| /* |
| * Translation Block Maintenance |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/interval-tree.h" |
| #include "qemu/qtree.h" |
| #include "exec/cputlb.h" |
| #include "exec/log.h" |
| #include "exec/exec-all.h" |
| #include "exec/tb-flush.h" |
| #include "exec/translate-all.h" |
| #include "sysemu/tcg.h" |
| #include "tcg/tcg.h" |
| #include "tb-hash.h" |
| #include "tb-context.h" |
| #include "internal-common.h" |
| #include "internal-target.h" |
| |
| |
| /* List iterators for lists of tagged pointers in TranslationBlock. */ |
| #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ |
| for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ |
| tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ |
| tb = (TranslationBlock *)((uintptr_t)tb & ~1)) |
| |
| #define TB_FOR_EACH_JMP(head_tb, tb, n) \ |
| TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) |
| |
| static bool tb_cmp(const void *ap, const void *bp) |
| { |
| const TranslationBlock *a = ap; |
| const TranslationBlock *b = bp; |
| |
| return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && |
| a->cs_base == b->cs_base && |
| a->flags == b->flags && |
| (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && |
| tb_page_addr0(a) == tb_page_addr0(b) && |
| tb_page_addr1(a) == tb_page_addr1(b)); |
| } |
| |
| void tb_htable_init(void) |
| { |
| unsigned int mode = QHT_MODE_AUTO_RESIZE; |
| |
| qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); |
| } |
| |
| typedef struct PageDesc PageDesc; |
| |
| #ifdef CONFIG_USER_ONLY |
| |
| /* |
| * In user-mode page locks aren't used; mmap_lock is enough. |
| */ |
| #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) |
| |
| static inline void tb_lock_pages(const TranslationBlock *tb) { } |
| |
| /* |
| * For user-only, since we are protecting all of memory with a single lock, |
| * and because the two pages of a TranslationBlock are always contiguous, |
| * use a single data structure to record all TranslationBlocks. |
| */ |
| static IntervalTreeRoot tb_root; |
| |
| static void tb_remove_all(void) |
| { |
| assert_memory_lock(); |
| memset(&tb_root, 0, sizeof(tb_root)); |
| } |
| |
| /* Call with mmap_lock held. */ |
| static void tb_record(TranslationBlock *tb) |
| { |
| vaddr addr; |
| int flags; |
| |
| assert_memory_lock(); |
| tb->itree.last = tb->itree.start + tb->size - 1; |
| |
| /* translator_loop() must have made all TB pages non-writable */ |
| addr = tb_page_addr0(tb); |
| flags = page_get_flags(addr); |
| assert(!(flags & PAGE_WRITE)); |
| |
| addr = tb_page_addr1(tb); |
| if (addr != -1) { |
| flags = page_get_flags(addr); |
| assert(!(flags & PAGE_WRITE)); |
| } |
| |
| interval_tree_insert(&tb->itree, &tb_root); |
| } |
| |
| /* Call with mmap_lock held. */ |
| static void tb_remove(TranslationBlock *tb) |
| { |
| assert_memory_lock(); |
| interval_tree_remove(&tb->itree, &tb_root); |
| } |
| |
| /* TODO: For now, still shared with translate-all.c for system mode. */ |
| #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ |
| for (T = foreach_tb_first(start, last), \ |
| N = foreach_tb_next(T, start, last); \ |
| T != NULL; \ |
| T = N, N = foreach_tb_next(N, start, last)) |
| |
| typedef TranslationBlock *PageForEachNext; |
| |
| static PageForEachNext foreach_tb_first(tb_page_addr_t start, |
| tb_page_addr_t last) |
| { |
| IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); |
| return n ? container_of(n, TranslationBlock, itree) : NULL; |
| } |
| |
| static PageForEachNext foreach_tb_next(PageForEachNext tb, |
| tb_page_addr_t start, |
| tb_page_addr_t last) |
| { |
| IntervalTreeNode *n; |
| |
| if (tb) { |
| n = interval_tree_iter_next(&tb->itree, start, last); |
| if (n) { |
| return container_of(n, TranslationBlock, itree); |
| } |
| } |
| return NULL; |
| } |
| |
| #else |
| /* |
| * In system mode we want L1_MAP to be based on ram offsets. |
| */ |
| #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS |
| # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS |
| #else |
| # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS |
| #endif |
| |
| /* Size of the L2 (and L3, etc) page tables. */ |
| #define V_L2_BITS 10 |
| #define V_L2_SIZE (1 << V_L2_BITS) |
| |
| /* |
| * L1 Mapping properties |
| */ |
| static int v_l1_size; |
| static int v_l1_shift; |
| static int v_l2_levels; |
| |
| /* |
| * The bottom level has pointers to PageDesc, and is indexed by |
| * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. |
| */ |
| #define V_L1_MIN_BITS 4 |
| #define V_L1_MAX_BITS (V_L2_BITS + 3) |
| #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) |
| |
| static void *l1_map[V_L1_MAX_SIZE]; |
| |
| struct PageDesc { |
| QemuSpin lock; |
| /* list of TBs intersecting this ram page */ |
| uintptr_t first_tb; |
| }; |
| |
| void page_table_config_init(void) |
| { |
| uint32_t v_l1_bits; |
| |
| assert(TARGET_PAGE_BITS); |
| /* The bits remaining after N lower levels of page tables. */ |
| v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; |
| if (v_l1_bits < V_L1_MIN_BITS) { |
| v_l1_bits += V_L2_BITS; |
| } |
| |
| v_l1_size = 1 << v_l1_bits; |
| v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; |
| v_l2_levels = v_l1_shift / V_L2_BITS - 1; |
| |
| assert(v_l1_bits <= V_L1_MAX_BITS); |
| assert(v_l1_shift % V_L2_BITS == 0); |
| assert(v_l2_levels >= 0); |
| } |
| |
| static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) |
| { |
| PageDesc *pd; |
| void **lp; |
| |
| /* Level 1. Always allocated. */ |
| lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); |
| |
| /* Level 2..N-1. */ |
| for (int i = v_l2_levels; i > 0; i--) { |
| void **p = qatomic_rcu_read(lp); |
| |
| if (p == NULL) { |
| void *existing; |
| |
| if (!alloc) { |
| return NULL; |
| } |
| p = g_new0(void *, V_L2_SIZE); |
| existing = qatomic_cmpxchg(lp, NULL, p); |
| if (unlikely(existing)) { |
| g_free(p); |
| p = existing; |
| } |
| } |
| |
| lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
| } |
| |
| pd = qatomic_rcu_read(lp); |
| if (pd == NULL) { |
| void *existing; |
| |
| if (!alloc) { |
| return NULL; |
| } |
| |
| pd = g_new0(PageDesc, V_L2_SIZE); |
| for (int i = 0; i < V_L2_SIZE; i++) { |
| qemu_spin_init(&pd[i].lock); |
| } |
| |
| existing = qatomic_cmpxchg(lp, NULL, pd); |
| if (unlikely(existing)) { |
| for (int i = 0; i < V_L2_SIZE; i++) { |
| qemu_spin_destroy(&pd[i].lock); |
| } |
| g_free(pd); |
| pd = existing; |
| } |
| } |
| |
| return pd + (index & (V_L2_SIZE - 1)); |
| } |
| |
| static inline PageDesc *page_find(tb_page_addr_t index) |
| { |
| return page_find_alloc(index, false); |
| } |
| |
| /** |
| * struct page_entry - page descriptor entry |
| * @pd: pointer to the &struct PageDesc of the page this entry represents |
| * @index: page index of the page |
| * @locked: whether the page is locked |
| * |
| * This struct helps us keep track of the locked state of a page, without |
| * bloating &struct PageDesc. |
| * |
| * A page lock protects accesses to all fields of &struct PageDesc. |
| * |
| * See also: &struct page_collection. |
| */ |
| struct page_entry { |
| PageDesc *pd; |
| tb_page_addr_t index; |
| bool locked; |
| }; |
| |
| /** |
| * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) |
| * @tree: Binary search tree (BST) of the pages, with key == page index |
| * @max: Pointer to the page in @tree with the highest page index |
| * |
| * To avoid deadlock we lock pages in ascending order of page index. |
| * When operating on a set of pages, we need to keep track of them so that |
| * we can lock them in order and also unlock them later. For this we collect |
| * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the |
| * @tree implementation we use does not provide an O(1) operation to obtain the |
| * highest-ranked element, we use @max to keep track of the inserted page |
| * with the highest index. This is valuable because if a page is not in |
| * the tree and its index is higher than @max's, then we can lock it |
| * without breaking the locking order rule. |
| * |
| * Note on naming: 'struct page_set' would be shorter, but we already have a few |
| * page_set_*() helpers, so page_collection is used instead to avoid confusion. |
| * |
| * See also: page_collection_lock(). |
| */ |
| struct page_collection { |
| QTree *tree; |
| struct page_entry *max; |
| }; |
| |
| typedef int PageForEachNext; |
| #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ |
| TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) |
| |
| #ifdef CONFIG_DEBUG_TCG |
| |
| static __thread GHashTable *ht_pages_locked_debug; |
| |
| static void ht_pages_locked_debug_init(void) |
| { |
| if (ht_pages_locked_debug) { |
| return; |
| } |
| ht_pages_locked_debug = g_hash_table_new(NULL, NULL); |
| } |
| |
| static bool page_is_locked(const PageDesc *pd) |
| { |
| PageDesc *found; |
| |
| ht_pages_locked_debug_init(); |
| found = g_hash_table_lookup(ht_pages_locked_debug, pd); |
| return !!found; |
| } |
| |
| static void page_lock__debug(PageDesc *pd) |
| { |
| ht_pages_locked_debug_init(); |
| g_assert(!page_is_locked(pd)); |
| g_hash_table_insert(ht_pages_locked_debug, pd, pd); |
| } |
| |
| static void page_unlock__debug(const PageDesc *pd) |
| { |
| bool removed; |
| |
| ht_pages_locked_debug_init(); |
| g_assert(page_is_locked(pd)); |
| removed = g_hash_table_remove(ht_pages_locked_debug, pd); |
| g_assert(removed); |
| } |
| |
| static void do_assert_page_locked(const PageDesc *pd, |
| const char *file, int line) |
| { |
| if (unlikely(!page_is_locked(pd))) { |
| error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", |
| pd, file, line); |
| abort(); |
| } |
| } |
| #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) |
| |
| void assert_no_pages_locked(void) |
| { |
| ht_pages_locked_debug_init(); |
| g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); |
| } |
| |
| #else /* !CONFIG_DEBUG_TCG */ |
| |
| static inline void page_lock__debug(const PageDesc *pd) { } |
| static inline void page_unlock__debug(const PageDesc *pd) { } |
| static inline void assert_page_locked(const PageDesc *pd) { } |
| |
| #endif /* CONFIG_DEBUG_TCG */ |
| |
| static void page_lock(PageDesc *pd) |
| { |
| page_lock__debug(pd); |
| qemu_spin_lock(&pd->lock); |
| } |
| |
| /* Like qemu_spin_trylock, returns false on success */ |
| static bool page_trylock(PageDesc *pd) |
| { |
| bool busy = qemu_spin_trylock(&pd->lock); |
| if (!busy) { |
| page_lock__debug(pd); |
| } |
| return busy; |
| } |
| |
| static void page_unlock(PageDesc *pd) |
| { |
| qemu_spin_unlock(&pd->lock); |
| page_unlock__debug(pd); |
| } |
| |
| void tb_lock_page0(tb_page_addr_t paddr) |
| { |
| page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); |
| } |
| |
| void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) |
| { |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; |
| PageDesc *pd0, *pd1; |
| |
| if (pindex0 == pindex1) { |
| /* Identical pages, and the first page is already locked. */ |
| return; |
| } |
| |
| pd1 = page_find_alloc(pindex1, true); |
| if (pindex0 < pindex1) { |
| /* Correct locking order, we may block. */ |
| page_lock(pd1); |
| return; |
| } |
| |
| /* Incorrect locking order, we cannot block lest we deadlock. */ |
| if (!page_trylock(pd1)) { |
| return; |
| } |
| |
| /* |
| * Drop the lock on page0 and get both page locks in the right order. |
| * Restart translation via longjmp. |
| */ |
| pd0 = page_find_alloc(pindex0, false); |
| page_unlock(pd0); |
| page_lock(pd1); |
| page_lock(pd0); |
| siglongjmp(tcg_ctx->jmp_trans, -3); |
| } |
| |
| void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) |
| { |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; |
| |
| if (pindex0 != pindex1) { |
| page_unlock(page_find_alloc(pindex1, false)); |
| } |
| } |
| |
| static void tb_lock_pages(TranslationBlock *tb) |
| { |
| tb_page_addr_t paddr0 = tb_page_addr0(tb); |
| tb_page_addr_t paddr1 = tb_page_addr1(tb); |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; |
| |
| if (unlikely(paddr0 == -1)) { |
| return; |
| } |
| if (unlikely(paddr1 != -1) && pindex0 != pindex1) { |
| if (pindex0 < pindex1) { |
| page_lock(page_find_alloc(pindex0, true)); |
| page_lock(page_find_alloc(pindex1, true)); |
| return; |
| } |
| page_lock(page_find_alloc(pindex1, true)); |
| } |
| page_lock(page_find_alloc(pindex0, true)); |
| } |
| |
| void tb_unlock_pages(TranslationBlock *tb) |
| { |
| tb_page_addr_t paddr0 = tb_page_addr0(tb); |
| tb_page_addr_t paddr1 = tb_page_addr1(tb); |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; |
| |
| if (unlikely(paddr0 == -1)) { |
| return; |
| } |
| if (unlikely(paddr1 != -1) && pindex0 != pindex1) { |
| page_unlock(page_find_alloc(pindex1, false)); |
| } |
| page_unlock(page_find_alloc(pindex0, false)); |
| } |
| |
| static inline struct page_entry * |
| page_entry_new(PageDesc *pd, tb_page_addr_t index) |
| { |
| struct page_entry *pe = g_malloc(sizeof(*pe)); |
| |
| pe->index = index; |
| pe->pd = pd; |
| pe->locked = false; |
| return pe; |
| } |
| |
| static void page_entry_destroy(gpointer p) |
| { |
| struct page_entry *pe = p; |
| |
| g_assert(pe->locked); |
| page_unlock(pe->pd); |
| g_free(pe); |
| } |
| |
| /* returns false on success */ |
| static bool page_entry_trylock(struct page_entry *pe) |
| { |
| bool busy = page_trylock(pe->pd); |
| if (!busy) { |
| g_assert(!pe->locked); |
| pe->locked = true; |
| } |
| return busy; |
| } |
| |
| static void do_page_entry_lock(struct page_entry *pe) |
| { |
| page_lock(pe->pd); |
| g_assert(!pe->locked); |
| pe->locked = true; |
| } |
| |
| static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) |
| { |
| struct page_entry *pe = value; |
| |
| do_page_entry_lock(pe); |
| return FALSE; |
| } |
| |
| static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) |
| { |
| struct page_entry *pe = value; |
| |
| if (pe->locked) { |
| pe->locked = false; |
| page_unlock(pe->pd); |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Trylock a page, and if successful, add the page to a collection. |
| * Returns true ("busy") if the page could not be locked; false otherwise. |
| */ |
| static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) |
| { |
| tb_page_addr_t index = addr >> TARGET_PAGE_BITS; |
| struct page_entry *pe; |
| PageDesc *pd; |
| |
| pe = q_tree_lookup(set->tree, &index); |
| if (pe) { |
| return false; |
| } |
| |
| pd = page_find(index); |
| if (pd == NULL) { |
| return false; |
| } |
| |
| pe = page_entry_new(pd, index); |
| q_tree_insert(set->tree, &pe->index, pe); |
| |
| /* |
| * If this is either (1) the first insertion or (2) a page whose index |
| * is higher than any other so far, just lock the page and move on. |
| */ |
| if (set->max == NULL || pe->index > set->max->index) { |
| set->max = pe; |
| do_page_entry_lock(pe); |
| return false; |
| } |
| /* |
| * Try to acquire out-of-order lock; if busy, return busy so that we acquire |
| * locks in order. |
| */ |
| return page_entry_trylock(pe); |
| } |
| |
| static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) |
| { |
| tb_page_addr_t a = *(const tb_page_addr_t *)ap; |
| tb_page_addr_t b = *(const tb_page_addr_t *)bp; |
| |
| if (a == b) { |
| return 0; |
| } else if (a < b) { |
| return -1; |
| } |
| return 1; |
| } |
| |
| /* |
| * Lock a range of pages ([@start,@last]) as well as the pages of all |
| * intersecting TBs. |
| * Locking order: acquire locks in ascending order of page index. |
| */ |
| static struct page_collection *page_collection_lock(tb_page_addr_t start, |
| tb_page_addr_t last) |
| { |
| struct page_collection *set = g_malloc(sizeof(*set)); |
| tb_page_addr_t index; |
| PageDesc *pd; |
| |
| start >>= TARGET_PAGE_BITS; |
| last >>= TARGET_PAGE_BITS; |
| g_assert(start <= last); |
| |
| set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, |
| page_entry_destroy); |
| set->max = NULL; |
| assert_no_pages_locked(); |
| |
| retry: |
| q_tree_foreach(set->tree, page_entry_lock, NULL); |
| |
| for (index = start; index <= last; index++) { |
| TranslationBlock *tb; |
| PageForEachNext n; |
| |
| pd = page_find(index); |
| if (pd == NULL) { |
| continue; |
| } |
| if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { |
| q_tree_foreach(set->tree, page_entry_unlock, NULL); |
| goto retry; |
| } |
| assert_page_locked(pd); |
| PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { |
| if (page_trylock_add(set, tb_page_addr0(tb)) || |
| (tb_page_addr1(tb) != -1 && |
| page_trylock_add(set, tb_page_addr1(tb)))) { |
| /* drop all locks, and reacquire in order */ |
| q_tree_foreach(set->tree, page_entry_unlock, NULL); |
| goto retry; |
| } |
| } |
| } |
| return set; |
| } |
| |
| static void page_collection_unlock(struct page_collection *set) |
| { |
| /* entries are unlocked and freed via page_entry_destroy */ |
| q_tree_destroy(set->tree); |
| g_free(set); |
| } |
| |
| /* Set to NULL all the 'first_tb' fields in all PageDescs. */ |
| static void tb_remove_all_1(int level, void **lp) |
| { |
| int i; |
| |
| if (*lp == NULL) { |
| return; |
| } |
| if (level == 0) { |
| PageDesc *pd = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| page_lock(&pd[i]); |
| pd[i].first_tb = (uintptr_t)NULL; |
| page_unlock(&pd[i]); |
| } |
| } else { |
| void **pp = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| tb_remove_all_1(level - 1, pp + i); |
| } |
| } |
| } |
| |
| static void tb_remove_all(void) |
| { |
| int i, l1_sz = v_l1_size; |
| |
| for (i = 0; i < l1_sz; i++) { |
| tb_remove_all_1(v_l2_levels, l1_map + i); |
| } |
| } |
| |
| /* |
| * Add the tb in the target page and protect it if necessary. |
| * Called with @p->lock held. |
| */ |
| static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) |
| { |
| bool page_already_protected; |
| |
| assert_page_locked(p); |
| |
| tb->page_next[n] = p->first_tb; |
| page_already_protected = p->first_tb != 0; |
| p->first_tb = (uintptr_t)tb | n; |
| |
| /* |
| * If some code is already present, then the pages are already |
| * protected. So we handle the case where only the first TB is |
| * allocated in a physical page. |
| */ |
| if (!page_already_protected) { |
| tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); |
| } |
| } |
| |
| static void tb_record(TranslationBlock *tb) |
| { |
| tb_page_addr_t paddr0 = tb_page_addr0(tb); |
| tb_page_addr_t paddr1 = tb_page_addr1(tb); |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; |
| |
| assert(paddr0 != -1); |
| if (unlikely(paddr1 != -1) && pindex0 != pindex1) { |
| tb_page_add(page_find_alloc(pindex1, false), tb, 1); |
| } |
| tb_page_add(page_find_alloc(pindex0, false), tb, 0); |
| } |
| |
| static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) |
| { |
| TranslationBlock *tb1; |
| uintptr_t *pprev; |
| PageForEachNext n1; |
| |
| assert_page_locked(pd); |
| pprev = &pd->first_tb; |
| PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { |
| if (tb1 == tb) { |
| *pprev = tb1->page_next[n1]; |
| return; |
| } |
| pprev = &tb1->page_next[n1]; |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void tb_remove(TranslationBlock *tb) |
| { |
| tb_page_addr_t paddr0 = tb_page_addr0(tb); |
| tb_page_addr_t paddr1 = tb_page_addr1(tb); |
| tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; |
| tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS; |
| |
| assert(paddr0 != -1); |
| if (unlikely(paddr1 != -1) && pindex0 != pindex1) { |
| tb_page_remove(page_find_alloc(pindex1, false), tb); |
| } |
| tb_page_remove(page_find_alloc(pindex0, false), tb); |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| /* flush all the translation blocks */ |
| static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) |
| { |
| bool did_flush = false; |
| |
| mmap_lock(); |
| /* If it is already been done on request of another CPU, just retry. */ |
| if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { |
| goto done; |
| } |
| did_flush = true; |
| |
| CPU_FOREACH(cpu) { |
| tcg_flush_jmp_cache(cpu); |
| } |
| |
| qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); |
| tb_remove_all(); |
| |
| tcg_region_reset_all(); |
| /* XXX: flush processor icache at this point if cache flush is expensive */ |
| qatomic_inc(&tb_ctx.tb_flush_count); |
| |
| done: |
| mmap_unlock(); |
| if (did_flush) { |
| qemu_plugin_flush_cb(); |
| } |
| } |
| |
| void tb_flush(CPUState *cpu) |
| { |
| if (tcg_enabled()) { |
| unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); |
| |
| if (cpu_in_serial_context(cpu)) { |
| do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); |
| } else { |
| async_safe_run_on_cpu(cpu, do_tb_flush, |
| RUN_ON_CPU_HOST_INT(tb_flush_count)); |
| } |
| } |
| } |
| |
| /* remove @orig from its @n_orig-th jump list */ |
| static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) |
| { |
| uintptr_t ptr, ptr_locked; |
| TranslationBlock *dest; |
| TranslationBlock *tb; |
| uintptr_t *pprev; |
| int n; |
| |
| /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ |
| ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); |
| dest = (TranslationBlock *)(ptr & ~1); |
| if (dest == NULL) { |
| return; |
| } |
| |
| qemu_spin_lock(&dest->jmp_lock); |
| /* |
| * While acquiring the lock, the jump might have been removed if the |
| * destination TB was invalidated; check again. |
| */ |
| ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); |
| if (ptr_locked != ptr) { |
| qemu_spin_unlock(&dest->jmp_lock); |
| /* |
| * The only possibility is that the jump was unlinked via |
| * tb_jump_unlink(dest). Seeing here another destination would be a bug, |
| * because we set the LSB above. |
| */ |
| g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); |
| return; |
| } |
| /* |
| * We first acquired the lock, and since the destination pointer matches, |
| * we know for sure that @orig is in the jmp list. |
| */ |
| pprev = &dest->jmp_list_head; |
| TB_FOR_EACH_JMP(dest, tb, n) { |
| if (tb == orig && n == n_orig) { |
| *pprev = tb->jmp_list_next[n]; |
| /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ |
| qemu_spin_unlock(&dest->jmp_lock); |
| return; |
| } |
| pprev = &tb->jmp_list_next[n]; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Reset the jump entry 'n' of a TB so that it is not chained to another TB. |
| */ |
| void tb_reset_jump(TranslationBlock *tb, int n) |
| { |
| uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); |
| tb_set_jmp_target(tb, n, addr); |
| } |
| |
| /* remove any jumps to the TB */ |
| static inline void tb_jmp_unlink(TranslationBlock *dest) |
| { |
| TranslationBlock *tb; |
| int n; |
| |
| qemu_spin_lock(&dest->jmp_lock); |
| |
| TB_FOR_EACH_JMP(dest, tb, n) { |
| tb_reset_jump(tb, n); |
| qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); |
| /* No need to clear the list entry; setting the dest ptr is enough */ |
| } |
| dest->jmp_list_head = (uintptr_t)NULL; |
| |
| qemu_spin_unlock(&dest->jmp_lock); |
| } |
| |
| static void tb_jmp_cache_inval_tb(TranslationBlock *tb) |
| { |
| CPUState *cpu; |
| |
| if (tb_cflags(tb) & CF_PCREL) { |
| /* A TB may be at any virtual address */ |
| CPU_FOREACH(cpu) { |
| tcg_flush_jmp_cache(cpu); |
| } |
| } else { |
| uint32_t h = tb_jmp_cache_hash_func(tb->pc); |
| |
| CPU_FOREACH(cpu) { |
| CPUJumpCache *jc = cpu->tb_jmp_cache; |
| |
| if (qatomic_read(&jc->array[h].tb) == tb) { |
| qatomic_set(&jc->array[h].tb, NULL); |
| } |
| } |
| } |
| } |
| |
| /* |
| * In user-mode, call with mmap_lock held. |
| * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' |
| * locks held. |
| */ |
| static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) |
| { |
| uint32_t h; |
| tb_page_addr_t phys_pc; |
| uint32_t orig_cflags = tb_cflags(tb); |
| |
| assert_memory_lock(); |
| |
| /* make sure no further incoming jumps will be chained to this TB */ |
| qemu_spin_lock(&tb->jmp_lock); |
| qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); |
| qemu_spin_unlock(&tb->jmp_lock); |
| |
| /* remove the TB from the hash list */ |
| phys_pc = tb_page_addr0(tb); |
| h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), |
| tb->flags, tb->cs_base, orig_cflags); |
| if (!qht_remove(&tb_ctx.htable, tb, h)) { |
| return; |
| } |
| |
| /* remove the TB from the page list */ |
| if (rm_from_page_list) { |
| tb_remove(tb); |
| } |
| |
| /* remove the TB from the hash list */ |
| tb_jmp_cache_inval_tb(tb); |
| |
| /* suppress this TB from the two jump lists */ |
| tb_remove_from_jmp_list(tb, 0); |
| tb_remove_from_jmp_list(tb, 1); |
| |
| /* suppress any remaining jumps to this TB */ |
| tb_jmp_unlink(tb); |
| |
| qatomic_set(&tb_ctx.tb_phys_invalidate_count, |
| tb_ctx.tb_phys_invalidate_count + 1); |
| } |
| |
| static void tb_phys_invalidate__locked(TranslationBlock *tb) |
| { |
| qemu_thread_jit_write(); |
| do_tb_phys_invalidate(tb, true); |
| qemu_thread_jit_execute(); |
| } |
| |
| /* |
| * Invalidate one TB. |
| * Called with mmap_lock held in user-mode. |
| */ |
| void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
| { |
| if (page_addr == -1 && tb_page_addr0(tb) != -1) { |
| tb_lock_pages(tb); |
| do_tb_phys_invalidate(tb, true); |
| tb_unlock_pages(tb); |
| } else { |
| do_tb_phys_invalidate(tb, false); |
| } |
| } |
| |
| /* |
| * Add a new TB and link it to the physical page tables. |
| * Called with mmap_lock held for user-mode emulation. |
| * |
| * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. |
| * Note that in !user-mode, another thread might have already added a TB |
| * for the same block of guest code that @tb corresponds to. In that case, |
| * the caller should discard the original @tb, and use instead the returned TB. |
| */ |
| TranslationBlock *tb_link_page(TranslationBlock *tb) |
| { |
| void *existing_tb = NULL; |
| uint32_t h; |
| |
| assert_memory_lock(); |
| tcg_debug_assert(!(tb->cflags & CF_INVALID)); |
| |
| tb_record(tb); |
| |
| /* add in the hash table */ |
| h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), |
| tb->flags, tb->cs_base, tb->cflags); |
| qht_insert(&tb_ctx.htable, tb, h, &existing_tb); |
| |
| /* remove TB from the page(s) if we couldn't insert it */ |
| if (unlikely(existing_tb)) { |
| tb_remove(tb); |
| tb_unlock_pages(tb); |
| return existing_tb; |
| } |
| |
| tb_unlock_pages(tb); |
| return tb; |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * Invalidate all TBs which intersect with the target address range. |
| * Called with mmap_lock held for user-mode emulation. |
| * NOTE: this function must not be called while a TB is running. |
| */ |
| void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) |
| { |
| TranslationBlock *tb; |
| PageForEachNext n; |
| |
| assert_memory_lock(); |
| |
| PAGE_FOR_EACH_TB(start, last, unused, tb, n) { |
| tb_phys_invalidate__locked(tb); |
| } |
| } |
| |
| /* |
| * Invalidate all TBs which intersect with the target address page @addr. |
| * Called with mmap_lock held for user-mode emulation |
| * NOTE: this function must not be called while a TB is running. |
| */ |
| static void tb_invalidate_phys_page(tb_page_addr_t addr) |
| { |
| tb_page_addr_t start, last; |
| |
| start = addr & TARGET_PAGE_MASK; |
| last = addr | ~TARGET_PAGE_MASK; |
| tb_invalidate_phys_range(start, last); |
| } |
| |
| /* |
| * Called with mmap_lock held. If pc is not 0 then it indicates the |
| * host PC of the faulting store instruction that caused this invalidate. |
| * Returns true if the caller needs to abort execution of the current |
| * TB (because it was modified by this store and the guest CPU has |
| * precise-SMC semantics). |
| */ |
| bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) |
| { |
| TranslationBlock *current_tb; |
| bool current_tb_modified; |
| TranslationBlock *tb; |
| PageForEachNext n; |
| tb_page_addr_t last; |
| |
| /* |
| * Without precise smc semantics, or when outside of a TB, |
| * we can skip to invalidate. |
| */ |
| #ifndef TARGET_HAS_PRECISE_SMC |
| pc = 0; |
| #endif |
| if (!pc) { |
| tb_invalidate_phys_page(addr); |
| return false; |
| } |
| |
| assert_memory_lock(); |
| current_tb = tcg_tb_lookup(pc); |
| |
| last = addr | ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| current_tb_modified = false; |
| |
| PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { |
| if (current_tb == tb && |
| (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { |
| /* |
| * If we are modifying the current TB, we must stop its |
| * execution. We could be more precise by checking that |
| * the modification is after the current PC, but it would |
| * require a specialized function to partially restore |
| * the CPU state. |
| */ |
| current_tb_modified = true; |
| cpu_restore_state_from_tb(current_cpu, current_tb, pc); |
| } |
| tb_phys_invalidate__locked(tb); |
| } |
| |
| if (current_tb_modified) { |
| /* Force execution of one insn next time. */ |
| CPUState *cpu = current_cpu; |
| cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); |
| return true; |
| } |
| return false; |
| } |
| #else |
| /* |
| * @p must be non-NULL. |
| * Call with all @pages locked. |
| */ |
| static void |
| tb_invalidate_phys_page_range__locked(struct page_collection *pages, |
| PageDesc *p, tb_page_addr_t start, |
| tb_page_addr_t last, |
| uintptr_t retaddr) |
| { |
| TranslationBlock *tb; |
| PageForEachNext n; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| bool current_tb_modified = false; |
| TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| |
| /* Range may not cross a page. */ |
| tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); |
| |
| /* |
| * We remove all the TBs in the range [start, last]. |
| * XXX: see if in some cases it could be faster to invalidate all the code |
| */ |
| PAGE_FOR_EACH_TB(start, last, p, tb, n) { |
| tb_page_addr_t tb_start, tb_last; |
| |
| /* NOTE: this is subtle as a TB may span two physical pages */ |
| tb_start = tb_page_addr0(tb); |
| tb_last = tb_start + tb->size - 1; |
| if (n == 0) { |
| tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); |
| } else { |
| tb_start = tb_page_addr1(tb); |
| tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); |
| } |
| if (!(tb_last < start || tb_start > last)) { |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb == tb && |
| (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { |
| /* |
| * If we are modifying the current TB, we must stop |
| * its execution. We could be more precise by checking |
| * that the modification is after the current PC, but it |
| * would require a specialized function to partially |
| * restore the CPU state. |
| */ |
| current_tb_modified = true; |
| cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); |
| } |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| tb_phys_invalidate__locked(tb); |
| } |
| } |
| |
| /* if no code remaining, no need to continue to use slow writes */ |
| if (!p->first_tb) { |
| tlb_unprotect_code(start); |
| } |
| |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_modified) { |
| page_collection_unlock(pages); |
| /* Force execution of one insn next time. */ |
| current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); |
| mmap_unlock(); |
| cpu_loop_exit_noexc(current_cpu); |
| } |
| #endif |
| } |
| |
| /* |
| * Invalidate all TBs which intersect with the target physical address range |
| * [start;last]. NOTE: start and end may refer to *different* physical pages. |
| * 'is_cpu_write_access' should be true if called from a real cpu write |
| * access: the virtual CPU will exit the current TB if code is modified inside |
| * this TB. |
| */ |
| void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) |
| { |
| struct page_collection *pages; |
| tb_page_addr_t index, index_last; |
| |
| pages = page_collection_lock(start, last); |
| |
| index_last = last >> TARGET_PAGE_BITS; |
| for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { |
| PageDesc *pd = page_find(index); |
| tb_page_addr_t page_start, page_last; |
| |
| if (pd == NULL) { |
| continue; |
| } |
| assert_page_locked(pd); |
| page_start = index << TARGET_PAGE_BITS; |
| page_last = page_start | ~TARGET_PAGE_MASK; |
| page_last = MIN(page_last, last); |
| tb_invalidate_phys_page_range__locked(pages, pd, |
| page_start, page_last, 0); |
| } |
| page_collection_unlock(pages); |
| } |
| |
| /* |
| * Call with all @pages in the range [@start, @start + len[ locked. |
| */ |
| static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, |
| tb_page_addr_t start, |
| unsigned len, uintptr_t ra) |
| { |
| PageDesc *p; |
| |
| p = page_find(start >> TARGET_PAGE_BITS); |
| if (!p) { |
| return; |
| } |
| |
| assert_page_locked(p); |
| tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); |
| } |
| |
| /* |
| * len must be <= 8 and start must be a multiple of len. |
| * Called via softmmu_template.h when code areas are written to with |
| * iothread mutex not held. |
| */ |
| void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, |
| unsigned size, |
| uintptr_t retaddr) |
| { |
| struct page_collection *pages; |
| |
| pages = page_collection_lock(ram_addr, ram_addr + size - 1); |
| tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); |
| page_collection_unlock(pages); |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |