val2);
rxcd->val3 = cpu_to_le32(rxcd->val3);
pci_dma_write(pcidev, pa, rxcd, sizeof(*rxcd));
}
static bool
vmxnet3_indicate_packet(VMXNET3State *s)
{
struct Vmxnet3_RxDesc rxd;
PCIDevice *d = PCI_DEVICE(s);
bool is_head = true;
uint32_t rxd_idx;
uint32_t rx_ridx = 0;
struct Vmxnet3_RxCompDesc rxcd;
uint32_t new_rxcd_gen = VMXNET3_INIT_GEN;
hwaddr new_rxcd_pa = 0;
hwaddr ready_rxcd_pa = 0;
struct iovec *data = net_rx_pkt_get_iovec(s->rx_pkt);
size_t bytes_copied = 0;
size_t bytes_left = net_rx_pkt_get_total_len(s->rx_pkt);
uint16_t num_frags = 0;
size_t chunk_size;
net_rx_pkt_dump(s->rx_pkt);
while (bytes_left > 0) {
/* cannot add more frags to packet */
if (num_frags == s->max_rx_frags) {
break;
}
new_rxcd_pa = vmxnet3_pop_rxc_descr(s, RXQ_IDX, &new_rxcd_gen);
if (!new_rxcd_pa) {
break;
}
if (!vmxnet3_get_next_rx_descr(s, is_head, &rxd, &rxd_idx, &rx_ridx)) {
break;
}
chunk_size = MIN(bytes_left, rxd.len);
vmxnet3_pci_dma_writev(d, data, bytes_copied, rxd.addr, chunk_size);
bytes_copied += chunk_size;
bytes_left -= chunk_size;
vmxnet3_dump_rx_descr(&rxd);
if (ready_rxcd_pa != 0) {
vmxnet3_pci_dma_write_rxcd(d, ready_rxcd_pa, &rxcd);
}
memset(&rxcd, 0, sizeof(struct Vmxnet3_RxCompDesc));
rxcd.rxdIdx = rxd_idx;
rxcd.len = chunk_size;
rxcd.sop = is_head;
rxcd.gen = new_rxcd_gen;
rxcd.rqID = RXQ_IDX + rx_ridx * s->rxq_num;
if (bytes_left == 0) {
vmxnet3_rx_update_descr(s->rx_pkt, &rxcd);
}
VMW_RIPRN("RX Completion descriptor: rxRing: %lu rxIdx %lu len %lu "
"sop %d csum_correct %lu",
(unsigned long) rx_ridx,
(unsigned long) rxcd.rxdIdx,
(unsigned long) rxcd.len,
(int) rxcd.sop,
(unsigned long) rxcd.tuc);
is_head = false;
ready_rxcd_pa = new_rxcd_pa;
new_rxcd_pa = 0;
num_frags++;
}
if (ready_rxcd_pa != 0) {
rxcd.eop = 1;
rxcd.err = (bytes_left != 0);
vmxnet3_pci_dma_write_rxcd(d, ready_rxcd_pa, &rxcd);
/* Flush RX descriptor changes */
smp_wmb();
}
if (new_rxcd_pa != 0) {
vmxnet3_revert_rxc_descr(s, RXQ_IDX);
}
vmxnet3_trigger_interrupt(s, s->rxq_descr[RXQ_IDX].intr_idx);
if (bytes_left == 0) {
vmxnet3_on_rx_done_update_stats(s, RXQ_IDX, VMXNET3_PKT_STATUS_OK);
return true;
} else if (num_frags == s->max_rx_frags) {
vmxnet3_on_rx_done_update_stats(s, RXQ_IDX, VMXNET3_PKT_STATUS_ERROR);
return false;
} else {
vmxnet3_on_rx_done_update_stats(s, RXQ_IDX,
VMXNET3_PKT_STATUS_OUT_OF_BUF);
return false;
}
}
static void
vmxnet3_io_bar0_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
VMXNET3State *s = opaque;
if (!s->device_active) {
return;
}
if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_TXPROD,
VMXNET3_DEVICE_MAX_TX_QUEUES, VMXNET3_REG_ALIGN)) {
int tx_queue_idx =
VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_TXPROD,
VMXNET3_REG_ALIGN);
if (tx_queue_idx <= s->txq_num) {
vmxnet3_process_tx_queue(s, tx_queue_idx);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Illegal TX queue %d/%d\n",
tx_queue_idx, s->txq_num);
}
return;
}
if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_IMR,
VMXNET3_MAX_INTRS, VMXNET3_REG_ALIGN)) {
int l = VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_IMR,
VMXNET3_REG_ALIGN);
VMW_CBPRN("Interrupt mask for line %d written: 0x%" PRIx64, l, val);
vmxnet3_on_interrupt_mask_changed(s, l, val);
return;
}
if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_RXPROD,
VMXNET3_DEVICE_MAX_RX_QUEUES, VMXNET3_REG_ALIGN) ||
VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_RXPROD2,
VMXNET3_DEVICE_MAX_RX_QUEUES, VMXNET3_REG_ALIGN)) {
return;
}
VMW_WRPRN("BAR0 unknown write [%" PRIx64 "] = %" PRIx64 ", size %d",
(uint64_t) addr, val, size);
}
static uint64_t
vmxnet3_io_bar0_read(void *opaque, hwaddr addr, unsigned size)
{
VMXNET3State *s = opaque;
if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_IMR,
VMXNET3_MAX_INTRS, VMXNET3_REG_ALIGN)) {
int l = VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_IMR,
VMXNET3_REG_ALIGN);
return s->interrupt_states[l].is_masked;
}
VMW_CBPRN("BAR0 unknown read [%" PRIx64 "], size %d", addr, size);
return 0;
}
static void vmxnet3_reset_interrupt_states(VMXNET3State *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->interrupt_states); i++) {
s->interrupt_states[i].is_asserted = false;
s->interrupt_states[i].is_pending = false;
s->interrupt_states[i].is_masked = true;
}
}
static void vmxnet3_reset_mac(VMXNET3State *s)
{
memcpy(&s->conf.macaddr.a, &s->perm_mac.a, sizeof(s->perm_mac.a));
VMW_CFPRN("MAC address set to: " MAC_FMT, MAC_ARG(s->conf.macaddr.a));
}
static void vmxnet3_deactivate_device(VMXNET3State *s)
{
if (s->device_active) {
VMW_CBPRN("Deactivating vmxnet3...");
net_tx_pkt_uninit(s->tx_pkt);
net_rx_pkt_uninit(s->rx_pkt);
s->device_active = false;
}
}
static void vmxnet3_reset(VMXNET3State *s)
{
VMW_CBPRN("Resetting vmxnet3...");
vmxnet3_deactivate_device(s);
vmxnet3_reset_interrupt_states(s);
s->drv_shmem = 0;
s->tx_sop = true;
s->skip_current_tx_pkt = false;
}
static void vmxnet3_update_rx_mode(VMXNET3State *s)
{
PCIDevice *d = PCI_DEVICE(s);
s->rx_mode = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem,
devRead.rxFilterConf.rxMode);
VMW_CFPRN("RX mode: 0x%08X", s->rx_mode);
}
static void vmxnet3_update_vlan_filters(VMXNET3State *s)
{
int i;
PCIDevice *d = PCI_DEVICE(s);
/* Copy configuration from shared memory */
VMXNET3_READ_DRV_SHARED(d, s->drv_shmem,
devRead.rxFilterConf.vfTable,
s->vlan_table,
sizeof(s->vlan_table));
/* Invert byte order when needed */
for (i = 0; i < ARRAY_SIZE(s->vlan_table); i++) {
s->vlan_table[i] = le32_to_cpu(s->vlan_table[i]);
}
/* Dump configuration for debugging purposes */
VMW_CFPRN("Configured VLANs:");
for (i = 0; i < sizeof(s->vlan_table) * 8; i++) {
if (VMXNET3_VFTABLE_ENTRY_IS_SET(s->vlan_table, i)) {
VMW_CFPRN("\tVLAN %d is present", i);
}
}
}
static void vmxnet3_update_mcast_filters(VMXNET3State *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint16_t list_bytes =
VMXNET3_READ_DRV_SHARED16(d, s->drv_shmem,
devRead.rxFilterConf.mfTableLen);
s->mcast_list_len = list_bytes / sizeof(s->mcast_list[0]);
s->mcast_list = g_realloc(s->mcast_list, list_bytes);
if (!s->mcast_list) {
if (s->mcast_list_len == 0) {
VMW_CFPRN("Current multicast list is empty");
} else {
VMW_ERPRN("Failed to allocate multicast list of %d elements",
s->mcast_list_len);
}
s->mcast_list_len = 0;
} else {
int i;
hwaddr mcast_list_pa =
VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem,
devRead.rxFilterConf.mfTablePA);
pci_dma_read(d, mcast_list_pa, s->mcast_list, list_bytes);
VMW_CFPRN("Current multicast list len is %d:", s->mcast_list_len);
for (i = 0; i < s->mcast_list_len; i++) {
VMW_CFPRN("\t" MAC_FMT, MAC_ARG(s->mcast_list[i].a));
}
}
}
static void vmxnet3_setup_rx_filtering(VMXNET3State *s)
{
vmxnet3_update_rx_mode(s);
vmxnet3_update_vlan_filters(s);
vmxnet3_update_mcast_filters(s);
}
static uint32_t vmxnet3_get_interrupt_config(VMXNET3State *s)
{
uint32_t interrupt_mode = VMXNET3_IT_AUTO | (VMXNET3_IMM_AUTO << 2);
VMW_CFPRN("Interrupt config is 0x%X", interrupt_mode);
return interrupt_mode;
}
static void vmxnet3_fill_stats(VMXNET3State *s)
{
int i;
PCIDevice *d = PCI_DEVICE(s);
if (!s->device_active)
return;
for (i = 0; i < s->txq_num; i++) {
pci_dma_write(d,
s->txq_descr[i].tx_stats_pa,
&s->txq_descr[i].txq_stats,
sizeof(s->txq_descr[i].txq_stats));
}
for (i = 0; i < s->rxq_num; i++) {
pci_dma_write(d,
s->rxq_descr[i].rx_stats_pa,
&s->rxq_descr[i].rxq_stats,
sizeof(s->rxq_descr[i].rxq_stats));
}
}
static void vmxnet3_adjust_by_guest_type(VMXNET3State *s)
{
struct Vmxnet3_GOSInfo gos;
PCIDevice *d = PCI_DEVICE(s);
VMXNET3_READ_DRV_SHARED(d, s->drv_shmem, devRead.misc.driverInfo.gos,
&gos, sizeof(gos));
s->rx_packets_compound =
(gos.gosType == VMXNET3_GOS_TYPE_WIN) ? false : true;
VMW_CFPRN("Guest type specifics: RXCOMPOUND: %d", s->rx_packets_compound);
}
static void
vmxnet3_dump_conf_descr(const char *name,
struct Vmxnet3_VariableLenConfDesc *pm_descr)
{
VMW_CFPRN("%s descriptor dump: Version %u, Length %u",
name, pm_descr->confVer, pm_descr->confLen);
};
static void vmxnet3_update_pm_state(VMXNET3State *s)
{
struct Vmxnet3_VariableLenConfDesc pm_descr;
PCIDevice *d = PCI_DEVICE(s);
pm_descr.confLen =
VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.pmConfDesc.confLen);
pm_descr.confVer =
VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.pmConfDesc.confVer);
pm_descr.confPA =
VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem, devRead.pmConfDesc.confPA);
vmxnet3_dump_conf_descr("PM State", &pm_descr);
}
static void vmxnet3_update_features(VMXNET3State *s)
{
uint32_t guest_features;
int rxcso_supported;
PCIDevice *d = PCI_DEVICE(s);
guest_features = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem,
devRead.misc.uptFeatures);
rxcso_supported = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_RXCSUM);
s->rx_vlan_stripping = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_RXVLAN);
s->lro_supported = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_LRO);
VMW_CFPRN("Features configuration: LRO: %d, RXCSUM: %d, VLANSTRIP: %d",
s->lro_supported, rxcso_supported,
s->rx_vlan_stripping);
if (s->peer_has_vhdr) {
qemu_set_offload(qemu_get_queue(s->nic)->peer,
rxcso_supported,
s->lro_supported,
s->lro_supported,
0,
0,
0,
0);
}
}
static bool vmxnet3_verify_intx(VMXNET3State *s, int intx)
{
return s->msix_used || msi_enabled(PCI_DEVICE(s))
|| intx == pci_get_byte(s->parent_obj.config + PCI_INTERRUPT_PIN) - 1;
}
static void vmxnet3_validate_interrupt_idx(bool is_msix, int idx)
{
int max_ints = is_msix ? VMXNET3_MAX_INTRS : VMXNET3_MAX_NMSIX_INTRS;
if (idx >= max_ints) {
hw_error("Bad interrupt index: %d\n", idx);
}
}
static void vmxnet3_validate_interrupts(VMXNET3State *s)
{
int i;
VMW_CFPRN("Verifying event interrupt index (%d)", s->event_int_idx);
vmxnet3_validate_interrupt_idx(s->msix_used, s->event_int_idx);
for (i = 0; i < s->txq_num; i++) {
int idx = s->txq_descr[i].intr_idx;
VMW_CFPRN("Verifying TX queue %d interrupt index (%d)", i, idx);
vmxnet3_validate_interrupt_idx(s->msix_used, idx);
}
for (i = 0; i < s->rxq_num; i++) {
int idx = s->rxq_descr[i].intr_idx;
VMW_CFPRN("Verifying RX queue %d interrupt index (%d)", i, idx);
vmxnet3_validate_interrupt_idx(s->msix_used, idx);
}
}
static bool vmxnet3_validate_queues(VMXNET3State *s)
{
/*
* txq_num and rxq_num are total number of queues
* configured by guest. These numbers must not
* exceed corresponding maximal values.
*/
if (s->txq_num > VMXNET3_DEVICE_MAX_TX_QUEUES) {
qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad TX queues number: %d\n",
s->txq_num);
return false;
}
if (s->rxq_num > VMXNET3_DEVICE_MAX_RX_QUEUES) {
qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad RX queues number: %d\n",
s->rxq_num);
return false;
}
return true;
}
static void vmxnet3_activate_device(VMXNET3State *s)
{
int i;
static const uint32_t VMXNET3_DEF_TX_THRESHOLD = 1;
PCIDevice *d = PCI_DEVICE(s);
hwaddr qdescr_table_pa;
uint64_t pa;
uint32_t size;
/* Verify configuration consistency */
if (!vmxnet3_verify_driver_magic(d, s->drv_shmem)) {
VMW_ERPRN("Device configuration received from driver is invalid");
return;
}
/* Verify if device is active */
if (s->device_active) {
VMW_CFPRN("Vmxnet3 device is active");
return;
}
s->txq_num =
VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.misc.numTxQueues);
s->rxq_num =
VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.misc.numRxQueues);
VMW_CFPRN("Number of TX/RX queues %u/%u", s->txq_num, s->rxq_num);
if (!vmxnet3_validate_queues(s)) {
return;
}
vmxnet3_adjust_by_guest_type(s);
vmxnet3_update_features(s);
vmxnet3_update_pm_state(s);
vmxnet3_setup_rx_filtering(s);
/* Cache fields from shared memory */
s->mtu = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.misc.mtu);
if (s->mtu < VMXNET3_MIN_MTU || s->mtu > VMXNET3_MAX_MTU) {
qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad MTU size: %u\n", s->mtu);
return;
}
VMW_CFPRN("MTU is %u", s->mtu);
s->max_rx_frags =
VMXNET3_READ_DRV_SHARED16(d, s->drv_shmem, devRead.misc.maxNumRxSG);
if (s->max_rx_frags == 0) {
s->max_rx_frags = 1;
}
VMW_CFPRN("Max RX fragments is %u", s->max_rx_frags);
s->event_int_idx =
VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.intrConf.eventIntrIdx);
assert(vmxnet3_verify_intx(s, s->event_int_idx));
VMW_CFPRN("Events interrupt line is %u", s->event_int_idx);
s->auto_int_masking =
VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.intrConf.autoMask);
VMW_CFPRN("Automatic interrupt masking is %d", (int)s->auto_int_masking);
qdescr_table_pa =
VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem, devRead.misc.queueDescPA);
VMW_CFPRN("TX queues descriptors table is at 0x%" PRIx64, qdescr_table_pa);
/*
* Worst-case scenario is a packet that holds all TX rings space so
* we calculate total size of all TX rings for max TX fragments number
*/
s->max_tx_frags = 0;
/* TX queues */
for (i = 0; i < s->txq_num; i++) {
hwaddr qdescr_pa =
qdescr_table_pa + i * sizeof(struct Vmxnet3_TxQueueDesc);
/* Read interrupt number for this TX queue */
s->txq_descr[i].intr_idx =
VMXNET3_READ_TX_QUEUE_DESCR8(d, qdescr_pa, conf.intrIdx);
assert(vmxnet3_verify_intx(s, s->txq_descr[i].intr_idx));
VMW_CFPRN("TX Queue %d interrupt: %d", i, s->txq_descr[i].intr_idx);
/* Read rings memory locations for TX queues */
pa = VMXNET3_READ_TX_QUEUE_DESCR64(d, qdescr_pa, conf.txRingBasePA);
size = VMXNET3_READ_TX_QUEUE_DESCR32(d, qdescr_pa, conf.txRingSize);
if (size > VMXNET3_TX_RING_MAX_SIZE) {
size = VMXNET3_TX_RING_MAX_SIZE;
}
vmxnet3_ring_init(d, &s->txq_descr[i].tx_ring, pa, size,
sizeof(struct Vmxnet3_TxDesc), false);
VMXNET3_RING_DUMP(VMW_CFPRN, "TX", i, &s->txq_descr[i].tx_ring);
s->max_tx_frags += size;
/* TXC ring */
pa = VMXNET3_READ_TX_QUEUE_DESCR64(d, qdescr_pa, conf.compRingBasePA);
size = VMXNET3_READ_TX_QUEUE_DESCR32(d, qdescr_pa, conf.compRingSize);
if (size > VMXNET3_TC_RING_MAX_SIZE) {
size = VMXNET3_TC_RING_MAX_SIZE;
}
vmxnet3_ring_init(d, &s->txq_descr[i].comp_ring, pa, size,
sizeof(struct Vmxnet3_TxCompDesc), true);
VMXNET3_RING_DUMP(VMW_CFPRN, "TXC", i, &s->txq_descr[i].comp_ring);
s->txq_descr[i].tx_stats_pa =
qdescr_pa + offsetof(struct Vmxnet3_TxQueueDesc, stats);
memset(&s->txq_descr[i].txq_stats, 0,
sizeof(s->txq_descr[i].txq_stats));
/* Fill device-managed parameters for queues */
VMXNET3_WRITE_TX_QUEUE_DESCR32(d, qdescr_pa,
ctrl.txThreshold,
VMXNET3_DEF_TX_THRESHOLD);
}
/* Preallocate TX packet wrapper */
VMW_CFPRN("Max TX fragments is %u", s->max_tx_frags);
net_tx_pkt_init(&s->tx_pkt, s->max_tx_frags);
net_rx_pkt_init(&s->rx_pkt);
/* Read rings memory locations for RX queues */
for (i = 0; i < s->rxq_num; i++) {
int j;
hwaddr qd_pa =
qdescr_table_pa + s->txq_num * sizeof(struct Vmxnet3_TxQueueDesc) +
i * sizeof(struct Vmxnet3_RxQueueDesc);
/* Read interrupt number for this RX queue */
s->rxq_descr[i].intr_idx =
VMXNET3_READ_TX_QUEUE_DESCR8(d, qd_pa, conf.intrIdx);
assert(vmxnet3_verify_intx(s, s->rxq_descr[i].intr_idx));
VMW_CFPRN("RX Queue %d interrupt: %d", i, s->rxq_descr[i].intr_idx);
/* Read rings memory locations */
for (j = 0; j < VMXNET3_RX_RINGS_PER_QUEUE; j++) {
/* RX rings */
pa = VMXNET3_READ_RX_QUEUE_DESCR64(d, qd_pa, conf.rxRingBasePA[j]);
size = VMXNET3_READ_RX_QUEUE_DESCR32(d, qd_pa, conf.rxRingSize[j]);
if (size > VMXNET3_RX_RING_MAX_SIZE) {
size = VMXNET3_RX_RING_MAX_SIZE;
}
vmxnet3_ring_init(d, &s->rxq_descr[i].rx_ring[j], pa, size,
sizeof(struct Vmxnet3_RxDesc), false);
VMW_CFPRN("RX queue %d:%d: Base: %" PRIx64 ", Size: %d",
i, j, pa, size);
}
/* RXC ring */
pa = VMXNET3_READ_RX_QUEUE_DESCR64(d, qd_pa, conf.compRingBasePA);
size = VMXNET3_READ_RX_QUEUE_DESCR32(d, qd_pa, conf.compRingSize);
if (size > VMXNET3_RC_RING_MAX_SIZE) {
size = VMXNET3_RC_RING_MAX_SIZE;
}
vmxnet3_ring_init(d, &s->rxq_descr[i].comp_ring, pa, size,
sizeof(struct Vmxnet3_RxCompDesc), true);
VMW_CFPRN("RXC queue %d: Base: %" PRIx64 ", Size: %d", i, pa, size);
s->rxq_descr[i].rx_stats_pa =
qd_pa + offsetof(struct Vmxnet3_RxQueueDesc, stats);
memset(&s->rxq_descr[i].rxq_stats, 0,
sizeof(s->rxq_descr[i].rxq_stats));
}
vmxnet3_validate_interrupts(s);
/* Make sure everything is in place before device activation */
smp_wmb();
vmxnet3_reset_mac(s);
s->device_active = true;
}
static void vmxnet3_handle_command(VMXNET3State *s, uint64_t cmd)
{
s->last_command = cmd;
switch (cmd) {
case VMXNET3_CMD_GET_PERM_MAC_HI:
VMW_CBPRN("Set: Get upper part of permanent MAC");
break;
case VMXNET3_CMD_GET_PERM_MAC_LO:
VMW_CBPRN("Set: Get lower part of permanent MAC");
break;
case VMXNET3_CMD_GET_STATS:
VMW_CBPRN("Set: Get device statistics");
vmxnet3_fill_stats(s);
break;
case VMXNET3_CMD_ACTIVATE_DEV:
VMW_CBPRN("Set: Activating vmxnet3 device");
vmxnet3_activate_device(s);
break;
case VMXNET3_CMD_UPDATE_RX_MODE:
VMW_CBPRN("Set: Update rx mode");
vmxnet3_update_rx_mode(s);
break;
case VMXNET3_CMD_UPDATE_VLAN_FILTERS:
VMW_CBPRN("Set: Update VLAN filters");
vmxnet3_update_vlan_filters(s);
break;
case VMXNET3_CMD_UPDATE_MAC_FILTERS:
VMW_CBPRN("Set: Update MAC filters");
vmxnet3_update_mcast_filters(s);
break;
case VMXNET3_CMD_UPDATE_FEATURE:
VMW_CBPRN("Set: Update features");
vmxnet3_update_features(s);
break;
case VMXNET3_CMD_UPDATE_PMCFG:
VMW_CBPRN("Set: Update power management config");
vmxnet3_update_pm_state(s);
break;
case VMXNET3_CMD_GET_LINK:
VMW_CBPRN("Set: Get link");
break;
case VMXNET3_CMD_RESET_DEV:
VMW_CBPRN("Set: Reset device");
vmxnet3_reset(s);
break;
case VMXNET3_CMD_QUIESCE_DEV:
VMW_CBPRN("Set: VMXNET3_CMD_QUIESCE_DEV - deactivate the device");
vmxnet3_deactivate_device(s);
break;
case VMXNET3_CMD_GET_CONF_INTR:
VMW_CBPRN("Set: VMXNET3_CMD_GET_CONF_INTR - interrupt configuration");
break;
case VMXNET3_CMD_GET_ADAPTIVE_RING_INFO:
VMW_CBPRN("Set: VMXNET3_CMD_GET_ADAPTIVE_RING_INFO - "
"adaptive ring info flags");
break;
case VMXNET3_CMD_GET_DID_LO:
VMW_CBPRN("Set: Get lower part of device ID");
break;
case VMXNET3_CMD_GET_DID_HI:
VMW_CBPRN("Set: Get upper part of device ID");
break;
case VMXNET3_CMD_GET_DEV_EXTRA_INFO:
VMW_CBPRN("Set: Get device extra info");
break;
default:
VMW_CBPRN("Received unknown command: %" PRIx64, cmd);
break;
}
}
static uint64_t vmxnet3_get_command_status(VMXNET3State *s)
{
uint64_t ret;
switch (s->last_command) {
case VMXNET3_CMD_ACTIVATE_DEV:
ret = (s->device_active) ? 0 : 1;
VMW_CFPRN("Device active: %" PRIx64, ret);
break;
case VMXNET3_CMD_RESET_DEV:
case VMXNET3_CMD_QUIESCE_DEV:
case VMXNET3_CMD_GET_QUEUE_STATUS:
case VMXNET3_CMD_GET_DEV_EXTRA_INFO:
ret = 0;
break;
case VMXNET3_CMD_GET_LINK:
ret = s->link_status_and_speed;
VMW_CFPRN("Link and speed: %" PRIx64, ret);
break;
case VMXNET3_CMD_GET_PERM_MAC_LO:
ret = vmxnet3_get_mac_low(&s->perm_mac);
break;
case VMXNET3_CMD_GET_PERM_MAC_HI:
ret = vmxnet3_get_mac_high(&s->perm_mac);
break;
case VMXNET3_CMD_GET_CONF_INTR:
ret = vmxnet3_get_interrupt_config(s);
break;
case VMXNET3_CMD_GET_ADAPTIVE_RING_INFO:
ret = VMXNET3_DISABLE_ADAPTIVE_RING;
break;
case VMXNET3_CMD_GET_DID_LO:
ret = PCI_DEVICE_ID_VMWARE_VMXNET3;
break;
case VMXNET3_CMD_GET_DID_HI:
ret = VMXNET3_DEVICE_REVISION;
break;
default:
VMW_WRPRN("Received request for unknown command: %x", s->last_command);
ret = 0;
break;
}
return ret;
}
static void vmxnet3_set_events(VMXNET3State *s, uint32_t val)
{
uint32_t events;
PCIDevice *d = PCI_DEVICE(s);
VMW_CBPRN("Setting events: 0x%x", val);
events = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, ecr) | val;
VMXNET3_WRITE_DRV_SHARED32(d, s->drv_shmem, ecr, events);
}
static void vmxnet3_ack_events(VMXNET3State *s, uint32_t val)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t events;
VMW_CBPRN("Clearing events: 0x%x", val);
events = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, ecr) & ~val;
VMXNET3_WRITE_DRV_SHARED32(d, s->drv_shmem, ecr, events);
}
static void
vmxnet3_io_bar1_write(void *opaque,
hwaddr addr,
uint64_t val,
unsigned size)
{
VMXNET3State *s = opaque;
switch (addr) {
/* Vmxnet3 Revision Report Selection */
case VMXNET3_REG_VRRS:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_VRRS] = %" PRIx64 ", size %d",
val, size);
break;
/* UPT Version Report Selection */
case VMXNET3_REG_UVRS:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_UVRS] = %" PRIx64 ", size %d",
val, size);
break;
/* Driver Shared Address Low */
case VMXNET3_REG_DSAL:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_DSAL] = %" PRIx64 ", size %d",
val, size);
/*
* Guest driver will first write the low part of the shared
* memory address. We save it to temp variable and set the
* shared address only after we get the high part
*/
if (val == 0) {
vmxnet3_deactivate_device(s);
}
s->temp_shared_guest_driver_memory = val;
s->drv_shmem = 0;
break;
/* Driver Shared Address High */
case VMXNET3_REG_DSAH:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_DSAH] = %" PRIx64 ", size %d",
val, size);
/*
* Set the shared memory between guest driver and device.
* We already should have low address part.
*/
s->drv_shmem = s->temp_shared_guest_driver_memory | (val << 32);
break;
/* Command */
case VMXNET3_REG_CMD:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_CMD] = %" PRIx64 ", size %d",
val, size);
vmxnet3_handle_command(s, val);
break;
/* MAC Address Low */
case VMXNET3_REG_MACL:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_MACL] = %" PRIx64 ", size %d",
val, size);
s->temp_mac = val;
break;
/* MAC Address High */
case VMXNET3_REG_MACH:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_MACH] = %" PRIx64 ", size %d",
val, size);
vmxnet3_set_variable_mac(s, val, s->temp_mac);
break;
/* Interrupt Cause Register */
case VMXNET3_REG_ICR:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_ICR] = %" PRIx64 ", size %d",
val, size);
qemu_log_mask(LOG_GUEST_ERROR,
"%s: write to read-only register VMXNET3_REG_ICR\n",
TYPE_VMXNET3);
break;
/* Event Cause Register */
case VMXNET3_REG_ECR:
VMW_CBPRN("Write BAR1 [VMXNET3_REG_ECR] = %" PRIx64 ", size %d",
val, size);
vmxnet3_ack_events(s, val);
break;
default:
VMW_CBPRN("Unknown Write to BAR1 [%" PRIx64 "] = %" PRIx64 ", size %d",
addr, val, size);
break;
}
}
static uint64_t
vmxnet3_io_bar1_read(void *opaque, hwaddr addr, unsigned size)
{
VMXNET3State *s = opaque;
uint64_t ret = 0;
switch (addr) {
/* Vmxnet3 Revision Report Selection */
case VMXNET3_REG_VRRS:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_VRRS], size %d", size);
ret = VMXNET3_DEVICE_REVISION;
break;
/* UPT Version Report Selection */
case VMXNET3_REG_UVRS:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_UVRS], size %d", size);
ret = VMXNET3_UPT_REVISION;
break;
/* Command */
case VMXNET3_REG_CMD:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_CMD], size %d", size);
ret = vmxnet3_get_command_status(s);
break;
/* MAC Address Low */
case VMXNET3_REG_MACL:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_MACL], size %d", size);
ret = vmxnet3_get_mac_low(&s->conf.macaddr);
break;
/* MAC Address High */
case VMXNET3_REG_MACH:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_MACH], size %d", size);
ret = vmxnet3_get_mac_high(&s->conf.macaddr);
break;
/*
* Interrupt Cause Register
* Used for legacy interrupts only so interrupt index always 0
*/
case VMXNET3_REG_ICR:
VMW_CBPRN("Read BAR1 [VMXNET3_REG_ICR], size %d", size);
if (vmxnet3_interrupt_asserted(s, 0)) {
vmxnet3_clear_interrupt(s, 0);
ret = true;
} else {
ret = false;
}
break;
default:
VMW_CBPRN("Unknown read BAR1[%" PRIx64 "], %d bytes", addr, size);
break;
}
return ret;
}
static int
vmxnet3_can_receive(NetClientState *nc)
{
VMXNET3State *s = qemu_get_nic_opaque(nc);
return s->device_active &&
VMXNET_FLAG_IS_SET(s->link_status_and_speed, VMXNET3_LINK_STATUS_UP);
}
static inline bool
vmxnet3_is_registered_vlan(VMXNET3State *s, const void *data)
{
uint16_t vlan_tag = eth_get_pkt_tci(data) & VLAN_VID_MASK;
if (IS_SPECIAL_VLAN_ID(vlan_tag)) {
return true;
}
return VMXNET3_VFTABLE_ENTRY_IS_SET(s->vlan_table, vlan_tag);
}
static bool
vmxnet3_is_allowed_mcast_group(VMXNET3State *s, const uint8_t *group_mac)
{
int i;
for (i = 0; i < s->mcast_list_len; i++) {
if (!memcmp(group_mac, s->mcast_list[i].a, sizeof(s->mcast_list[i]))) {
return true;
}
}
return false;
}
static bool
vmxnet3_rx_filter_may_indicate(VMXNET3State *s, const void *data,
size_t size)
{
struct eth_header *ehdr = PKT_GET_ETH_HDR(data);
if (VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_PROMISC)) {
return true;
}
if (!vmxnet3_is_registered_vlan(s, data)) {
return false;
}
switch (net_rx_pkt_get_packet_type(s->rx_pkt)) {
case ETH_PKT_UCAST:
if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_UCAST)) {
return false;
}
if (memcmp(s->conf.macaddr.a, ehdr->h_dest, ETH_ALEN)) {
return false;
}
break;
case ETH_PKT_BCAST:
if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_BCAST)) {
return false;
}
break;
case ETH_PKT_MCAST:
if (VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_ALL_MULTI)) {
return true;
}
if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_MCAST)) {
return false;
}
if (!vmxnet3_is_allowed_mcast_group(s, ehdr->h_dest)) {
return false;
}
break;
default:
g_assert_not_reached();
}
return true;
}
static ssize_t
vmxnet3_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
VMXNET3State *s = qemu_get_nic_opaque(nc);
size_t bytes_indicated;
if (!vmxnet3_can_receive(nc)) {
VMW_PKPRN("Cannot receive now");
return -1;
}
if (s->peer_has_vhdr) {
net_rx_pkt_set_vhdr(s->rx_pkt, (struct virtio_net_hdr *)buf);
buf += sizeof(struct virtio_net_hdr);
size -= sizeof(struct virtio_net_hdr);
}
net_rx_pkt_set_packet_type(s->rx_pkt,
get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
if (vmxnet3_rx_filter_may_indicate(s, buf, size)) {
struct iovec iov = {
.iov_base = (void *)buf,
.iov_len = size
};
net_rx_pkt_set_protocols(s->rx_pkt, &iov, 1, 0);
vmxnet3_rx_need_csum_calculate(s->rx_pkt, buf, size);
net_rx_pkt_attach_data(s->rx_pkt, buf, size, s->rx_vlan_stripping);
bytes_indicated = vmxnet3_indicate_packet(s) ? size : -1;
if (bytes_indicated < size) {
VMW_PKPRN("RX: %zu of %zu bytes indicated", bytes_indicated, size);
}
} else {
VMW_PKPRN("Packet dropped by RX filter");
bytes_indicated = size;
}
assert(size > 0);
assert(bytes_indicated != 0);
return bytes_indicated;
}
static void vmxnet3_set_link_status(NetClientState *nc)
{
VMXNET3State *s = qemu_get_nic_opaque(nc);
if (nc->link_down) {
s->link_status_and_speed &= ~VMXNET3_LINK_STATUS_UP;
} else {
s->link_status_and_speed |= VMXNET3_LINK_STATUS_UP;
}
vmxnet3_set_events(s, VMXNET3_ECR_LINK);
vmxnet3_trigger_interrupt(s, s->event_int_idx);
}
static NetClientInfo net_vmxnet3_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = vmxnet3_receive,
.link_status_changed = vmxnet3_set_link_status,
};
static bool vmxnet3_peer_has_vnet_hdr(VMXNET3State *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
if (qemu_has_vnet_hdr(nc->peer)) {
return true;
}
return false;
}
static void vmxnet3_net_uninit(VMXNET3State *s)
{
g_free(s->mcast_list);
vmxnet3_deactivate_device(s);
qemu_del_nic(s->nic);
}
static void vmxnet3_net_init(VMXNET3State *s)
{
DeviceState *d = DEVICE(s);
VMW_CBPRN("vmxnet3_net_init called...");
qemu_macaddr_default_if_unset(&s->conf.macaddr);
/* Windows guest will query the address that was set on init */
memcpy(&s->perm_mac.a, &s->conf.macaddr.a, sizeof(s->perm_mac.a));
s->mcast_list = NULL;
s->mcast_list_len = 0;
s->link_status_and_speed = VMXNET3_LINK_SPEED | VMXNET3_LINK_STATUS_UP;
VMW_CFPRN("Permanent MAC: " MAC_FMT, MAC_ARG(s->perm_mac.a));
s->nic = qemu_new_nic(&net_vmxnet3_info, &s->conf,
object_get_typename(OBJECT(s)),
d->id, &d->mem_reentrancy_guard, s);
s->peer_has_vhdr = vmxnet3_peer_has_vnet_hdr(s);
s->tx_sop = true;
s->skip_current_tx_pkt = false;
s->tx_pkt = NULL;
s->rx_pkt = NULL;
s->rx_vlan_stripping = false;
s->lro_supported = false;
if (s->peer_has_vhdr) {
qemu_set_vnet_hdr_len(qemu_get_queue(s->nic)->peer,
sizeof(struct virtio_net_hdr));
qemu_using_vnet_hdr(qemu_get_queue(s->nic)->peer, 1);
}
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static void
vmxnet3_unuse_msix_vectors(VMXNET3State *s, int num_vectors)
{
PCIDevice *d = PCI_DEVICE(s);
int i;
for (i = 0; i < num_vectors; i++) {
msix_vector_unuse(d, i);
}
}
static void
vmxnet3_use_msix_vectors(VMXNET3State *s, int num_vectors)
{
PCIDevice *d = PCI_DEVICE(s);
int i;
for (i = 0; i < num_vectors; i++) {
msix_vector_use(d, i);
}
}
static bool
vmxnet3_init_msix(VMXNET3State *s)
{
PCIDevice *d = PCI_DEVICE(s);
int res = msix_init(d, VMXNET3_MAX_INTRS,
&s->msix_bar,
VMXNET3_MSIX_BAR_IDX, VMXNET3_OFF_MSIX_TABLE,
&s->msix_bar,
VMXNET3_MSIX_BAR_IDX, VMXNET3_OFF_MSIX_PBA(s),
VMXNET3_MSIX_OFFSET(s), NULL);
if (0 > res) {
VMW_WRPRN("Failed to initialize MSI-X, error %d", res);
s->msix_used = false;
} else {
vmxnet3_use_msix_vectors(s, VMXNET3_MAX_INTRS);
s->msix_used = true;
}
return s->msix_used;
}
static void
vmxnet3_cleanup_msix(VMXNET3State *s)
{
PCIDevice *d = PCI_DEVICE(s);
if (s->msix_used) {
vmxnet3_unuse_msix_vectors(s, VMXNET3_MAX_INTRS);
msix_uninit(d, &s->msix_bar, &s->msix_bar);
}
}
static void
vmxnet3_cleanup_msi(VMXNET3State *s)
{
PCIDevice *d = PCI_DEVICE(s);
msi_uninit(d);
}
static const MemoryRegionOps b0_ops = {
.read = vmxnet3_io_bar0_read,
.write = vmxnet3_io_bar0_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps b1_ops = {
.read = vmxnet3_io_bar1_read,
.write = vmxnet3_io_bar1_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t vmxnet3_device_serial_num(VMXNET3State *s)
{
uint64_t dsn_payload;
uint8_t *dsnp = (uint8_t *)&dsn_payload;
dsnp[0] = 0xfe;
dsnp[1] = s->conf.macaddr.a[3];
dsnp[2] = s->conf.macaddr.a[4];
dsnp[3] = s->conf.macaddr.a[5];
dsnp[4] = s->conf.macaddr.a[0];
dsnp[5] = s->conf.macaddr.a[1];
dsnp[6] = s->conf.macaddr.a[2];
dsnp[7] = 0xff;
return dsn_payload;
}
#define VMXNET3_USE_64BIT (true)
#define VMXNET3_PER_VECTOR_MASK (false)
static void vmxnet3_pci_realize(PCIDevice *pci_dev, Error **errp)
{
VMXNET3State *s = VMXNET3(pci_dev);
int ret;
VMW_CBPRN("Starting init...");
memory_region_init_io(&s->bar0, OBJECT(s), &b0_ops, s,
"vmxnet3-b0", VMXNET3_PT_REG_SIZE);
pci_register_bar(pci_dev, VMXNET3_BAR0_IDX,
PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
memory_region_init_io(&s->bar1, OBJECT(s), &b1_ops, s,
"vmxnet3-b1", VMXNET3_VD_REG_SIZE);
pci_register_bar(pci_dev, VMXNET3_BAR1_IDX,
PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
memory_region_init(&s->msix_bar, OBJECT(s), "vmxnet3-msix-bar",
VMXNET3_MSIX_BAR_SIZE);
pci_register_bar(pci_dev, VMXNET3_MSIX_BAR_IDX,
PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix_bar);
vmxnet3_reset_interrupt_states(s);
/* Interrupt pin A */
pci_dev->config[PCI_INTERRUPT_PIN] = 0x01;
ret = msi_init(pci_dev, VMXNET3_MSI_OFFSET(s), VMXNET3_MAX_NMSIX_INTRS,
VMXNET3_USE_64BIT, VMXNET3_PER_VECTOR_MASK, NULL);
/* Any error other than -ENOTSUP(board's MSI support is broken)
* is a programming error. Fall back to INTx silently on -ENOTSUP */
assert(!ret || ret == -ENOTSUP);
if (!vmxnet3_init_msix(s)) {
VMW_WRPRN("Failed to initialize MSI-X, configuration is inconsistent.");
}
vmxnet3_net_init(s);
if (pci_is_express(pci_dev)) {
if (pci_bus_is_express(pci_get_bus(pci_dev))) {
pcie_endpoint_cap_init(pci_dev, VMXNET3_EXP_EP_OFFSET);
}
pcie_dev_ser_num_init(pci_dev, VMXNET3_DSN_OFFSET,
vmxnet3_device_serial_num(s));
}
}
static void vmxnet3_instance_init(Object *obj)
{
VMXNET3State *s = VMXNET3(obj);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", "/ethernet-phy@0",
DEVICE(obj));
}
static void vmxnet3_pci_uninit(PCIDevice *pci_dev)
{
VMXNET3State *s = VMXNET3(pci_dev);
VMW_CBPRN("Starting uninit...");
vmxnet3_net_uninit(s);
vmxnet3_cleanup_msix(s);
vmxnet3_cleanup_msi(s);
}
static void vmxnet3_qdev_reset(DeviceState *dev)
{
PCIDevice *d = PCI_DEVICE(dev);
VMXNET3State *s = VMXNET3(d);
VMW_CBPRN("Starting QDEV reset...");
vmxnet3_reset(s);
}
static bool vmxnet3_mc_list_needed(void *opaque)
{
return true;
}
static int vmxnet3_mcast_list_pre_load(void *opaque)
{
VMXNET3State *s = opaque;
s->mcast_list = g_malloc(s->mcast_list_buff_size);
return 0;
}
static int vmxnet3_pre_save(void *opaque)
{
VMXNET3State *s = opaque;
s->mcast_list_buff_size = s->mcast_list_len * sizeof(MACAddr);
return 0;
}
static const VMStateDescription vmxstate_vmxnet3_mcast_list = {
.name = "vmxnet3/mcast_list",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = vmxnet3_mcast_list_pre_load,
.needed = vmxnet3_mc_list_needed,
.fields = (const VMStateField[]) {
VMSTATE_VBUFFER_UINT32(mcast_list, VMXNET3State, 0, NULL,
mcast_list_buff_size),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3_ring = {
.name = "vmxnet3-ring",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(pa, Vmxnet3Ring),
VMSTATE_UINT32(size, Vmxnet3Ring),
VMSTATE_UINT32(cell_size, Vmxnet3Ring),
VMSTATE_UINT32(next, Vmxnet3Ring),
VMSTATE_UINT8(gen, Vmxnet3Ring),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3_tx_stats = {
.name = "vmxnet3-tx-stats",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(TSOPktsTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(TSOBytesTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(ucastPktsTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(ucastBytesTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(mcastPktsTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(mcastBytesTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(bcastPktsTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(bcastBytesTxOK, struct UPT1_TxStats),
VMSTATE_UINT64(pktsTxError, struct UPT1_TxStats),
VMSTATE_UINT64(pktsTxDiscard, struct UPT1_TxStats),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3_txq_descr = {
.name = "vmxnet3-txq-descr",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(tx_ring, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_ring,
Vmxnet3Ring),
VMSTATE_STRUCT(comp_ring, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_ring,
Vmxnet3Ring),
VMSTATE_UINT8(intr_idx, Vmxnet3TxqDescr),
VMSTATE_UINT64(tx_stats_pa, Vmxnet3TxqDescr),
VMSTATE_STRUCT(txq_stats, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_tx_stats,
struct UPT1_TxStats),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3_rx_stats = {
.name = "vmxnet3-rx-stats",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(LROPktsRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(LROBytesRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(ucastPktsRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(ucastBytesRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(mcastPktsRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(mcastBytesRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(bcastPktsRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(bcastBytesRxOK, struct UPT1_RxStats),
VMSTATE_UINT64(pktsRxOutOfBuf, struct UPT1_RxStats),
VMSTATE_UINT64(pktsRxError, struct UPT1_RxStats),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3_rxq_descr = {
.name = "vmxnet3-rxq-descr",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT_ARRAY(rx_ring, Vmxnet3RxqDescr,
VMXNET3_RX_RINGS_PER_QUEUE, 0,
vmstate_vmxnet3_ring, Vmxnet3Ring),
VMSTATE_STRUCT(comp_ring, Vmxnet3RxqDescr, 0, vmstate_vmxnet3_ring,
Vmxnet3Ring),
VMSTATE_UINT8(intr_idx, Vmxnet3RxqDescr),
VMSTATE_UINT64(rx_stats_pa, Vmxnet3RxqDescr),
VMSTATE_STRUCT(rxq_stats, Vmxnet3RxqDescr, 0, vmstate_vmxnet3_rx_stats,
struct UPT1_RxStats),
VMSTATE_END_OF_LIST()
}
};
static int vmxnet3_post_load(void *opaque, int version_id)
{
VMXNET3State *s = opaque;
net_tx_pkt_init(&s->tx_pkt, s->max_tx_frags);
net_rx_pkt_init(&s->rx_pkt);
if (s->msix_used) {
vmxnet3_use_msix_vectors(s, VMXNET3_MAX_INTRS);
}
if (!vmxnet3_validate_queues(s)) {
return -1;
}
vmxnet3_validate_interrupts(s);
return 0;
}
static const VMStateDescription vmstate_vmxnet3_int_state = {
.name = "vmxnet3-int-state",
.version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_BOOL(is_masked, Vmxnet3IntState),
VMSTATE_BOOL(is_pending, Vmxnet3IntState),
VMSTATE_BOOL(is_asserted, Vmxnet3IntState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vmxnet3 = {
.name = "vmxnet3",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = vmxnet3_pre_save,
.post_load = vmxnet3_post_load,
.fields = (const VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, VMXNET3State),
VMSTATE_MSIX(parent_obj, VMXNET3State),
VMSTATE_BOOL(rx_packets_compound, VMXNET3State),
VMSTATE_BOOL(rx_vlan_stripping, VMXNET3State),
VMSTATE_BOOL(lro_supported, VMXNET3State),
VMSTATE_UINT32(rx_mode, VMXNET3State),
VMSTATE_UINT32(mcast_list_len, VMXNET3State),
VMSTATE_UINT32(mcast_list_buff_size, VMXNET3State),
VMSTATE_UINT32_ARRAY(vlan_table, VMXNET3State, VMXNET3_VFT_SIZE),
VMSTATE_UINT32(mtu, VMXNET3State),
VMSTATE_UINT16(max_rx_frags, VMXNET3State),
VMSTATE_UINT32(max_tx_frags, VMXNET3State),
VMSTATE_UINT8(event_int_idx, VMXNET3State),
VMSTATE_BOOL(auto_int_masking, VMXNET3State),
VMSTATE_UINT8(txq_num, VMXNET3State),
VMSTATE_UINT8(rxq_num, VMXNET3State),
VMSTATE_UINT32(device_active, VMXNET3State),
VMSTATE_UINT32(last_command, VMXNET3State),
VMSTATE_UINT32(link_status_and_speed, VMXNET3State),
VMSTATE_UINT32(temp_mac, VMXNET3State),
VMSTATE_UINT64(drv_shmem, VMXNET3State),
VMSTATE_UINT64(temp_shared_guest_driver_memory, VMXNET3State),
VMSTATE_STRUCT_ARRAY(txq_descr, VMXNET3State,
VMXNET3_DEVICE_MAX_TX_QUEUES, 0, vmstate_vmxnet3_txq_descr,
Vmxnet3TxqDescr),
VMSTATE_STRUCT_ARRAY(rxq_descr, VMXNET3State,
VMXNET3_DEVICE_MAX_RX_QUEUES, 0, vmstate_vmxnet3_rxq_descr,
Vmxnet3RxqDescr),
VMSTATE_STRUCT_ARRAY(interrupt_states, VMXNET3State,
VMXNET3_MAX_INTRS, 0, vmstate_vmxnet3_int_state,
Vmxnet3IntState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * const []) {
&vmxstate_vmxnet3_mcast_list,
NULL
}
};
static Property vmxnet3_properties[] = {
DEFINE_NIC_PROPERTIES(VMXNET3State, conf),
DEFINE_PROP_BIT("x-old-msi-offsets", VMXNET3State, compat_flags,
VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT, false),
DEFINE_PROP_BIT("x-disable-pcie", VMXNET3State, compat_flags,
VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT, false),
DEFINE_PROP_END_OF_LIST(),
};
static void vmxnet3_realize(DeviceState *qdev, Error **errp)
{
VMXNET3Class *vc = VMXNET3_DEVICE_GET_CLASS(qdev);
PCIDevice *pci_dev = PCI_DEVICE(qdev);
VMXNET3State *s = VMXNET3(qdev);
if (!(s->compat_flags & VMXNET3_COMPAT_FLAG_DISABLE_PCIE)) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
vc->parent_dc_realize(qdev, errp);
}
static void vmxnet3_class_init(ObjectClass *class, void *data)
{
DeviceClass *dc = DEVICE_CLASS(class);
PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
VMXNET3Class *vc = VMXNET3_DEVICE_CLASS(class);
c->realize = vmxnet3_pci_realize;
c->exit = vmxnet3_pci_uninit;
c->vendor_id = PCI_VENDOR_ID_VMWARE;
c->device_id = PCI_DEVICE_ID_VMWARE_VMXNET3;
c->revision = PCI_DEVICE_ID_VMWARE_VMXNET3_REVISION;
c->romfile = "efi-vmxnet3.rom";
c->class_id = PCI_CLASS_NETWORK_ETHERNET;
c->subsystem_vendor_id = PCI_VENDOR_ID_VMWARE;
c->subsystem_id = PCI_DEVICE_ID_VMWARE_VMXNET3;
device_class_set_parent_realize(dc, vmxnet3_realize,
&vc->parent_dc_realize);
dc->desc = "VMWare Paravirtualized Ethernet v3";
dc->reset = vmxnet3_qdev_reset;
dc->vmsd = &vmstate_vmxnet3;
device_class_set_props(dc, vmxnet3_properties);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo vmxnet3_info = {
.name = TYPE_VMXNET3,
.parent = TYPE_PCI_DEVICE,
.class_size = sizeof(VMXNET3Class),
.instance_size = sizeof(VMXNET3State),
.class_init = vmxnet3_class_init,
.instance_init = vmxnet3_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
},
};
static void vmxnet3_register_types(void)
{
VMW_CBPRN("vmxnet3_register_types called...");
type_register_static(&vmxnet3_info);
}
type_init(vmxnet3_register_types)