| /* |
| * Alpha emulation cpu micro-operations helpers for qemu. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "dyngen-exec.h" |
| #include "host-utils.h" |
| #include "softfloat.h" |
| #include "helper.h" |
| #include "sysemu.h" |
| #include "qemu-timer.h" |
| |
| #define FP_STATUS (env->fp_status) |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| /* This should only be called from translate, via gen_excp. |
| We expect that ENV->PC has already been updated. */ |
| void QEMU_NORETURN helper_excp(int excp, int error) |
| { |
| env->exception_index = excp; |
| env->error_code = error; |
| cpu_loop_exit(env); |
| } |
| |
| static void do_restore_state(void *retaddr) |
| { |
| unsigned long pc = (unsigned long)retaddr; |
| |
| if (pc) { |
| TranslationBlock *tb = tb_find_pc(pc); |
| if (tb) { |
| cpu_restore_state(tb, env, pc); |
| } |
| } |
| } |
| |
| /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ |
| static void QEMU_NORETURN dynamic_excp(int excp, int error) |
| { |
| env->exception_index = excp; |
| env->error_code = error; |
| do_restore_state(GETPC()); |
| cpu_loop_exit(env); |
| } |
| |
| static void QEMU_NORETURN arith_excp(int exc, uint64_t mask) |
| { |
| env->trap_arg0 = exc; |
| env->trap_arg1 = mask; |
| dynamic_excp(EXCP_ARITH, 0); |
| } |
| |
| uint64_t helper_load_pcc (void) |
| { |
| #ifndef CONFIG_USER_ONLY |
| /* In system mode we have access to a decent high-resolution clock. |
| In order to make OS-level time accounting work with the RPCC, |
| present it with a well-timed clock fixed at 250MHz. */ |
| return (((uint64_t)env->pcc_ofs << 32) |
| | (uint32_t)(qemu_get_clock_ns(vm_clock) >> 2)); |
| #else |
| /* In user-mode, vm_clock doesn't exist. Just pass through the host cpu |
| clock ticks. Also, don't bother taking PCC_OFS into account. */ |
| return (uint32_t)cpu_get_real_ticks(); |
| #endif |
| } |
| |
| uint64_t helper_load_fpcr (void) |
| { |
| return cpu_alpha_load_fpcr (env); |
| } |
| |
| void helper_store_fpcr (uint64_t val) |
| { |
| cpu_alpha_store_fpcr (env, val); |
| } |
| |
| uint64_t helper_addqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 += op2; |
| if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_addlv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 = (uint32_t)(op1 + op2); |
| if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_subqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return res; |
| } |
| |
| uint64_t helper_sublv (uint64_t op1, uint64_t op2) |
| { |
| uint32_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return res; |
| } |
| |
| uint64_t helper_mullv (uint64_t op1, uint64_t op2) |
| { |
| int64_t res = (int64_t)op1 * (int64_t)op2; |
| |
| if (unlikely((int32_t)res != res)) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return (int64_t)((int32_t)res); |
| } |
| |
| uint64_t helper_mulqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tl, th; |
| |
| muls64(&tl, &th, op1, op2); |
| /* If th != 0 && th != -1, then we had an overflow */ |
| if (unlikely((th + 1) > 1)) { |
| arith_excp(EXC_M_IOV, 0); |
| } |
| return tl; |
| } |
| |
| uint64_t helper_umulh (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tl, th; |
| |
| mulu64(&tl, &th, op1, op2); |
| return th; |
| } |
| |
| uint64_t helper_ctpop (uint64_t arg) |
| { |
| return ctpop64(arg); |
| } |
| |
| uint64_t helper_ctlz (uint64_t arg) |
| { |
| return clz64(arg); |
| } |
| |
| uint64_t helper_cttz (uint64_t arg) |
| { |
| return ctz64(arg); |
| } |
| |
| static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) |
| { |
| uint64_t mask; |
| |
| mask = 0; |
| mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; |
| mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; |
| mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; |
| mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; |
| mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; |
| mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; |
| mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; |
| mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; |
| |
| return op & ~mask; |
| } |
| |
| uint64_t helper_zap(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, mask); |
| } |
| |
| uint64_t helper_zapnot(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, ~mask); |
| } |
| |
| uint64_t helper_cmpbge (uint64_t op1, uint64_t op2) |
| { |
| uint8_t opa, opb, res; |
| int i; |
| |
| res = 0; |
| for (i = 0; i < 8; i++) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| if (opa >= opb) |
| res |= 1 << i; |
| } |
| return res; |
| } |
| |
| uint64_t helper_minub8 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minsb8 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int8_t opa, opb; |
| uint8_t opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minuw4 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint16_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minsw4 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int16_t opa, opb; |
| uint16_t opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxub8 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int8_t opa, opb; |
| uint8_t opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint16_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int16_t opa, opb; |
| uint16_t opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_perr (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| if (opa >= opb) |
| opr = opa - opb; |
| else |
| opr = opb - opa; |
| res += opr; |
| } |
| return res; |
| } |
| |
| uint64_t helper_pklb (uint64_t op1) |
| { |
| return (op1 & 0xff) | ((op1 >> 24) & 0xff00); |
| } |
| |
| uint64_t helper_pkwb (uint64_t op1) |
| { |
| return ((op1 & 0xff) |
| | ((op1 >> 8) & 0xff00) |
| | ((op1 >> 16) & 0xff0000) |
| | ((op1 >> 24) & 0xff000000)); |
| } |
| |
| uint64_t helper_unpkbl (uint64_t op1) |
| { |
| return (op1 & 0xff) | ((op1 & 0xff00) << 24); |
| } |
| |
| uint64_t helper_unpkbw (uint64_t op1) |
| { |
| return ((op1 & 0xff) |
| | ((op1 & 0xff00) << 8) |
| | ((op1 & 0xff0000) << 16) |
| | ((op1 & 0xff000000) << 24)); |
| } |
| |
| /* Floating point helpers */ |
| |
| void helper_setroundmode (uint32_t val) |
| { |
| set_float_rounding_mode(val, &FP_STATUS); |
| } |
| |
| void helper_setflushzero (uint32_t val) |
| { |
| set_flush_to_zero(val, &FP_STATUS); |
| } |
| |
| void helper_fp_exc_clear (void) |
| { |
| set_float_exception_flags(0, &FP_STATUS); |
| } |
| |
| uint32_t helper_fp_exc_get (void) |
| { |
| return get_float_exception_flags(&FP_STATUS); |
| } |
| |
| /* Raise exceptions for ieee fp insns without software completion. |
| In that case there are no exceptions that don't trap; the mask |
| doesn't apply. */ |
| void helper_fp_exc_raise(uint32_t exc, uint32_t regno) |
| { |
| if (exc) { |
| uint32_t hw_exc = 0; |
| |
| if (exc & float_flag_invalid) { |
| hw_exc |= EXC_M_INV; |
| } |
| if (exc & float_flag_divbyzero) { |
| hw_exc |= EXC_M_DZE; |
| } |
| if (exc & float_flag_overflow) { |
| hw_exc |= EXC_M_FOV; |
| } |
| if (exc & float_flag_underflow) { |
| hw_exc |= EXC_M_UNF; |
| } |
| if (exc & float_flag_inexact) { |
| hw_exc |= EXC_M_INE; |
| } |
| |
| arith_excp(hw_exc, 1ull << regno); |
| } |
| } |
| |
| /* Raise exceptions for ieee fp insns with software completion. */ |
| void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno) |
| { |
| if (exc) { |
| env->fpcr_exc_status |= exc; |
| |
| exc &= ~env->fpcr_exc_mask; |
| if (exc) { |
| helper_fp_exc_raise(exc, regno); |
| } |
| } |
| } |
| |
| /* Input remapping without software completion. Handle denormal-map-to-zero |
| and trap for all other non-finite numbers. */ |
| uint64_t helper_ieee_input(uint64_t val) |
| { |
| uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; |
| uint64_t frac = val & 0xfffffffffffffull; |
| |
| if (exp == 0) { |
| if (frac != 0) { |
| /* If DNZ is set flush denormals to zero on input. */ |
| if (env->fpcr_dnz) { |
| val &= 1ull << 63; |
| } else { |
| arith_excp(EXC_M_UNF, 0); |
| } |
| } |
| } else if (exp == 0x7ff) { |
| /* Infinity or NaN. */ |
| /* ??? I'm not sure these exception bit flags are correct. I do |
| know that the Linux kernel, at least, doesn't rely on them and |
| just emulates the insn to figure out what exception to use. */ |
| arith_excp(frac ? EXC_M_INV : EXC_M_FOV, 0); |
| } |
| return val; |
| } |
| |
| /* Similar, but does not trap for infinities. Used for comparisons. */ |
| uint64_t helper_ieee_input_cmp(uint64_t val) |
| { |
| uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; |
| uint64_t frac = val & 0xfffffffffffffull; |
| |
| if (exp == 0) { |
| if (frac != 0) { |
| /* If DNZ is set flush denormals to zero on input. */ |
| if (env->fpcr_dnz) { |
| val &= 1ull << 63; |
| } else { |
| arith_excp(EXC_M_UNF, 0); |
| } |
| } |
| } else if (exp == 0x7ff && frac) { |
| /* NaN. */ |
| arith_excp(EXC_M_INV, 0); |
| } |
| return val; |
| } |
| |
| /* Input remapping with software completion enabled. All we have to do |
| is handle denormal-map-to-zero; all other inputs get exceptions as |
| needed from the actual operation. */ |
| uint64_t helper_ieee_input_s(uint64_t val) |
| { |
| if (env->fpcr_dnz) { |
| uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; |
| if (exp == 0) { |
| val &= 1ull << 63; |
| } |
| } |
| return val; |
| } |
| |
| /* F floating (VAX) */ |
| static inline uint64_t float32_to_f(float32 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_FloatU a; |
| |
| a.f = fa; |
| sig = ((uint64_t)a.l & 0x80000000) << 32; |
| exp = (a.l >> 23) & 0xff; |
| mant = ((uint64_t)a.l & 0x007fffff) << 29; |
| |
| if (exp == 255) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 253) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static inline float32 f_to_float32(uint64_t a) |
| { |
| uint32_t exp, mant_sig; |
| CPU_FloatU r; |
| |
| exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); |
| mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); |
| |
| if (unlikely(!exp && mant_sig)) { |
| /* Reserved operands / Dirty zero */ |
| dynamic_excp(EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.l = 0; |
| } else { |
| r.l = ((exp - 2) << 23) | mant_sig; |
| } |
| |
| return r.f; |
| } |
| |
| uint32_t helper_f_to_memory (uint64_t a) |
| { |
| uint32_t r; |
| r = (a & 0x00001fffe0000000ull) >> 13; |
| r |= (a & 0x07ffe00000000000ull) >> 45; |
| r |= (a & 0xc000000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_f (uint32_t a) |
| { |
| uint64_t r; |
| r = ((uint64_t)(a & 0x0000c000)) << 48; |
| r |= ((uint64_t)(a & 0x003fffff)) << 45; |
| r |= ((uint64_t)(a & 0xffff0000)) << 13; |
| if (!(a & 0x00004000)) |
| r |= 0x7ll << 59; |
| return r; |
| } |
| |
| /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should |
| either implement VAX arithmetic properly or just signal invalid opcode. */ |
| |
| uint64_t helper_addf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_add(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_subf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_sub(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_mulf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_mul(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_divf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_div(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_sqrtf (uint64_t t) |
| { |
| float32 ft, fr; |
| |
| ft = f_to_float32(t); |
| fr = float32_sqrt(ft, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| |
| /* G floating (VAX) */ |
| static inline uint64_t float64_to_g(float64 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_DoubleU a; |
| |
| a.d = fa; |
| sig = a.ll & 0x8000000000000000ull; |
| exp = (a.ll >> 52) & 0x7ff; |
| mant = a.ll & 0x000fffffffffffffull; |
| |
| if (exp == 2047) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 2045) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static inline float64 g_to_float64(uint64_t a) |
| { |
| uint64_t exp, mant_sig; |
| CPU_DoubleU r; |
| |
| exp = (a >> 52) & 0x7ff; |
| mant_sig = a & 0x800fffffffffffffull; |
| |
| if (!exp && mant_sig) { |
| /* Reserved operands / Dirty zero */ |
| dynamic_excp(EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.ll = 0; |
| } else { |
| r.ll = ((exp - 2) << 52) | mant_sig; |
| } |
| |
| return r.d; |
| } |
| |
| uint64_t helper_g_to_memory (uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_g (uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_addg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_add(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_subg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_sub(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_mulg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_mul(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_divg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_div(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_sqrtg (uint64_t a) |
| { |
| float64 fa, fr; |
| |
| fa = g_to_float64(a); |
| fr = float64_sqrt(fa, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| |
| /* S floating (single) */ |
| |
| /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */ |
| static inline uint64_t float32_to_s_int(uint32_t fi) |
| { |
| uint32_t frac = fi & 0x7fffff; |
| uint32_t sign = fi >> 31; |
| uint32_t exp_msb = (fi >> 30) & 1; |
| uint32_t exp_low = (fi >> 23) & 0x7f; |
| uint32_t exp; |
| |
| exp = (exp_msb << 10) | exp_low; |
| if (exp_msb) { |
| if (exp_low == 0x7f) |
| exp = 0x7ff; |
| } else { |
| if (exp_low != 0x00) |
| exp |= 0x380; |
| } |
| |
| return (((uint64_t)sign << 63) |
| | ((uint64_t)exp << 52) |
| | ((uint64_t)frac << 29)); |
| } |
| |
| static inline uint64_t float32_to_s(float32 fa) |
| { |
| CPU_FloatU a; |
| a.f = fa; |
| return float32_to_s_int(a.l); |
| } |
| |
| static inline uint32_t s_to_float32_int(uint64_t a) |
| { |
| return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff); |
| } |
| |
| static inline float32 s_to_float32(uint64_t a) |
| { |
| CPU_FloatU r; |
| r.l = s_to_float32_int(a); |
| return r.f; |
| } |
| |
| uint32_t helper_s_to_memory (uint64_t a) |
| { |
| return s_to_float32_int(a); |
| } |
| |
| uint64_t helper_memory_to_s (uint32_t a) |
| { |
| return float32_to_s_int(a); |
| } |
| |
| uint64_t helper_adds (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_add(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_subs (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_sub(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_muls (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_mul(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_divs (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_div(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_sqrts (uint64_t a) |
| { |
| float32 fa, fr; |
| |
| fa = s_to_float32(a); |
| fr = float32_sqrt(fa, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| |
| /* T floating (double) */ |
| static inline float64 t_to_float64(uint64_t a) |
| { |
| /* Memory format is the same as float64 */ |
| CPU_DoubleU r; |
| r.ll = a; |
| return r.d; |
| } |
| |
| static inline uint64_t float64_to_t(float64 fa) |
| { |
| /* Memory format is the same as float64 */ |
| CPU_DoubleU r; |
| r.d = fa; |
| return r.ll; |
| } |
| |
| uint64_t helper_addt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_add(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_subt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_sub(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_mult (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_mul(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_divt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_div(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_sqrtt (uint64_t a) |
| { |
| float64 fa, fr; |
| |
| fa = t_to_float64(a); |
| fr = float64_sqrt(fa, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| /* Comparisons */ |
| uint64_t helper_cmptun (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_unordered_quiet(fa, fb, &FP_STATUS)) { |
| return 0x4000000000000000ULL; |
| } else { |
| return 0; |
| } |
| } |
| |
| uint64_t helper_cmpteq(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_eq_quiet(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmptle(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_le(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmptlt(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_lt(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpgeq(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_eq_quiet(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpgle(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_le(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpglt(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_lt(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| /* Floating point format conversion */ |
| uint64_t helper_cvtts (uint64_t a) |
| { |
| float64 fa; |
| float32 fr; |
| |
| fa = t_to_float64(a); |
| fr = float64_to_float32(fa, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_cvtst (uint64_t a) |
| { |
| float32 fa; |
| float64 fr; |
| |
| fa = s_to_float32(a); |
| fr = float32_to_float64(fa, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_cvtqs (uint64_t a) |
| { |
| float32 fr = int64_to_float32(a, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| /* Implement float64 to uint64 conversion without saturation -- we must |
| supply the truncated result. This behaviour is used by the compiler |
| to get unsigned conversion for free with the same instruction. |
| |
| The VI flag is set when overflow or inexact exceptions should be raised. */ |
| |
| static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI) |
| { |
| uint64_t frac, ret = 0; |
| uint32_t exp, sign, exc = 0; |
| int shift; |
| |
| sign = (a >> 63); |
| exp = (uint32_t)(a >> 52) & 0x7ff; |
| frac = a & 0xfffffffffffffull; |
| |
| if (exp == 0) { |
| if (unlikely(frac != 0)) { |
| goto do_underflow; |
| } |
| } else if (exp == 0x7ff) { |
| exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0); |
| } else { |
| /* Restore implicit bit. */ |
| frac |= 0x10000000000000ull; |
| |
| shift = exp - 1023 - 52; |
| if (shift >= 0) { |
| /* In this case the number is so large that we must shift |
| the fraction left. There is no rounding to do. */ |
| if (shift < 63) { |
| ret = frac << shift; |
| if (VI && (ret >> shift) != frac) { |
| exc = float_flag_overflow; |
| } |
| } |
| } else { |
| uint64_t round; |
| |
| /* In this case the number is smaller than the fraction as |
| represented by the 52 bit number. Here we must think |
| about rounding the result. Handle this by shifting the |
| fractional part of the number into the high bits of ROUND. |
| This will let us efficiently handle round-to-nearest. */ |
| shift = -shift; |
| if (shift < 63) { |
| ret = frac >> shift; |
| round = frac << (64 - shift); |
| } else { |
| /* The exponent is so small we shift out everything. |
| Leave a sticky bit for proper rounding below. */ |
| do_underflow: |
| round = 1; |
| } |
| |
| if (round) { |
| exc = (VI ? float_flag_inexact : 0); |
| switch (roundmode) { |
| case float_round_nearest_even: |
| if (round == (1ull << 63)) { |
| /* Fraction is exactly 0.5; round to even. */ |
| ret += (ret & 1); |
| } else if (round > (1ull << 63)) { |
| ret += 1; |
| } |
| break; |
| case float_round_to_zero: |
| break; |
| case float_round_up: |
| ret += 1 - sign; |
| break; |
| case float_round_down: |
| ret += sign; |
| break; |
| } |
| } |
| } |
| if (sign) { |
| ret = -ret; |
| } |
| } |
| if (unlikely(exc)) { |
| float_raise(exc, &FP_STATUS); |
| } |
| |
| return ret; |
| } |
| |
| uint64_t helper_cvttq(uint64_t a) |
| { |
| return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1); |
| } |
| |
| uint64_t helper_cvttq_c(uint64_t a) |
| { |
| return helper_cvttq_internal(a, float_round_to_zero, 0); |
| } |
| |
| uint64_t helper_cvttq_svic(uint64_t a) |
| { |
| return helper_cvttq_internal(a, float_round_to_zero, 1); |
| } |
| |
| uint64_t helper_cvtqt (uint64_t a) |
| { |
| float64 fr = int64_to_float64(a, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_cvtqf (uint64_t a) |
| { |
| float32 fr = int64_to_float32(a, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgf (uint64_t a) |
| { |
| float64 fa; |
| float32 fr; |
| |
| fa = g_to_float64(a); |
| fr = float64_to_float32(fa, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgq (uint64_t a) |
| { |
| float64 fa = g_to_float64(a); |
| return float64_to_int64_round_to_zero(fa, &FP_STATUS); |
| } |
| |
| uint64_t helper_cvtqg (uint64_t a) |
| { |
| float64 fr; |
| fr = int64_to_float64(a, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| /* PALcode support special instructions */ |
| #if !defined (CONFIG_USER_ONLY) |
| void helper_hw_ret (uint64_t a) |
| { |
| env->pc = a & ~3; |
| env->intr_flag = 0; |
| env->lock_addr = -1; |
| if ((a & 1) == 0) { |
| env->pal_mode = 0; |
| swap_shadow_regs(env); |
| } |
| } |
| |
| void helper_tbia(void) |
| { |
| tlb_flush(env, 1); |
| } |
| |
| void helper_tbis(uint64_t p) |
| { |
| tlb_flush_page(env, p); |
| } |
| |
| void helper_halt(uint64_t restart) |
| { |
| if (restart) { |
| qemu_system_reset_request(); |
| } else { |
| qemu_system_shutdown_request(); |
| } |
| } |
| |
| uint64_t helper_get_time(void) |
| { |
| return qemu_get_clock_ns(rtc_clock); |
| } |
| |
| void helper_set_alarm(uint64_t expire) |
| { |
| if (expire) { |
| env->alarm_expire = expire; |
| qemu_mod_timer(env->alarm_timer, expire); |
| } else { |
| qemu_del_timer(env->alarm_timer); |
| } |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined (CONFIG_USER_ONLY) |
| uint64_t helper_ldl_phys(uint64_t p) |
| { |
| return (int32_t)ldl_phys(p); |
| } |
| |
| uint64_t helper_ldq_phys(uint64_t p) |
| { |
| return ldq_phys(p); |
| } |
| |
| uint64_t helper_ldl_l_phys(uint64_t p) |
| { |
| env->lock_addr = p; |
| return env->lock_value = (int32_t)ldl_phys(p); |
| } |
| |
| uint64_t helper_ldq_l_phys(uint64_t p) |
| { |
| env->lock_addr = p; |
| return env->lock_value = ldl_phys(p); |
| } |
| |
| void helper_stl_phys(uint64_t p, uint64_t v) |
| { |
| stl_phys(p, v); |
| } |
| |
| void helper_stq_phys(uint64_t p, uint64_t v) |
| { |
| stq_phys(p, v); |
| } |
| |
| uint64_t helper_stl_c_phys(uint64_t p, uint64_t v) |
| { |
| uint64_t ret = 0; |
| |
| if (p == env->lock_addr) { |
| int32_t old = ldl_phys(p); |
| if (old == (int32_t)env->lock_value) { |
| stl_phys(p, v); |
| ret = 1; |
| } |
| } |
| env->lock_addr = -1; |
| |
| return ret; |
| } |
| |
| uint64_t helper_stq_c_phys(uint64_t p, uint64_t v) |
| { |
| uint64_t ret = 0; |
| |
| if (p == env->lock_addr) { |
| uint64_t old = ldq_phys(p); |
| if (old == env->lock_value) { |
| stq_phys(p, v); |
| ret = 1; |
| } |
| } |
| env->lock_addr = -1; |
| |
| return ret; |
| } |
| |
| static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write, |
| int is_user, void *retaddr) |
| { |
| uint64_t pc; |
| uint32_t insn; |
| |
| do_restore_state(retaddr); |
| |
| pc = env->pc; |
| insn = ldl_code(pc); |
| |
| env->trap_arg0 = addr; |
| env->trap_arg1 = insn >> 26; /* opcode */ |
| env->trap_arg2 = (insn >> 21) & 31; /* dest regno */ |
| helper_excp(EXCP_UNALIGN, 0); |
| } |
| |
| void QEMU_NORETURN cpu_unassigned_access(CPUAlphaState *env1, |
| target_phys_addr_t addr, int is_write, |
| int is_exec, int unused, int size) |
| { |
| env = env1; |
| env->trap_arg0 = addr; |
| env->trap_arg1 = is_write; |
| dynamic_excp(EXCP_MCHK, 0); |
| } |
| |
| #include "softmmu_exec.h" |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(CPUAlphaState *env1, target_ulong addr, int is_write, int mmu_idx, |
| void *retaddr) |
| { |
| CPUAlphaState *saved_env; |
| int ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx); |
| if (unlikely(ret != 0)) { |
| do_restore_state(retaddr); |
| /* Exception index and error code are already set */ |
| cpu_loop_exit(env); |
| } |
| env = saved_env; |
| } |
| #endif |