|  | /* | 
|  | * QEMU RISC-V Boot Helper | 
|  | * | 
|  | * Copyright (c) 2017 SiFive, Inc. | 
|  | * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2 or later, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program.  If not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/datadir.h" | 
|  | #include "qemu/units.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "exec/cpu-defs.h" | 
|  | #include "hw/boards.h" | 
|  | #include "hw/loader.h" | 
|  | #include "hw/riscv/boot.h" | 
|  | #include "hw/riscv/boot_opensbi.h" | 
|  | #include "elf.h" | 
|  | #include "sysemu/device_tree.h" | 
|  | #include "sysemu/qtest.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "sysemu/reset.h" | 
|  |  | 
|  | #include <libfdt.h> | 
|  |  | 
|  | bool riscv_is_32bit(RISCVHartArrayState *harts) | 
|  | { | 
|  | return harts->harts[0].env.misa_mxl_max == MXL_RV32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the per-socket PLIC hart topology configuration string | 
|  | * (caller must free with g_free()) | 
|  | */ | 
|  | char *riscv_plic_hart_config_string(int hart_count) | 
|  | { | 
|  | g_autofree const char **vals = g_new(const char *, hart_count + 1); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < hart_count; i++) { | 
|  | CPUState *cs = qemu_get_cpu(i); | 
|  | CPURISCVState *env = &RISCV_CPU(cs)->env; | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | vals[i] = "S"; | 
|  | } else if (riscv_has_ext(env, RVS)) { | 
|  | vals[i] = "MS"; | 
|  | } else { | 
|  | vals[i] = "M"; | 
|  | } | 
|  | } | 
|  | vals[i] = NULL; | 
|  |  | 
|  | /* g_strjoinv() obliges us to cast away const here */ | 
|  | return g_strjoinv(",", (char **)vals); | 
|  | } | 
|  |  | 
|  | target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts, | 
|  | target_ulong firmware_end_addr) { | 
|  | if (riscv_is_32bit(harts)) { | 
|  | return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB); | 
|  | } else { | 
|  | return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *riscv_default_firmware_name(RISCVHartArrayState *harts) | 
|  | { | 
|  | if (riscv_is_32bit(harts)) { | 
|  | return RISCV32_BIOS_BIN; | 
|  | } | 
|  |  | 
|  | return RISCV64_BIOS_BIN; | 
|  | } | 
|  |  | 
|  | static char *riscv_find_bios(const char *bios_filename) | 
|  | { | 
|  | char *filename; | 
|  |  | 
|  | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename); | 
|  | if (filename == NULL) { | 
|  | if (!qtest_enabled()) { | 
|  | /* | 
|  | * We only ship OpenSBI binary bios images in the QEMU source. | 
|  | * For machines that use images other than the default bios, | 
|  | * running QEMU test will complain hence let's suppress the error | 
|  | * report for QEMU testing. | 
|  | */ | 
|  | error_report("Unable to find the RISC-V BIOS \"%s\"", | 
|  | bios_filename); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return filename; | 
|  | } | 
|  |  | 
|  | char *riscv_find_firmware(const char *firmware_filename, | 
|  | const char *default_machine_firmware) | 
|  | { | 
|  | char *filename = NULL; | 
|  |  | 
|  | if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) { | 
|  | /* | 
|  | * The user didn't specify -bios, or has specified "-bios default". | 
|  | * That means we are going to load the OpenSBI binary included in | 
|  | * the QEMU source. | 
|  | */ | 
|  | filename = riscv_find_bios(default_machine_firmware); | 
|  | } else if (strcmp(firmware_filename, "none")) { | 
|  | filename = riscv_find_bios(firmware_filename); | 
|  | } | 
|  |  | 
|  | return filename; | 
|  | } | 
|  |  | 
|  | target_ulong riscv_find_and_load_firmware(MachineState *machine, | 
|  | const char *default_machine_firmware, | 
|  | hwaddr firmware_load_addr, | 
|  | symbol_fn_t sym_cb) | 
|  | { | 
|  | char *firmware_filename; | 
|  | target_ulong firmware_end_addr = firmware_load_addr; | 
|  |  | 
|  | firmware_filename = riscv_find_firmware(machine->firmware, | 
|  | default_machine_firmware); | 
|  |  | 
|  | if (firmware_filename) { | 
|  | /* If not "none" load the firmware */ | 
|  | firmware_end_addr = riscv_load_firmware(firmware_filename, | 
|  | firmware_load_addr, sym_cb); | 
|  | g_free(firmware_filename); | 
|  | } | 
|  |  | 
|  | return firmware_end_addr; | 
|  | } | 
|  |  | 
|  | target_ulong riscv_load_firmware(const char *firmware_filename, | 
|  | hwaddr firmware_load_addr, | 
|  | symbol_fn_t sym_cb) | 
|  | { | 
|  | uint64_t firmware_entry, firmware_end; | 
|  | ssize_t firmware_size; | 
|  |  | 
|  | g_assert(firmware_filename != NULL); | 
|  |  | 
|  | if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL, | 
|  | &firmware_entry, NULL, &firmware_end, NULL, | 
|  | 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { | 
|  | return firmware_end; | 
|  | } | 
|  |  | 
|  | firmware_size = load_image_targphys_as(firmware_filename, | 
|  | firmware_load_addr, | 
|  | current_machine->ram_size, NULL); | 
|  |  | 
|  | if (firmware_size > 0) { | 
|  | return firmware_load_addr + firmware_size; | 
|  | } | 
|  |  | 
|  | error_report("could not load firmware '%s'", firmware_filename); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry) | 
|  | { | 
|  | const char *filename = machine->initrd_filename; | 
|  | uint64_t mem_size = machine->ram_size; | 
|  | void *fdt = machine->fdt; | 
|  | hwaddr start, end; | 
|  | ssize_t size; | 
|  |  | 
|  | g_assert(filename != NULL); | 
|  |  | 
|  | /* | 
|  | * We want to put the initrd far enough into RAM that when the | 
|  | * kernel is uncompressed it will not clobber the initrd. However | 
|  | * on boards without much RAM we must ensure that we still leave | 
|  | * enough room for a decent sized initrd, and on boards with large | 
|  | * amounts of RAM we must avoid the initrd being so far up in RAM | 
|  | * that it is outside lowmem and inaccessible to the kernel. | 
|  | * So for boards with less  than 256MB of RAM we put the initrd | 
|  | * halfway into RAM, and for boards with 256MB of RAM or more we put | 
|  | * the initrd at 128MB. | 
|  | */ | 
|  | start = kernel_entry + MIN(mem_size / 2, 128 * MiB); | 
|  |  | 
|  | size = load_ramdisk(filename, start, mem_size - start); | 
|  | if (size == -1) { | 
|  | size = load_image_targphys(filename, start, mem_size - start); | 
|  | if (size == -1) { | 
|  | error_report("could not load ramdisk '%s'", filename); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */ | 
|  | if (fdt) { | 
|  | end = start + size; | 
|  | qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start); | 
|  | qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end); | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong riscv_load_kernel(MachineState *machine, | 
|  | RISCVHartArrayState *harts, | 
|  | target_ulong kernel_start_addr, | 
|  | bool load_initrd, | 
|  | symbol_fn_t sym_cb) | 
|  | { | 
|  | const char *kernel_filename = machine->kernel_filename; | 
|  | uint64_t kernel_load_base, kernel_entry; | 
|  | void *fdt = machine->fdt; | 
|  |  | 
|  | g_assert(kernel_filename != NULL); | 
|  |  | 
|  | /* | 
|  | * NB: Use low address not ELF entry point to ensure that the fw_dynamic | 
|  | * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL | 
|  | * behaviour, as well as fw_dynamic with a raw binary, all of which jump to | 
|  | * the (expected) load address load address. This allows kernels to have | 
|  | * separate SBI and ELF entry points (used by FreeBSD, for example). | 
|  | */ | 
|  | if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, | 
|  | NULL, &kernel_load_base, NULL, NULL, 0, | 
|  | EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { | 
|  | kernel_entry = kernel_load_base; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL, | 
|  | NULL, NULL, NULL) > 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (load_image_targphys_as(kernel_filename, kernel_start_addr, | 
|  | current_machine->ram_size, NULL) > 0) { | 
|  | kernel_entry = kernel_start_addr; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | error_report("could not load kernel '%s'", kernel_filename); | 
|  | exit(1); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * For 32 bit CPUs 'kernel_entry' can be sign-extended by | 
|  | * load_elf_ram_sym(). | 
|  | */ | 
|  | if (riscv_is_32bit(harts)) { | 
|  | kernel_entry = extract64(kernel_entry, 0, 32); | 
|  | } | 
|  |  | 
|  | if (load_initrd && machine->initrd_filename) { | 
|  | riscv_load_initrd(machine, kernel_entry); | 
|  | } | 
|  |  | 
|  | if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) { | 
|  | qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", | 
|  | machine->kernel_cmdline); | 
|  | } | 
|  |  | 
|  | return kernel_entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function makes an assumption that the DRAM interval | 
|  | * 'dram_base' + 'dram_size' is contiguous. | 
|  | * | 
|  | * Considering that 'dram_end' is the lowest value between | 
|  | * the end of the DRAM block and MachineState->ram_size, the | 
|  | * FDT location will vary according to 'dram_base': | 
|  | * | 
|  | * - if 'dram_base' is less that 3072 MiB, the FDT will be | 
|  | * put at the lowest value between 3072 MiB and 'dram_end'; | 
|  | * | 
|  | * - if 'dram_base' is higher than 3072 MiB, the FDT will be | 
|  | * put at 'dram_end'. | 
|  | * | 
|  | * The FDT is fdt_packed() during the calculation. | 
|  | */ | 
|  | uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size, | 
|  | MachineState *ms) | 
|  | { | 
|  | int ret = fdt_pack(ms->fdt); | 
|  | hwaddr dram_end, temp; | 
|  | int fdtsize; | 
|  |  | 
|  | /* Should only fail if we've built a corrupted tree */ | 
|  | g_assert(ret == 0); | 
|  |  | 
|  | fdtsize = fdt_totalsize(ms->fdt); | 
|  | if (fdtsize <= 0) { | 
|  | error_report("invalid device-tree"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A dram_size == 0, usually from a MemMapEntry[].size element, | 
|  | * means that the DRAM block goes all the way to ms->ram_size. | 
|  | */ | 
|  | dram_end = dram_base; | 
|  | dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size; | 
|  |  | 
|  | /* | 
|  | * We should put fdt as far as possible to avoid kernel/initrd overwriting | 
|  | * its content. But it should be addressable by 32 bit system as well. | 
|  | * Thus, put it at an 2MB aligned address that less than fdt size from the | 
|  | * end of dram or 3GB whichever is lesser. | 
|  | */ | 
|  | temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end; | 
|  |  | 
|  | return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'fdt_addr' is received as hwaddr because boards might put | 
|  | * the FDT beyond 32-bit addressing boundary. | 
|  | */ | 
|  | void riscv_load_fdt(hwaddr fdt_addr, void *fdt) | 
|  | { | 
|  | uint32_t fdtsize = fdt_totalsize(fdt); | 
|  |  | 
|  | /* copy in the device tree */ | 
|  | qemu_fdt_dumpdtb(fdt, fdtsize); | 
|  |  | 
|  | rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr, | 
|  | &address_space_memory); | 
|  | qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds, | 
|  | rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize)); | 
|  | } | 
|  |  | 
|  | void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base, | 
|  | hwaddr rom_size, uint32_t reset_vec_size, | 
|  | uint64_t kernel_entry) | 
|  | { | 
|  | struct fw_dynamic_info dinfo; | 
|  | size_t dinfo_len; | 
|  |  | 
|  | if (sizeof(dinfo.magic) == 4) { | 
|  | dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE); | 
|  | dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION); | 
|  | dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S); | 
|  | dinfo.next_addr = cpu_to_le32(kernel_entry); | 
|  | } else { | 
|  | dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE); | 
|  | dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION); | 
|  | dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S); | 
|  | dinfo.next_addr = cpu_to_le64(kernel_entry); | 
|  | } | 
|  | dinfo.options = 0; | 
|  | dinfo.boot_hart = 0; | 
|  | dinfo_len = sizeof(dinfo); | 
|  |  | 
|  | /** | 
|  | * copy the dynamic firmware info. This information is specific to | 
|  | * OpenSBI but doesn't break any other firmware as long as they don't | 
|  | * expect any certain value in "a2" register. | 
|  | */ | 
|  | if (dinfo_len > (rom_size - reset_vec_size)) { | 
|  | error_report("not enough space to store dynamic firmware info"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len, | 
|  | rom_base + reset_vec_size, | 
|  | &address_space_memory); | 
|  | } | 
|  |  | 
|  | void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts, | 
|  | hwaddr start_addr, | 
|  | hwaddr rom_base, hwaddr rom_size, | 
|  | uint64_t kernel_entry, | 
|  | uint64_t fdt_load_addr) | 
|  | { | 
|  | int i; | 
|  | uint32_t start_addr_hi32 = 0x00000000; | 
|  | uint32_t fdt_load_addr_hi32 = 0x00000000; | 
|  |  | 
|  | if (!riscv_is_32bit(harts)) { | 
|  | start_addr_hi32 = start_addr >> 32; | 
|  | fdt_load_addr_hi32 = fdt_load_addr >> 32; | 
|  | } | 
|  | /* reset vector */ | 
|  | uint32_t reset_vec[10] = { | 
|  | 0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */ | 
|  | 0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */ | 
|  | 0xf1402573,                  /*     csrr   a0, mhartid  */ | 
|  | 0, | 
|  | 0, | 
|  | 0x00028067,                  /*     jr     t0 */ | 
|  | start_addr,                  /* start: .dword */ | 
|  | start_addr_hi32, | 
|  | fdt_load_addr,               /* fdt_laddr: .dword */ | 
|  | fdt_load_addr_hi32, | 
|  | /* fw_dyn: */ | 
|  | }; | 
|  | if (riscv_is_32bit(harts)) { | 
|  | reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */ | 
|  | reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */ | 
|  | } else { | 
|  | reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */ | 
|  | reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */ | 
|  | } | 
|  |  | 
|  | if (!harts->harts[0].cfg.ext_icsr) { | 
|  | /* | 
|  | * The Zicsr extension has been disabled, so let's ensure we don't | 
|  | * run the CSR instruction. Let's fill the address with a non | 
|  | * compressed nop. | 
|  | */ | 
|  | reset_vec[2] = 0x00000013;   /*     addi   x0, x0, 0 */ | 
|  | } | 
|  |  | 
|  | /* copy in the reset vector in little_endian byte order */ | 
|  | for (i = 0; i < ARRAY_SIZE(reset_vec); i++) { | 
|  | reset_vec[i] = cpu_to_le32(reset_vec[i]); | 
|  | } | 
|  | rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), | 
|  | rom_base, &address_space_memory); | 
|  | riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec), | 
|  | kernel_entry); | 
|  | } | 
|  |  | 
|  | void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr) | 
|  | { | 
|  | CPUState *cs; | 
|  |  | 
|  | for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { | 
|  | RISCVCPU *riscv_cpu = RISCV_CPU(cs); | 
|  | riscv_cpu->env.kernel_addr = kernel_addr; | 
|  | riscv_cpu->env.fdt_addr = fdt_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void riscv_setup_firmware_boot(MachineState *machine) | 
|  | { | 
|  | if (machine->kernel_filename) { | 
|  | FWCfgState *fw_cfg; | 
|  | fw_cfg = fw_cfg_find(); | 
|  |  | 
|  | assert(fw_cfg); | 
|  | /* | 
|  | * Expose the kernel, the command line, and the initrd in fw_cfg. | 
|  | * We don't process them here at all, it's all left to the | 
|  | * firmware. | 
|  | */ | 
|  | load_image_to_fw_cfg(fw_cfg, | 
|  | FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, | 
|  | machine->kernel_filename, | 
|  | true); | 
|  | load_image_to_fw_cfg(fw_cfg, | 
|  | FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, | 
|  | machine->initrd_filename, false); | 
|  |  | 
|  | if (machine->kernel_cmdline) { | 
|  | fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, | 
|  | strlen(machine->kernel_cmdline) + 1); | 
|  | fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, | 
|  | machine->kernel_cmdline); | 
|  | } | 
|  | } | 
|  | } |