blob: 9b317899a66b66fbe7203b8df8b490b69236d54a [file] [log] [blame]
/*
* ARM generic helpers.
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "target/arm/idau.h"
#include "trace.h"
#include "cpu.h"
#include "internals.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "qemu/bitops.h"
#include "qemu/crc32c.h"
#include "qemu/qemu-print.h"
#include "exec/exec-all.h"
#include <zlib.h> /* For crc32 */
#include "hw/irq.h"
#include "semihosting/semihost.h"
#include "sysemu/cpus.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "qemu/range.h"
#include "qapi/qapi-commands-machine-target.h"
#include "qapi/error.h"
#include "qemu/guest-random.h"
#ifdef CONFIG_TCG
#include "arm_ldst.h"
#include "exec/cpu_ldst.h"
#include "semihosting/common-semi.h"
#endif
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
#ifndef CONFIG_USER_ONLY
static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
__attribute__((nonnull));
#endif
static void switch_mode(CPUARMState *env, int mode);
static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
assert(ri->fieldoffset);
if (cpreg_field_is_64bit(ri)) {
return CPREG_FIELD64(env, ri);
} else {
return CPREG_FIELD32(env, ri);
}
}
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
assert(ri->fieldoffset);
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(env, ri) = value;
} else {
CPREG_FIELD32(env, ri) = value;
}
}
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
return (char *)env + ri->fieldoffset;
}
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Raw read of a coprocessor register (as needed for migration, etc). */
if (ri->type & ARM_CP_CONST) {
return ri->resetvalue;
} else if (ri->raw_readfn) {
return ri->raw_readfn(env, ri);
} else if (ri->readfn) {
return ri->readfn(env, ri);
} else {
return raw_read(env, ri);
}
}
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t v)
{
/* Raw write of a coprocessor register (as needed for migration, etc).
* Note that constant registers are treated as write-ignored; the
* caller should check for success by whether a readback gives the
* value written.
*/
if (ri->type & ARM_CP_CONST) {
return;
} else if (ri->raw_writefn) {
ri->raw_writefn(env, ri, v);
} else if (ri->writefn) {
ri->writefn(env, ri, v);
} else {
raw_write(env, ri, v);
}
}
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
/* Return true if the regdef would cause an assertion if you called
* read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
* program bug for it not to have the NO_RAW flag).
* NB that returning false here doesn't necessarily mean that calling
* read/write_raw_cp_reg() is safe, because we can't distinguish "has
* read/write access functions which are safe for raw use" from "has
* read/write access functions which have side effects but has forgotten
* to provide raw access functions".
* The tests here line up with the conditions in read/write_raw_cp_reg()
* and assertions in raw_read()/raw_write().
*/
if ((ri->type & ARM_CP_CONST) ||
ri->fieldoffset ||
((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
return false;
}
return true;
}
bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
{
/* Write the coprocessor state from cpu->env to the (index,value) list. */
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
const ARMCPRegInfo *ri;
uint64_t newval;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_RAW) {
continue;
}
newval = read_raw_cp_reg(&cpu->env, ri);
if (kvm_sync) {
/*
* Only sync if the previous list->cpustate sync succeeded.
* Rather than tracking the success/failure state for every
* item in the list, we just recheck "does the raw write we must
* have made in write_list_to_cpustate() read back OK" here.
*/
uint64_t oldval = cpu->cpreg_values[i];
if (oldval == newval) {
continue;
}
write_raw_cp_reg(&cpu->env, ri, oldval);
if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
continue;
}
write_raw_cp_reg(&cpu->env, ri, newval);
}
cpu->cpreg_values[i] = newval;
}
return ok;
}
bool write_list_to_cpustate(ARMCPU *cpu)
{
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
uint64_t v = cpu->cpreg_values[i];
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_RAW) {
continue;
}
/* Write value and confirm it reads back as written
* (to catch read-only registers and partially read-only
* registers where the incoming migration value doesn't match)
*/
write_raw_cp_reg(&cpu->env, ri, v);
if (read_raw_cp_reg(&cpu->env, ri) != v) {
ok = false;
}
}
return ok;
}
static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
/* The value array need not be initialized at this point */
cpu->cpreg_array_len++;
}
}
static void count_cpreg(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
cpu->cpreg_array_len++;
}
}
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
if (aidx > bidx) {
return 1;
}
if (aidx < bidx) {
return -1;
}
return 0;
}
void init_cpreg_list(ARMCPU *cpu)
{
/* Initialise the cpreg_tuples[] array based on the cp_regs hash.
* Note that we require cpreg_tuples[] to be sorted by key ID.
*/
GList *keys;
int arraylen;
keys = g_hash_table_get_keys(cpu->cp_regs);
keys = g_list_sort(keys, cpreg_key_compare);
cpu->cpreg_array_len = 0;
g_list_foreach(keys, count_cpreg, cpu);
arraylen = cpu->cpreg_array_len;
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
cpu->cpreg_array_len = 0;
g_list_foreach(keys, add_cpreg_to_list, cpu);
assert(cpu->cpreg_array_len == arraylen);
g_list_free(keys);
}
/*
* Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
*/
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
if (!is_a64(env) && arm_current_el(env) == 3 &&
arm_is_secure_below_el3(env)) {
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
/* Some secure-only AArch32 registers trap to EL3 if used from
* Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
* Note that an access from Secure EL1 can only happen if EL3 is AArch64.
* We assume that the .access field is set to PL1_RW.
*/
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 3) {
return CP_ACCESS_OK;
}
if (arm_is_secure_below_el3(env)) {
if (env->cp15.scr_el3 & SCR_EEL2) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_TRAP_EL3;
}
/* This will be EL1 NS and EL2 NS, which just UNDEF */
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
{
return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
}
/* Check for traps to "powerdown debug" registers, which are controlled
* by MDCR.TDOSA
*/
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
(arm_hcr_el2_eff(env) & HCR_TGE);
if (el < 2 && mdcr_el2_tdosa) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
/* Check for traps to "debug ROM" registers, which are controlled
* by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
*/
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
(arm_hcr_el2_eff(env) & HCR_TGE);
if (el < 2 && mdcr_el2_tdra) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
/* Check for traps to general debug registers, which are controlled
* by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
*/
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
(arm_hcr_el2_eff(env) & HCR_TGE);
if (el < 2 && mdcr_el2_tda) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
/* Check for traps to performance monitor registers, which are controlled
* by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
*/
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1) {
uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
if (arm_hcr_el2_eff(env) & trap) {
return CP_ACCESS_TRAP_EL2;
}
}
return CP_ACCESS_OK;
}
/* Check for traps from EL1 due to HCR_EL2.TSW. */
static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
/* Check for traps from EL1 due to HCR_EL2.TACR. */
static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
/* Check for traps from EL1 due to HCR_EL2.TTLB. */
static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
raw_write(env, ri, value);
tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
}
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
if (raw_read(env, ri) != value) {
/* Unlike real hardware the qemu TLB uses virtual addresses,
* not modified virtual addresses, so this causes a TLB flush.
*/
tlb_flush(CPU(cpu));
raw_write(env, ri, value);
}
}
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
&& !extended_addresses_enabled(env)) {
/* For VMSA (when not using the LPAE long descriptor page table
* format) this register includes the ASID, so do a TLB flush.
* For PMSA it is purely a process ID and no action is needed.
*/
tlb_flush(CPU(cpu));
}
raw_write(env, ri, value);
}
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_all_cpus_synced(cs);
}
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_all_cpus_synced(cs);
}
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}
/*
* Non-IS variants of TLB operations are upgraded to
* IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
* force broadcast of these operations.
*/
static bool tlb_force_broadcast(CPUARMState *env)
{
return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
}
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate all (TLBIALL) */
CPUState *cs = env_cpu(env);
if (tlb_force_broadcast(env)) {
tlb_flush_all_cpus_synced(cs);
} else {
tlb_flush(cs);
}
}
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
CPUState *cs = env_cpu(env);
value &= TARGET_PAGE_MASK;
if (tlb_force_broadcast(env)) {
tlb_flush_page_all_cpus_synced(cs, value);
} else {
tlb_flush_page(cs, value);
}
}
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by ASID (TLBIASID) */
CPUState *cs = env_cpu(env);
if (tlb_force_broadcast(env)) {
tlb_flush_all_cpus_synced(cs);
} else {
tlb_flush(cs);
}
}
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
CPUState *cs = env_cpu(env);
value &= TARGET_PAGE_MASK;
if (tlb_force_broadcast(env)) {
tlb_flush_page_all_cpus_synced(cs, value);
} else {
tlb_flush_page(cs, value);
}
}
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_by_mmuidx(cs,
ARMMMUIdxBit_E10_1 |
ARMMMUIdxBit_E10_1_PAN |
ARMMMUIdxBit_E10_0);
}
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs,
ARMMMUIdxBit_E10_1 |
ARMMMUIdxBit_E10_1_PAN |
ARMMMUIdxBit_E10_0);
}
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
}
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
}
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
}
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
ARMMMUIdxBit_E2);
}
static const ARMCPRegInfo cp_reginfo[] = {
/* Define the secure and non-secure FCSE identifier CP registers
* separately because there is no secure bank in V8 (no _EL3). This allows
* the secure register to be properly reset and migrated. There is also no
* v8 EL1 version of the register so the non-secure instance stands alone.
*/
{ .name = "FCSEIDR",
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
.access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
{ .name = "FCSEIDR_S",
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
/* Define the secure and non-secure context identifier CP registers
* separately because there is no secure bank in V8 (no _EL3). This allows
* the secure register to be properly reset and migrated. In the
* non-secure case, the 32-bit register will have reset and migration
* disabled during registration as it is handled by the 64-bit instance.
*/
{ .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.secure = ARM_CP_SECSTATE_NS,
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
{ .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.secure = ARM_CP_SECSTATE_S,
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
/* NB: Some of these registers exist in v8 but with more precise
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
*/
/* MMU Domain access control / MPU write buffer control */
{ .name = "DACR",
.cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
.writefn = dacr_write, .raw_writefn = raw_write,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
/* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
* For v6 and v5, these mappings are overly broad.
*/
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
/* Cache maintenance ops; some of this space may be overridden later. */
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_NOP | ARM_CP_OVERRIDE },
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
/* Not all pre-v6 cores implemented this WFI, so this is slightly
* over-broad.
*/
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
.access = PL1_W, .type = ARM_CP_WFI },
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
/* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
* is UNPREDICTABLE; we choose to NOP as most implementations do).
*/
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_WFI },
/* L1 cache lockdown. Not architectural in v6 and earlier but in practice
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
* OMAPCP will override this space.
*/
{ .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
.resetvalue = 0 },
{ .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
.resetvalue = 0 },
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = 0 },
/* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
* implementing it as RAZ means the "debug architecture version" bits
* will read as a reserved value, which should cause Linux to not try
* to use the debug hardware.
*/
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* MMU TLB control. Note that the wildcarding means we cover not just
* the unified TLB ops but also the dside/iside/inner-shareable variants.
*/
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
.type = ARM_CP_NO_RAW },
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
.type = ARM_CP_NO_RAW },
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
.type = ARM_CP_NO_RAW },
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
.type = ARM_CP_NO_RAW },
{ .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
.opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
.opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
REGINFO_SENTINEL
};
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint32_t mask = 0;
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
if (!arm_feature(env, ARM_FEATURE_V8)) {
/* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
*/
if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
/* VFP coprocessor: cp10 & cp11 [23:20] */
mask |= (1 << 31) | (1 << 30) | (0xf << 20);
if (!arm_feature(env, ARM_FEATURE_NEON)) {
/* ASEDIS [31] bit is RAO/WI */
value |= (1 << 31);
}
/* VFPv3 and upwards with NEON implement 32 double precision
* registers (D0-D31).
*/
if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
/* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
value |= (1 << 30);
}
}
value &= mask;
}
/*
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
*/
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
value &= ~(0xf << 20);
value |= env->cp15.cpacr_el1 & (0xf << 20);
}
env->cp15.cpacr_el1 = value;
}
static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/*
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
*/
uint64_t value = env->cp15.cpacr_el1;
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
value &= ~(0xf << 20);
}
return value;
}
static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Call cpacr_write() so that we reset with the correct RAO bits set
* for our CPU features.
*/
cpacr_write(env, ri, 0);
}
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_feature(env, ARM_FEATURE_V8)) {
/* Check if CPACR accesses are to be trapped to EL2 */
if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
(env->cp15.cptr_el[2] & CPTR_TCPAC)) {
return CP_ACCESS_TRAP_EL2;
/* Check if CPACR accesses are to be trapped to EL3 */
} else if (arm_current_el(env) < 3 &&
(env->cp15.cptr_el[3] & CPTR_TCPAC)) {
return CP_ACCESS_TRAP_EL3;
}
}
return CP_ACCESS_OK;
}
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
/* Check if CPTR accesses are set to trap to EL3 */
if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo v6_cp_reginfo[] = {
/* prefetch by MVA in v6, NOP in v7 */
{ .name = "MVA_prefetch",
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NOP },
/* We need to break the TB after ISB to execute self-modifying code
* correctly and also to take any pending interrupts immediately.
* So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
*/
{ .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
{ .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .type = ARM_CP_NOP },
{ .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
.access = PL0_W, .type = ARM_CP_NOP },
{ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
offsetof(CPUARMState, cp15.ifar_ns) },
.resetvalue = 0, },
/* Watchpoint Fault Address Register : should actually only be present
* for 1136, 1176, 11MPCore.
*/
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
{ .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
.crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
.resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
REGINFO_SENTINEL
};
typedef struct pm_event {
uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
/* If the event is supported on this CPU (used to generate PMCEID[01]) */
bool (*supported)(CPUARMState *);
/*
* Retrieve the current count of the underlying event. The programmed
* counters hold a difference from the return value from this function
*/
uint64_t (*get_count)(CPUARMState *);
/*
* Return how many nanoseconds it will take (at a minimum) for count events
* to occur. A negative value indicates the counter will never overflow, or
* that the counter has otherwise arranged for the overflow bit to be set
* and the PMU interrupt to be raised on overflow.
*/
int64_t (*ns_per_count)(uint64_t);
} pm_event;
static bool event_always_supported(CPUARMState *env)
{
return true;
}
static uint64_t swinc_get_count(CPUARMState *env)
{
/*
* SW_INCR events are written directly to the pmevcntr's by writes to
* PMSWINC, so there is no underlying count maintained by the PMU itself
*/
return 0;
}
static int64_t swinc_ns_per(uint64_t ignored)
{
return -1;
}
/*
* Return the underlying cycle count for the PMU cycle counters. If we're in
* usermode, simply return 0.
*/
static uint64_t cycles_get_count(CPUARMState *env)
{
#ifndef CONFIG_USER_ONLY
return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
#else
return cpu_get_host_ticks();
#endif
}
#ifndef CONFIG_USER_ONLY
static int64_t cycles_ns_per(uint64_t cycles)
{
return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
}
static bool instructions_supported(CPUARMState *env)
{
return icount_enabled() == 1; /* Precise instruction counting */
}
static uint64_t instructions_get_count(CPUARMState *env)
{
return (uint64_t)icount_get_raw();
}
static int64_t instructions_ns_per(uint64_t icount)
{
return icount_to_ns((int64_t)icount);
}
#endif
static bool pmu_8_1_events_supported(CPUARMState *env)
{
/* For events which are supported in any v8.1 PMU */
return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
}
static bool pmu_8_4_events_supported(CPUARMState *env)
{
/* For events which are supported in any v8.1 PMU */
return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
}
static uint64_t zero_event_get_count(CPUARMState *env)
{
/* For events which on QEMU never fire, so their count is always zero */
return 0;
}
static int64_t zero_event_ns_per(uint64_t cycles)
{
/* An event which never fires can never overflow */
return -1;
}
static const pm_event pm_events[] = {
{ .number = 0x000, /* SW_INCR */
.supported = event_always_supported,
.get_count = swinc_get_count,
.ns_per_count = swinc_ns_per,
},
#ifndef CONFIG_USER_ONLY
{ .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
.supported = instructions_supported,
.get_count = instructions_get_count,
.ns_per_count = instructions_ns_per,
},
{ .number = 0x011, /* CPU_CYCLES, Cycle */
.supported = event_always_supported,
.get_count = cycles_get_count,
.ns_per_count = cycles_ns_per,
},
#endif
{ .number = 0x023, /* STALL_FRONTEND */
.supported = pmu_8_1_events_supported,
.get_count = zero_event_get_count,
.ns_per_count = zero_event_ns_per,
},
{ .number = 0x024, /* STALL_BACKEND */
.supported = pmu_8_1_events_supported,
.get_count = zero_event_get_count,
.ns_per_count = zero_event_ns_per,
},
{ .number = 0x03c, /* STALL */
.supported = pmu_8_4_events_supported,
.get_count = zero_event_get_count,
.ns_per_count = zero_event_ns_per,
},
};
/*
* Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
* events (i.e. the statistical profiling extension), this implementation
* should first be updated to something sparse instead of the current
* supported_event_map[] array.
*/
#define MAX_EVENT_ID 0x3c
#define UNSUPPORTED_EVENT UINT16_MAX
static uint16_t supported_event_map[MAX_EVENT_ID + 1];
/*
* Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
* of ARM event numbers to indices in our pm_events array.
*
* Note: Events in the 0x40XX range are not currently supported.
*/
void pmu_init(ARMCPU *cpu)
{
unsigned int i;
/*
* Empty supported_event_map and cpu->pmceid[01] before adding supported
* events to them
*/
for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
supported_event_map[i] = UNSUPPORTED_EVENT;
}
cpu->pmceid0 = 0;
cpu->pmceid1 = 0;
for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
const pm_event *cnt = &pm_events[i];
assert(cnt->number <= MAX_EVENT_ID);
/* We do not currently support events in the 0x40xx range */
assert(cnt->number <= 0x3f);
if (cnt->supported(&cpu->env)) {
supported_event_map[cnt->number] = i;
uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
if (cnt->number & 0x20) {
cpu->pmceid1 |= event_mask;
} else {
cpu->pmceid0 |= event_mask;
}
}
}
}
/*
* Check at runtime whether a PMU event is supported for the current machine
*/
static bool event_supported(uint16_t number)
{
if (number > MAX_EVENT_ID) {
return false;
}
return supported_event_map[number] != UNSUPPORTED_EVENT;
}
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
/* Performance monitor registers user accessibility is controlled
* by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
* trapping to EL2 or EL3 for other accesses.
*/
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
return CP_ACCESS_TRAP;
}
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* ER: event counter read trap control */
if (arm_feature(env, ARM_FEATURE_V8)
&& arm_current_el(env) == 0
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0
&& isread) {
return CP_ACCESS_OK;
}
return pmreg_access(env, ri, isread);
}
static CPAccessResult pmreg_access_swinc(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* SW: software increment write trap control */
if (arm_feature(env, ARM_FEATURE_V8)
&& arm_current_el(env) == 0
&& (env->cp15.c9_pmuserenr & (1 << 1)) != 0
&& !isread) {
return CP_ACCESS_OK;
}
return pmreg_access(env, ri, isread);
}
static CPAccessResult pmreg_access_selr(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* ER: event counter read trap control */
if (arm_feature(env, ARM_FEATURE_V8)
&& arm_current_el(env) == 0
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
return CP_ACCESS_OK;
}
return pmreg_access(env, ri, isread);
}
static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* CR: cycle counter read trap control */
if (arm_feature(env, ARM_FEATURE_V8)
&& arm_current_el(env) == 0
&& (env->cp15.c9_pmuserenr & (1 << 2)) != 0
&& isread) {
return CP_ACCESS_OK;
}
return pmreg_access(env, ri, isread);
}
/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
* the current EL, security state, and register configuration.
*/
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
{
uint64_t filter;
bool e, p, u, nsk, nsu, nsh, m;
bool enabled, prohibited, filtered;
bool secure = arm_is_secure(env);
int el = arm_current_el(env);
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
if (!arm_feature(env, ARM_FEATURE_PMU)) {
return false;
}
if (!arm_feature(env, ARM_FEATURE_EL2) ||
(counter < hpmn || counter == 31)) {
e = env->cp15.c9_pmcr & PMCRE;
} else {
e = mdcr_el2 & MDCR_HPME;
}
enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
if (!secure) {
if (el == 2 && (counter < hpmn || counter == 31)) {
prohibited = mdcr_el2 & MDCR_HPMD;
} else {
prohibited = false;
}
} else {
prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
!(env->cp15.mdcr_el3 & MDCR_SPME);
}
if (prohibited && counter == 31) {
prohibited = env->cp15.c9_pmcr & PMCRDP;
}
if (counter == 31) {
filter = env->cp15.pmccfiltr_el0;
} else {
filter = env->cp15.c14_pmevtyper[counter];
}
p = filter & PMXEVTYPER_P;
u = filter & PMXEVTYPER_U;
nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
m = arm_el_is_aa64(env, 1) &&
arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
if (el == 0) {
filtered = secure ? u : u != nsu;
} else if (el == 1) {
filtered = secure ? p : p != nsk;
} else if (el == 2) {
filtered = !nsh;
} else { /* EL3 */
filtered = m != p;
}
if (counter != 31) {
/*
* If not checking PMCCNTR, ensure the counter is setup to an event we
* support
*/
uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
if (!event_supported(event)) {
return false;
}
}
return enabled && !prohibited && !filtered;
}
static void pmu_update_irq(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
(env->cp15.c9_pminten & env->cp15.c9_pmovsr));
}
/*
* Ensure c15_ccnt is the guest-visible count so that operations such as
* enabling/disabling the counter or filtering, modifying the count itself,
* etc. can be done logically. This is essentially a no-op if the counter is
* not enabled at the time of the call.
*/
static void pmccntr_op_start(CPUARMState *env)
{
uint64_t cycles = cycles_get_count(env);
if (pmu_counter_enabled(env, 31)) {
uint64_t eff_cycles = cycles;
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
eff_cycles /= 64;
}
uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1ull << 63 : 1ull << 31;
if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
env->cp15.c9_pmovsr |= (1 << 31);
pmu_update_irq(env);
}
env->cp15.c15_ccnt = new_pmccntr;
}
env->cp15.c15_ccnt_delta = cycles;
}
/*
* If PMCCNTR is enabled, recalculate the delta between the clock and the
* guest-visible count. A call to pmccntr_op_finish should follow every call to
* pmccntr_op_start.
*/
static void pmccntr_op_finish(CPUARMState *env)
{
if (pmu_counter_enabled(env, 31)) {
#ifndef CONFIG_USER_ONLY
/* Calculate when the counter will next overflow */
uint64_t remaining_cycles = -env->cp15.c15_ccnt;
if (!(env->cp15.c9_pmcr & PMCRLC)) {
remaining_cycles = (uint32_t)remaining_cycles;
}
int64_t overflow_in = cycles_ns_per(remaining_cycles);
if (overflow_in > 0) {
int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
overflow_in;
ARMCPU *cpu = env_archcpu(env);
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
}
#endif
uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
prev_cycles /= 64;
}
env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
}
}
static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
{
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
uint64_t count = 0;
if (event_supported(event)) {
uint16_t event_idx = supported_event_map[event];
count = pm_events[event_idx].get_count(env);
}
if (pmu_counter_enabled(env, counter)) {
uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
env->cp15.c9_pmovsr |= (1 << counter);
pmu_update_irq(env);
}
env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
}
env->cp15.c14_pmevcntr_delta[counter] = count;
}
static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
{
if (pmu_counter_enabled(env, counter)) {
#ifndef CONFIG_USER_ONLY
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
uint16_t event_idx = supported_event_map[event];
uint64_t delta = UINT32_MAX -
(uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
if (overflow_in > 0) {
int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
overflow_in;
ARMCPU *cpu = env_archcpu(env);
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
}
#endif
env->cp15.c14_pmevcntr_delta[counter] -=
env->cp15.c14_pmevcntr[counter];
}
}
void pmu_op_start(CPUARMState *env)
{
unsigned int i;
pmccntr_op_start(env);
for (i = 0; i < pmu_num_counters(env); i++) {
pmevcntr_op_start(env, i);
}
}
void pmu_op_finish(CPUARMState *env)
{
unsigned int i;
pmccntr_op_finish(env);
for (i = 0; i < pmu_num_counters(env); i++) {
pmevcntr_op_finish(env, i);
}
}
void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
{
pmu_op_start(&cpu->env);
}
void pmu_post_el_change(ARMCPU *cpu, void *ignored)
{
pmu_op_finish(&cpu->env);
}
void arm_pmu_timer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
/*
* Update all the counter values based on the current underlying counts,
* triggering interrupts to be raised, if necessary. pmu_op_finish() also
* has the effect of setting the cpu->pmu_timer to the next earliest time a
* counter may expire.
*/
pmu_op_start(&cpu->env);
pmu_op_finish(&cpu->env);
}
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmu_op_start(env);
if (value & PMCRC) {
/* The counter has been reset */
env->cp15.c15_ccnt = 0;
}
if (value & PMCRP) {
unsigned int i;
for (i = 0; i < pmu_num_counters(env); i++) {
env->cp15.c14_pmevcntr[i] = 0;
}
}
env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
pmu_op_finish(env);
}
static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
unsigned int i;
for (i = 0; i < pmu_num_counters(env); i++) {
/* Increment a counter's count iff: */
if ((value & (1 << i)) && /* counter's bit is set */
/* counter is enabled and not filtered */
pmu_counter_enabled(env, i) &&
/* counter is SW_INCR */
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
pmevcntr_op_start(env, i);
/*
* Detect if this write causes an overflow since we can't predict
* PMSWINC overflows like we can for other events
*/
uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
env->cp15.c9_pmovsr |= (1 << i);
pmu_update_irq(env);
}
env->cp15.c14_pmevcntr[i] = new_pmswinc;
pmevcntr_op_finish(env, i);
}
}
}
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint64_t ret;
pmccntr_op_start(env);
ret = env->cp15.c15_ccnt;
pmccntr_op_finish(env);
return ret;
}
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
* PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
* meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
* accessed.
*/
env->cp15.c9_pmselr = value & 0x1f;
}
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmccntr_op_start(env);
env->cp15.c15_ccnt = value;
pmccntr_op_finish(env);
}
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint64_t cur_val = pmccntr_read(env, NULL);
pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmccntr_op_start(env);
env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
pmccntr_op_finish(env);
}
static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmccntr_op_start(env);
/* M is not accessible from AArch32 */
env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
(value & PMCCFILTR);
pmccntr_op_finish(env);
}
static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* M is not visible in AArch32 */
return env->cp15.pmccfiltr_el0 & PMCCFILTR;
}
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmcnten |= value;
}
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmcnten &= ~value;
}
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmovsr &= ~value;
pmu_update_irq(env);
}
static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmovsr |= value;
pmu_update_irq(env);
}
static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value, const uint8_t counter)
{
if (counter == 31) {
pmccfiltr_write(env, ri, value);
} else if (counter < pmu_num_counters(env)) {
pmevcntr_op_start(env, counter);
/*
* If this counter's event type is changing, store the current
* underlying count for the new type in c14_pmevcntr_delta[counter] so
* pmevcntr_op_finish has the correct baseline when it converts back to
* a delta.
*/
uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
PMXEVTYPER_EVTCOUNT;
uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
if (old_event != new_event) {
uint64_t count = 0;
if (event_supported(new_event)) {
uint16_t event_idx = supported_event_map[new_event];
count = pm_events[event_idx].get_count(env);
}
env->cp15.c14_pmevcntr_delta[counter] = count;
}
env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
pmevcntr_op_finish(env, counter);
}
/* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
* PMSELR value is equal to or greater than the number of implemented
* counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
*/
}
static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
const uint8_t counter)
{
if (counter == 31) {
return env->cp15.pmccfiltr_el0;
} else if (counter < pmu_num_counters(env)) {
return env->cp15.c14_pmevtyper[counter];
} else {
/*
* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
* are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
*/
return 0;
}
}
static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
pmevtyper_write(env, ri, value, counter);
}
static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
env->cp15.c14_pmevtyper[counter] = value;
/*
* pmevtyper_rawwrite is called between a pair of pmu_op_start and
* pmu_op_finish calls when loading saved state for a migration. Because
* we're potentially updating the type of event here, the value written to
* c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
* different counter type. Therefore, we need to set this value to the
* current count for the counter type we're writing so that pmu_op_finish
* has the correct count for its calculation.
*/
uint16_t event = value & PMXEVTYPER_EVTCOUNT;
if (event_supported(event)) {
uint16_t event_idx = supported_event_map[event];
env->cp15.c14_pmevcntr_delta[counter] =
pm_events[event_idx].get_count(env);
}
}
static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
return pmevtyper_read(env, ri, counter);
}
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
}
static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
}
static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value, uint8_t counter)
{
if (counter < pmu_num_counters(env)) {
pmevcntr_op_start(env, counter);
env->cp15.c14_pmevcntr[counter] = value;
pmevcntr_op_finish(env, counter);
}
/*
* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
* are CONSTRAINED UNPREDICTABLE.
*/
}
static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
uint8_t counter)
{
if (counter < pmu_num_counters(env)) {
uint64_t ret;
pmevcntr_op_start(env, counter);
ret = env->cp15.c14_pmevcntr[counter];
pmevcntr_op_finish(env, counter);
return ret;
} else {
/* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
* are CONSTRAINED UNPREDICTABLE. */
return 0;
}
}
static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
pmevcntr_write(env, ri, value, counter);
}
static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
return pmevcntr_read(env, ri, counter);
}
static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
assert(counter < pmu_num_counters(env));
env->cp15.c14_pmevcntr[counter] = value;
pmevcntr_write(env, ri, value, counter);
}
static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
assert(counter < pmu_num_counters(env));
return env->cp15.c14_pmevcntr[counter];
}
static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
}
static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
}
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (arm_feature(env, ARM_FEATURE_V8)) {
env->cp15.c9_pmuserenr = value & 0xf;
} else {
env->cp15.c9_pmuserenr = value & 1;
}
}
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* We have no event counters so only the C bit can be changed */
value &= pmu_counter_mask(env);
env->cp15.c9_pminten |= value;
pmu_update_irq(env);
}
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= pmu_counter_mask(env);
env->cp15.c9_pminten &= ~value;
pmu_update_irq(env);
}
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Note that even though the AArch64 view of this register has bits
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
* architectural requirements for bits which are RES0 only in some
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
* requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
*/
raw_write(env, ri, value & ~0x1FULL);
}
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
/* Begin with base v8.0 state. */
uint32_t valid_mask = 0x3fff;
ARMCPU *cpu = env_archcpu(env);
if (ri->state == ARM_CP_STATE_AA64) {
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
!cpu_isar_feature(aa64_aa32_el1, cpu)) {
value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
}
valid_mask &= ~SCR_NET;
if (cpu_isar_feature(aa64_lor, cpu)) {
valid_mask |= SCR_TLOR;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
valid_mask |= SCR_API | SCR_APK;
}
if (cpu_isar_feature(aa64_sel2, cpu)) {
valid_mask |= SCR_EEL2;
}
if (cpu_isar_feature(aa64_mte, cpu)) {
valid_mask |= SCR_ATA;
}
} else {
valid_mask &= ~(SCR_RW | SCR_ST);
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
valid_mask &= ~SCR_HCE;
/* On ARMv7, SMD (or SCD as it is called in v7) is only
* supported if EL2 exists. The bit is UNK/SBZP when
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
* when EL2 is unavailable.
* On ARMv8, this bit is always available.
*/
if (arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_V8)) {
valid_mask &= ~SCR_SMD;
}
}
/* Clear all-context RES0 bits. */
value &= valid_mask;
raw_write(env, ri, value);
}
static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
/*
* scr_write will set the RES1 bits on an AArch64-only CPU.
* The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
*/
scr_write(env, ri, 0);
}
static CPAccessResult access_aa64_tid2(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
/* Acquire the CSSELR index from the bank corresponding to the CCSIDR
* bank
*/
uint32_t index = A32_BANKED_REG_GET(env, csselr,
ri->secure & ARM_CP_SECSTATE_S);
return cpu->ccsidr[index];
}
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
raw_write(env, ri, value & 0xf);
}
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
CPUState *cs = env_cpu(env);
bool el1 = arm_current_el(env) == 1;
uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
uint64_t ret = 0;
if (hcr_el2 & HCR_IMO) {
if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
ret |= CPSR_I;
}
} else {
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
ret |= CPSR_I;
}
}
if (hcr_el2 & HCR_FMO) {
if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
ret |= CPSR_F;
}
} else {
if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
ret |= CPSR_F;
}
}
/* External aborts are not possible in QEMU so A bit is always clear */
return ret;
}
static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_feature(env, ARM_FEATURE_V8)) {
return access_aa64_tid1(env, ri, isread);
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo v7_cp_reginfo[] = {
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
/* Performance monitors are implementation defined in v7,
* but with an ARM recommended set of registers, which we
* follow.
*
* Performance registers fall into three categories:
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
*/
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
.access = PL0_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
.writefn = pmcntenset_write,
.accessfn = pmreg_access,
.raw_writefn = raw_write },
{ .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
.access = PL0_RW, .accessfn = pmreg_access,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
.writefn = pmcntenset_write, .raw_writefn = raw_write },
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
.access = PL0_RW,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
.accessfn = pmreg_access,
.writefn = pmcntenclr_write,
.type = ARM_CP_ALIAS },
{ .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
.writefn = pmcntenclr_write },
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
.access = PL0_RW, .type = ARM_CP_IO,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
.accessfn = pmreg_access,
.writefn = pmovsr_write,
.raw_writefn = raw_write },
{ .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsr_write,
.raw_writefn = raw_write },
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .accessfn = pmreg_access_swinc,
.type = ARM_CP_NO_RAW | ARM_CP_IO,
.writefn = pmswinc_write },
{ .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
.access = PL0_W, .accessfn = pmreg_access_swinc,
.type = ARM_CP_NO_RAW | ARM_CP_IO,
.writefn = pmswinc_write },
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
.access = PL0_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
.accessfn = pmreg_access_selr, .writefn = pmselr_write,
.raw_writefn = raw_write},
{ .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
.access = PL0_RW, .accessfn = pmreg_access_selr,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
.writefn = pmselr_write, .raw_writefn = raw_write, },
{ .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
.access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
.readfn = pmccntr_read, .writefn = pmccntr_write32,
.accessfn = pmreg_access_ccntr },
{ .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
.access = PL0_RW, .accessfn = pmreg_access_ccntr,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
.readfn = pmccntr_read, .writefn = pmccntr_write,
.raw_readfn = raw_read, .raw_writefn = raw_write, },
{ .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
.writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.resetvalue = 0, },
{ .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
.writefn = pmccfiltr_write, .raw_writefn = raw_write,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
.resetvalue = 0, },
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = pmreg_access,
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
{ .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = pmreg_access,
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = pmreg_access_xevcntr,
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
{ .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = pmreg_access_xevcntr,
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
{ .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
.access = PL0_R | PL1_RW, .accessfn = access_tpm,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
.resetvalue = 0,
.writefn = pmuserenr_write, .raw_writefn = raw_write },
{ .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
.access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
.resetvalue = 0,
.writefn = pmuserenr_write, .raw_writefn = raw_write },
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tpm,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
.resetvalue = 0,
.writefn = pmintenset_write, .raw_writefn = raw_write },
{ .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tpm,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
.writefn = pmintenset_write, .raw_writefn = raw_write,
.resetvalue = 0x0 },
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tpm,
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
.writefn = pmintenclr_write, },
{ .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tpm,
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
.writefn = pmintenclr_write },
{ .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
.access = PL1_R,
.accessfn = access_aa64_tid2,
.readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
{ .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
.access = PL1_RW,
.accessfn = access_aa64_tid2,
.writefn = csselr_write, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
offsetof(CPUARMState, cp15.csselr_ns) } },
/* Auxiliary ID register: this actually has an IMPDEF value but for now
* just RAZ for all cores:
*/
{ .name = "AIDR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid1,
.resetvalue = 0 },
/* Auxiliary fault status registers: these also are IMPDEF, and we
* choose to RAZ/WI for all cores.
*/
{ .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_CONST, .resetvalue = 0 },
/* MAIR can just read-as-written because we don't implement caches
* and so don't need to care about memory attributes.
*/
{ .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
.resetvalue = 0 },
{ .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
.resetvalue = 0 },
/* For non-long-descriptor page tables these are PRRR and NMRR;
* regardless they still act as reads-as-written for QEMU.
*/
/* MAIR0/1 are defined separately from their 64-bit counterpart which
* allows them to assign the correct fieldoffset based on the endianness
* handled in the field definitions.
*/
{ .name = "MAIR0", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
offsetof(CPUARMState, cp15.mair0_ns) },
.resetfn = arm_cp_reset_ignore },
{ .name = "MAIR1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
offsetof(CPUARMState, cp15.mair1_ns) },
.resetfn = arm_cp_reset_ignore },
{ .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
/* 32 bit ITLB invalidates */
{ .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiall_write },
{ .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_write },
{ .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiasid_write },
/* 32 bit DTLB invalidates */
{ .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiall_write },
{ .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_write },
{ .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiasid_write },
/* 32 bit TLB invalidates */
{ .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiall_write },
{ .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_write },
{ .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiasid_write },
{ .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimvaa_write },
REGINFO_SENTINEL
};
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
/* 32 bit TLB invalidates, Inner Shareable */
{ .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiall_is_write },
{ .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_is_write },
{ .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbiasid_is_write },
{ .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimvaa_is_write },
REGINFO_SENTINEL
};
static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
/* PMOVSSET is not implemented in v7 before v7ve */
{ .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsset_write,
.raw_writefn = raw_write },
{ .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsset_write,
.raw_writefn = raw_write },
REGINFO_SENTINEL
};
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= 1;
env->teecr = value;
}
static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
/*
* HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
* at all, so we don't need to check whether we're v8A.
*/
if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
(env->cp15.hstr_el2 & HSTR_TTEE)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 0 && (env->teecr & 1)) {
return CP_ACCESS_TRAP;
}
return teecr_access(env, ri, isread);
}
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
{ .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
.resetvalue = 0,
.writefn = teecr_write, .accessfn = teecr_access },
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
.accessfn = teehbr_access, .resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo v6k_cp_reginfo[] = {
{ .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
.access = PL0_RW,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
{ .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL0_RW,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
.resetfn = arm_cp_reset_ignore },
{ .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
.access = PL0_R|PL1_W,
.fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
.resetvalue = 0},
{ .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL0_R|PL1_W,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
.resetfn = arm_cp_reset_ignore },
{ .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
{ .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
.access = PL1_RW,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
.resetvalue = 0 },
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
/* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
* Writable only at the highest implemented exception level.
*/
int el = arm_current_el(env);
uint64_t hcr;
uint32_t cntkctl;
switch (el) {
case 0:
hcr = arm_hcr_el2_eff(env);
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
cntkctl = env->cp15.cnthctl_el2;
} else {
cntkctl = env->cp15.c14_cntkctl;
}
if (!extract32(cntkctl, 0, 2)) {
return CP_ACCESS_TRAP;
}
break;
case 1:
if (!isread && ri->state == ARM_CP_STATE_AA32 &&
arm_is_secure_below_el3(env)) {
/* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
break;
case 2:
case 3:
break;
}
if (!isread && el < arm_highest_el(env)) {
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
bool isread)
{
unsigned int cur_el = arm_current_el(env);
bool has_el2 = arm_is_el2_enabled(env);
uint64_t hcr = arm_hcr_el2_eff(env);
switch (cur_el) {
case 0:
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
}
/* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
return CP_ACCESS_TRAP;
}
/* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
if (hcr & HCR_E2H) {
if (timeridx == GTIMER_PHYS &&
!extract32(env->cp15.cnthctl_el2, 10, 1)) {
return CP_ACCESS_TRAP_EL2;
}
} else {
/* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
if (has_el2 && timeridx == GTIMER_PHYS &&
!extract32(env->cp15.cnthctl_el2, 1, 1)) {
return CP_ACCESS_TRAP_EL2;
}
}
break;
case 1:
/* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
if (has_el2 && timeridx == GTIMER_PHYS &&
(hcr & HCR_E2H
? !extract32(env->cp15.cnthctl_el2, 10, 1)
: !extract32(env->cp15.cnthctl_el2, 0, 1))) {
return CP_ACCESS_TRAP_EL2;
}
break;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
bool isread)
{
unsigned int cur_el = arm_current_el(env);
bool has_el2 = arm_is_el2_enabled(env);
uint64_t hcr = arm_hcr_el2_eff(env);
switch (cur_el) {
case 0:
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
}
/*
* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
* EL0 if EL0[PV]TEN is zero.
*/
if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
return CP_ACCESS_TRAP;
}
/* fall through */
case 1:
if (has_el2 && timeridx == GTIMER_PHYS) {
if (hcr & HCR_E2H) {
/* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
return CP_ACCESS_TRAP_EL2;
}
} else {
/* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
return CP_ACCESS_TRAP_EL2;
}
}
}
break;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_pct_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
return gt_counter_access(env, GTIMER_PHYS, isread);
}
static CPAccessResult gt_vct_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
return gt_counter_access(env, GTIMER_VIRT, isread);
}
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
return gt_timer_access(env, GTIMER_PHYS, isread);
}
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
return gt_timer_access(env, GTIMER_VIRT, isread);
}
static CPAccessResult gt_stimer_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* The AArch64 register view of the secure physical timer is
* always accessible from EL3, and configurably accessible from
* Secure EL1.
*/
switch (arm_current_el(env)) {
case 1:
if (!arm_is_secure(env)) {
return CP_ACCESS_TRAP;
}
if (!(env->cp15.scr_el3 & SCR_ST)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
case 0:
case 2:
return CP_ACCESS_TRAP;
case 3:
return CP_ACCESS_OK;
default:
g_assert_not_reached();
}
}
static uint64_t gt_get_countervalue(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
}
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
if (gt->ctl & 1) {
/* Timer enabled: calculate and set current ISTATUS, irq, and
* reset timer to when ISTATUS next has to change
*/
uint64_t offset = timeridx == GTIMER_VIRT ?
cpu->env.cp15.cntvoff_el2 : 0;
uint64_t count = gt_get_countervalue(&cpu->env);
/* Note that this must be unsigned 64 bit arithmetic: */
int istatus = count - offset >= gt->cval;
uint64_t nexttick;
int irqstate;
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
irqstate = (istatus && !(gt->ctl & 2));
qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
if (istatus) {
/* Next transition is when count rolls back over to zero */
nexttick = UINT64_MAX;
} else {
/* Next transition is when we hit cval */
nexttick = gt->cval + offset;
}
/* Note that the desired next expiry time might be beyond the
* signed-64-bit range of a QEMUTimer -- in this case we just
* set the timer for as far in the future as possible. When the
* timer expires we will reset the timer for any remaining period.
*/
if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
} else {
timer_mod(cpu->gt_timer[timeridx], nexttick);
}
trace_arm_gt_recalc(timeridx, irqstate, nexttick);
} else {
/* Timer disabled: ISTATUS and timer output always clear */
gt->ctl &= ~4;
qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
timer_del(cpu->gt_timer[timeridx]);
trace_arm_gt_recalc_disabled(timeridx);
}
}
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx)
{
ARMCPU *cpu = env_archcpu(env);
timer_del(cpu->gt_timer[timeridx]);
}
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_get_countervalue(env);
}
static uint64_t gt_virt_cnt_offset(CPUARMState *env)
{
uint64_t hcr;
switch (arm_current_el(env)) {
case 2:
hcr = arm_hcr_el2_eff(env);
if (hcr & HCR_E2H) {
return 0;
}
break;
case 0:
hcr = arm_hcr_el2_eff(env);
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
return 0;
}
break;
}
return env->cp15.cntvoff_el2;
}
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
}
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx,
uint64_t value)
{
trace_arm_gt_cval_write(timeridx, value);
env->cp15.c14_timer[timeridx].cval = value;
gt_recalc_timer(env_archcpu(env), timeridx);
}
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx)
{
uint64_t offset = 0;
switch (timeridx) {
case GTIMER_VIRT:
case GTIMER_HYPVIRT:
offset = gt_virt_cnt_offset(env);
break;
}
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
(gt_get_countervalue(env) - offset));
}
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx,
uint64_t value)
{
uint64_t offset = 0;
switch (timeridx) {
case GTIMER_VIRT:
case GTIMER_HYPVIRT:
offset = gt_virt_cnt_offset(env);
break;
}
trace_arm_gt_tval_write(timeridx, value);
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
sextract64(value, 0, 32);
gt_recalc_timer(env_archcpu(env), timeridx);
}
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
trace_arm_gt_ctl_write(timeridx, value);
env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
if ((oldval ^ value) & 1) {
/* Enable toggled */
gt_recalc_timer(cpu, timeridx);
} else if ((oldval ^ value) & 2) {
/* IMASK toggled: don't need to recalculate,
* just set the interrupt line based on ISTATUS
*/
int irqstate = (oldval & 4) && !(value & 2);
trace_arm_gt_imask_toggle(timeridx, irqstate);
qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
}
}
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
gt_timer_reset(env, ri, GTIMER_PHYS);
}
static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_cval_write(env, ri, GTIMER_PHYS, value);
}
static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_PHYS);
}
static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_PHYS, value);
}
static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_ctl_write(env, ri, GTIMER_PHYS, value);
}
static int gt_phys_redir_timeridx(CPUARMState *env)
{
switch (arm_mmu_idx(env)) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_SE20_0:
case ARMMMUIdx_SE20_2:
case ARMMMUIdx_SE20_2_PAN:
return GTIMER_HYP;
default:
return GTIMER_PHYS;
}
}
static int gt_virt_redir_timeridx(CPUARMState *env)
{
switch (arm_mmu_idx(env)) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_SE20_0:
case ARMMMUIdx_SE20_2:
case ARMMMUIdx_SE20_2_PAN:
return GTIMER_HYPVIRT;
default:
return GTIMER_VIRT;
}
}
static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_phys_redir_timeridx(env);
return env->cp15.c14_timer[timeridx].cval;
}
static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_phys_redir_timeridx(env);
gt_cval_write(env, ri, timeridx, value);
}
static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_phys_redir_timeridx(env);
return gt_tval_read(env, ri, timeridx);
}
static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_phys_redir_timeridx(env);
gt_tval_write(env, ri, timeridx, value);
}
static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_phys_redir_timeridx(env);
return env->cp15.c14_timer[timeridx].ctl;
}
static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_phys_redir_timeridx(env);
gt_ctl_write(env, ri, timeridx, value);
}
static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
gt_timer_reset(env, ri, GTIMER_VIRT);
}
static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_cval_write(env, ri, GTIMER_VIRT, value);
}
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_VIRT);
}
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_VIRT, value);
}
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_ctl_write(env, ri, GTIMER_VIRT, value);
}
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
trace_arm_gt_cntvoff_write(value);
raw_write(env, ri, value);
gt_recalc_timer(cpu, GTIMER_VIRT);
}
static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_virt_redir_timeridx(env);
return env->cp15.c14_timer[timeridx].cval;
}
static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_virt_redir_timeridx(env);
gt_cval_write(env, ri, timeridx, value);
}
static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_virt_redir_timeridx(env);
return gt_tval_read(env, ri, timeridx);
}
static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_virt_redir_timeridx(env);
gt_tval_write(env, ri, timeridx, value);
}
static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
const ARMCPRegInfo *ri)
{
int timeridx = gt_virt_redir_timeridx(env);
return env->cp15.c14_timer[timeridx].ctl;
}
static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = gt_virt_redir_timeridx(env);
gt_ctl_write(env, ri, timeridx, value);
}
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
gt_timer_reset(env, ri, GTIMER_HYP);
}
static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_cval_write(env, ri, GTIMER_HYP, value);
}
static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_HYP);
}
static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_HYP, value);
}
static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_ctl_write(env, ri, GTIMER_HYP, value);
}
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
gt_timer_reset(env, ri, GTIMER_SEC);
}
static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_cval_write(env, ri, GTIMER_SEC, value);
}
static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_SEC);
}
static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_SEC, value);
}
static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_ctl_write(env, ri, GTIMER_SEC, value);
}
static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
gt_timer_reset(env, ri, GTIMER_HYPVIRT);
}
static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
}
static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_HYPVIRT);
}
static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
}
static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
}
void arm_gt_ptimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_PHYS);
}
void arm_gt_vtimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_VIRT);
}
void arm_gt_htimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_HYP);
}
void arm_gt_stimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_SEC);
}
void arm_gt_hvtimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_HYPVIRT);
}
static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
{
ARMCPU *cpu = env_archcpu(env);
cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
/* Note that CNTFRQ is purely reads-as-written for the benefit
* of software; writing it doesn't actually change the timer frequency.
* Our reset value matches the fixed frequency we implement the timer at.
*/
{ .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
.type = ARM_CP_ALIAS,
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
},
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
.resetfn = arm_gt_cntfrq_reset,
},
/* overall control: mostly access permissions */
{ .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
.resetvalue = 0,
},
/* per-timer control */
{ .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
.secure = ARM_CP_SECSTATE_NS,
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
.accessfn = gt_ptimer_access,
.fieldoffset = offsetoflow32(CPUARMState,
cp15.c14_timer[GTIMER_PHYS].ctl),
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTP_CTL_S",
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
.secure = ARM_CP_SECSTATE_S,
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
.accessfn = gt_ptimer_access,
.fieldoffset = offsetoflow32(CPUARMState,
cp15.c14_timer[GTIMER_SEC].ctl),
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
.type = ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_ptimer_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
.resetvalue = 0,
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
.accessfn = gt_vtimer_access,
.fieldoffset = offsetoflow32(CPUARMState,
cp15.c14_timer[GTIMER_VIRT].ctl),
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
.type = ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_vtimer_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
.resetvalue = 0,
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
},
/* TimerValue views: a 32 bit downcounting view of the underlying state */
{ .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
.secure = ARM_CP_SECSTATE_NS,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_ptimer_access,
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
},
{ .name = "CNTP_TVAL_S",
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
.secure = ARM_CP_SECSTATE_S,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_ptimer_access,
.readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
},
{ .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
},
{ .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_vtimer_access,
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
},
{ .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
.accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
},
/* The counter itself */
{ .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = gt_pct_access,
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
},
{ .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
},
{ .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = gt_vct_access,
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
},
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
},
/* Comparison value, indicating when the timer goes off */
{ .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
.secure = ARM_CP_SECSTATE_NS,
.access = PL0_RW,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
.accessfn = gt_ptimer_access,
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
},
{ .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
.secure = ARM_CP_SECSTATE_S,
.access = PL0_RW,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
.accessfn = gt_ptimer_access,
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
},
{ .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
.access = PL0_RW,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
.resetvalue = 0, .accessfn = gt_ptimer_access,
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
.access = PL0_RW,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
.accessfn = gt_vtimer_access,
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
.access = PL0_RW,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
.resetvalue = 0, .accessfn = gt_vtimer_access,
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
},
/* Secure timer -- this is actually restricted to only EL3
* and configurably Secure-EL1 via the accessfn.
*/
{ .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
.accessfn = gt_stimer_access,
.readfn = gt_sec_tval_read,
.writefn = gt_sec_tval_write,
.resetfn = gt_sec_timer_reset,
},
{ .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
.type = ARM_CP_IO, .access = PL1_RW,
.accessfn = gt_stimer_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
.resetvalue = 0,
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
.type = ARM_CP_IO, .access = PL1_RW,
.accessfn = gt_stimer_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
},
REGINFO_SENTINEL
};
static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
#else
/* In user-mode most of the generic timer registers are inaccessible
* however modern kernels (4.12+) allow access to cntvct_el0
*/
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
/* Currently we have no support for QEMUTimer in linux-user so we
* can't call gt_get_countervalue(env), instead we directly
* call the lower level functions.
*/
return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
.type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
.resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
},
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
.readfn = gt_virt_cnt_read,
},
REGINFO_SENTINEL
};
#endif
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
if (arm_feature(env, ARM_FEATURE_LPAE)) {
raw_write(env, ri, value);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
raw_write(env, ri, value & 0xfffff6ff);
} else {
raw_write(env, ri, value & 0xfffff1ff);
}
}
#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (ri->opc2 & 4) {
/* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
* Secure EL1 (which can only happen if EL3 is AArch64).
* They are simply UNDEF if executed from NS EL1.
* They function normally from EL2 or EL3.
*/
if (arm_current_el(env) == 1) {
if (arm_is_secure_below_el3(env)) {
if (env->cp15.scr_el3 & SCR_EEL2) {
return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
}
return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
}
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
}
return CP_ACCESS_OK;
}
#ifdef CONFIG_TCG
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
MMUAccessType access_type, ARMMMUIdx mmu_idx)
{
hwaddr phys_addr;
target_ulong page_size;
int prot;
bool ret;
uint64_t par64;
bool format64 = false;
MemTxAttrs attrs = {};
ARMMMUFaultInfo fi = {};
ARMCacheAttrs cacheattrs = {};
ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
&prot, &page_size, &fi, &cacheattrs);
if (ret) {
/*
* Some kinds of translation fault must cause exceptions rather
* than being reported in the PAR.
*/
int current_el = arm_current_el(env);
int target_el;
uint32_t syn, fsr, fsc;
bool take_exc = false;
if (fi.s1ptw && current_el == 1
&& arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
/*
* Synchronous stage 2 fault on an access made as part of the
* translation table walk for AT S1E0* or AT S1E1* insn
* executed from NS EL1. If this is a synchronous external abort
* and SCR_EL3.EA == 1, then we take a synchronous external abort
* to EL3. Otherwise the fault is taken as an exception to EL2,
* and HPFAR_EL2 holds the faulting IPA.
*/
if (fi.type == ARMFault_SyncExternalOnWalk &&
(env->cp15.scr_el3 & SCR_EA)) {
target_el = 3;
} else {
env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
if (arm_is_secure_below_el3(env) && fi.s1ns) {
env->cp15.hpfar_el2 |= HPFAR_NS;
}
target_el = 2;
}
take_exc = true;
} else if (fi.type == ARMFault_SyncExternalOnWalk) {
/*
* Synchronous external aborts during a translation table walk
* are taken as Data Abort exceptions.
*/
if (fi.stage2) {
if (current_el == 3) {
target_el = 3;
} else {
target_el = 2;
}
} else {
target_el = exception_target_el(env);
}
take_exc = true;
}
if (take_exc) {
/* Construct FSR and FSC using same logic as arm_deliver_fault() */
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
arm_s1_regime_using_lpae_format(env, mmu_idx)) {
fsr = arm_fi_to_lfsc(&fi);
fsc = extract32(fsr, 0, 6);
} else {
fsr = arm_fi_to_sfsc(&fi);
fsc = 0x3f;
}
/*
* Report exception with ESR indicating a fault due to a
* translation table walk for a cache maintenance instruction.
*/
syn = syn_data_abort_no_iss(current_el == target_el, 0,
fi.ea, 1, fi.s1ptw, 1, fsc);
env->exception.vaddress = value;
env->exception.fsr = fsr;
raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
}
}
if (is_a64(env)) {
format64 = true;
} else if (arm_feature(env, ARM_FEATURE_LPAE)) {
/*
* ATS1Cxx:
* * TTBCR.EAE determines whether the result is returned using the
* 32-bit or the 64-bit PAR format
* * Instructions executed in Hyp mode always use the 64bit format
*
* ATS1S2NSOxx uses the 64bit format if any of the following is true:
* * The Non-secure TTBCR.EAE bit is set to 1
* * The implementation includes EL2, and the value of HCR.VM is 1
*
* (Note that HCR.DC makes HCR.VM behave as if it is 1.)
*
* ATS1Hx always uses the 64bit format.
*/
format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
if (arm_feature(env, ARM_FEATURE_EL2)) {
if (mmu_idx == ARMMMUIdx_E10_0 ||
mmu_idx == ARMMMUIdx_E10_1 ||
mmu_idx == ARMMMUIdx_E10_1_PAN) {
format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
} else {
format64 |= arm_current_el(env) == 2;
}
}
}
if (format64) {
/* Create a 64-bit PAR */
par64 = (1 << 11); /* LPAE bit always set */
if (!ret) {
par64 |= phys_addr & ~0xfffULL;
if (!attrs.secure) {
par64 |= (1 << 9); /* NS */
}
par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
par64 |= cacheattrs.shareability << 7; /* SH */
} else {
uint32_t fsr = arm_fi_to_lfsc(&fi);
par64 |= 1; /* F */
par64 |= (fsr & 0x3f) << 1; /* FS */
if (fi.stage2) {
par64 |= (1 << 9); /* S */
}
if (fi.s1ptw) {
par64 |= (1 << 8); /* PTW */
}
}
} else {
/* fsr is a DFSR/IFSR value for the short descriptor
* translation table format (with WnR always clear).
* Convert it to a 32-bit PAR.
*/
if (!ret) {
/* We do not set any attribute bits in the PAR */
if (page_size == (1 << 24)
&& arm_feature(env, ARM_FEATURE_V7)) {
par64 = (phys_addr & 0xff000000) | (1 << 1);
} else {
par64 = phys_addr & 0xfffff000;
}
if (!attrs.secure) {
par64 |= (1 << 9); /* NS */
}
} else {
uint32_t fsr = arm_fi_to_sfsc(&fi);
par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
((fsr & 0xf) << 1) | 1;
}
}
return par64;
}
#endif /* CONFIG_TCG */
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
uint64_t par64;
ARMMMUIdx mmu_idx;
int el = arm_current_el(env);
bool secure = arm_is_secure_below_el3(env);
switch (ri->opc2 & 6) {
case 0:
/* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
switch (el) {
case 3:
mmu_idx = ARMMMUIdx_SE3;
break;
case 2:
g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
/* fall through */
case 1:
if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
: ARMMMUIdx_Stage1_E1_PAN);
} else {
mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
}
break;
default:
g_assert_not_reached();
}
break;
case 2:
/* stage 1 current state PL0: ATS1CUR, ATS1CUW */
switch (el) {
case 3:
mmu_idx = ARMMMUIdx_SE10_0;
break;
case 2:
g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
mmu_idx = ARMMMUIdx_Stage1_E0;
break;
case 1:
mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
break;
default:
g_assert_not_reached();
}
break;
case 4:
/* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
mmu_idx = ARMMMUIdx_E10_1;
break;
case 6:
/* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
mmu_idx = ARMMMUIdx_E10_0;
break;
default:
g_assert_not_reached();
}
par64 = do_ats_write(env, value, access_type, mmu_idx);
A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
uint64_t par64;
par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 3 &&
!(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
ARMMMUIdx mmu_idx;
int secure = arm_is_secure_below_el3(env);
switch (ri->opc2 & 6) {
case 0:
switch (ri->opc1) {
case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
: ARMMMUIdx_Stage1_E1_PAN);
} else {
mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
}
break;
case 4: /* AT S1E2R, AT S1E2W */
mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
break;
case 6: /* AT S1E3R, AT S1E3W */
mmu_idx = ARMMMUIdx_SE3;
break;
default:
g_assert_not_reached();
}
break;
case 2: /* AT S1E0R, AT S1E0W */
mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
break;
case 4: /* AT S12E1R, AT S12E1W */
mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
break;
case 6: /* AT S12E0R, AT S12E0W */
mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
break;
default:
g_assert_not_reached();
}
env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
#endif
static const ARMCPRegInfo vapa_cp_reginfo[] = {
{ .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
offsetoflow32(CPUARMState, cp15.par_ns) },
.writefn = par_write },
#ifndef CONFIG_USER_ONLY
/* This underdecoding is safe because the reginfo is NO_RAW. */
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_W, .accessfn = ats_access,
.writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
#endif
REGINFO_SENTINEL
};
/* Return basic MPU access permission bits. */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val >> i) & mask;
mask <<= 2;
}
return ret;
}
/* Pad basic MPU access permission bits to extended format. */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val & mask) << i;
mask <<= 2;
}
return ret;
}
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
}
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
}
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
if (!u32p) {
return 0;
}
u32p += env->pmsav7.rnr[M_REG_NS];
return *u32p;
}
static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
if (!u32p) {
return;
}
u32p += env->pmsav7.rnr[M_REG_NS];
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
*u32p = value;
}
static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
uint32_t nrgs = cpu->pmsav7_dregion;
if (value >= nrgs) {
qemu_log_mask(LOG_GUEST_ERROR,
"PMSAv7 RGNR write >= # supported regions, %" PRIu32
" > %" PRIu32 "\n", (uint32_t)value, nrgs);
return;
}
raw_write(env, ri, value);
}
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
/* Reset for all these registers is handled in arm_cpu_reset(),
* because the PMSAv7 is also used by M-profile CPUs, which do
* not register cpregs but still need the state to be reset.
*/
{ .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_NO_RAW,
.fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
.readfn = pmsav7_read, .writefn = pmsav7_write,
.resetfn = arm_cp_reset_ignore },
{ .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_NO_RAW,
.fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
.readfn = pmsav7_read, .writefn = pmsav7_write,
.resetfn = arm_cp_reset_ignore },
{ .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
.access = PL1_RW, .type = ARM_CP_NO_RAW,
.fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
.readfn = pmsav7_read, .writefn = pmsav7_write,
.resetfn = arm_cp_reset_ignore },
{ .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
.writefn = pmsav7_rgnr_write,
.resetfn = arm_cp_reset_ignore },
REGINFO_SENTINEL
};
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
.resetvalue = 0, },
{ .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
.resetvalue = 0, },
{ .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
{ .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
/* Protection region base and size registers */
{ .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
{ .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
{ .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
{ .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
{ .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
{ .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
{ .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
{ .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
REGINFO_SENTINEL
};
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
TCR *tcr = raw_ptr(env, ri);
int maskshift = extract32(value, 0, 3);
if (!arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
/* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
* using Long-desciptor translation table format */
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* In an implementation that includes the Security Extensions
* TTBCR has additional fields PD0 [4] and PD1 [5] for
* Short-descriptor translation table format.
*/
value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
} else {
value &= TTBCR_N;
}
}
/* Update the masks corresponding to the TCR bank being written
* Note that we always calculate mask and base_mask, but
* they are only used for short-descriptor tables (ie if EAE is 0);
* for long-descriptor tables the TCR fields are used differently
* and the mask and base_mask values are meaningless.
*/
tcr->raw_tcr = value;
tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
}
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
TCR *tcr = raw_ptr(env, ri);
if (arm_feature(env, ARM_FEATURE_LPAE)) {
/* With LPAE the TTBCR could result in a change of ASID
* via the TTBCR.A1 bit, so do a TLB flush.
*/
tlb_flush(CPU(cpu));
}
/* Preserve the high half of TCR_EL1, set via TTBCR2. */
value = deposit64(tcr->raw_tcr, 0, 32, value);
vmsa_ttbcr_raw_write(env, ri, value);
}
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
TCR *tcr = raw_ptr(env, ri);
/* Reset both the TCR as well as the masks corresponding to the bank of
* the TCR being reset.
*/
tcr->raw_tcr = 0;
tcr->mask = 0;
tcr->base_mask = 0xffffc000u;
}
static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
TCR *tcr = raw_ptr(env, ri);
/* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
tlb_flush(CPU(cpu));
tcr->raw_tcr = value;
}
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* If the ASID changes (with a 64-bit write), we must flush the TLB. */
if (cpreg_field_is_64bit(ri) &&
extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
ARMCPU *cpu = env_archcpu(env);
tlb_flush(CPU(cpu));
}
raw_write(env, ri, value);
}
static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* If we are running with E2&0 regime, then an ASID is active.
* Flush if that might be changing. Note we're not checking
* TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
* holds the active ASID, only checking the field that might.
*/
if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
(arm_hcr_el2_eff(env) & HCR_E2H)) {
uint16_t mask = ARMMMUIdxBit_E20_2 |
ARMMMUIdxBit_E20_2_PAN |
ARMMMUIdxBit_E20_0;
if (arm_is_secure_below_el3(env)) {
mask >>= ARM_MMU_IDX_A_NS;
}
tlb_flush_by_mmuidx(env_cpu(env), mask);
}
raw_write(env, ri, value);
}
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
CPUState *cs = CPU(cpu);
/*
* A change in VMID to the stage2 page table (Stage2) invalidates
* the combined stage 1&2 tlbs (EL10_1 and EL10_0).
*/
if (raw_read(env, ri) != value) {
uint16_t mask = ARMMMUIdxBit_E10_1 |
ARMMMUIdxBit_E10_1_PAN |
ARMMMUIdxBit_E10_0;
if (arm_is_secure_below_el3(env)) {
mask >>= ARM_MMU_IDX_A_NS;
}
tlb_flush_by_mmuidx(cs, mask);
raw_write(env, ri, value);
}
}
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
{ .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
{ .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
offsetof(CPUARMState, cp15.dfar_ns) } },
{ .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
.resetvalue = 0, },
REGINFO_SENTINEL
};
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
{ .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
{ .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.writefn = vmsa_ttbr_write, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
offsetof(CPUARMState, cp15.ttbr0_ns) } },
{ .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.writefn = vmsa_ttbr_write, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
offsetof(CPUARMState, cp15.ttbr1_ns) } },
{ .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.writefn = vmsa_tcr_el12_write,
.resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
.raw_writefn = vmsa_ttbcr_raw_write,
/* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
offsetof(CPUARMState, cp15.tcr_el[1])} },
REGINFO_SENTINEL
};
/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
* qemu tlbs nor adjusting cached masks.
*/
static const ARMCPRegInfo ttbcr2_reginfo = {
.name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_ALIAS,
.bank_fieldoffsets = {
offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
},
};
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_ticonfig = value & 0xe7;
/* The OS_TYPE bit in this register changes the reported CPUID! */
env->cp15.c0_cpuid = (value & (1 << 5)) ?
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_threadid = value & 0xffff;
}
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Wait-for-interrupt (deprecated) */
cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
}
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* On OMAP there are registers indicating the max/min index of dcache lines
* containing a dirty line; cache flush operations have to reset these.
*/
env->cp15.c15_i_max = 0x000;
env->cp15.c15_i_min = 0xff0;
}
static const ARMCPRegInfo omap_cp_reginfo[] = {
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
.fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
.resetvalue = 0, },
{ .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
.writefn = omap_ticonfig_write },
{ .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
{ .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0xff0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
{ .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
.writefn = omap_threadid_write },
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
.type = ARM_CP_NO_RAW,
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
/* TODO: Peripheral port remap register:
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
* when MMU is off.
*/
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
.writefn = omap_cachemaint_write },
{ .name = "C9", .cp = 15, .crn = 9,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
.type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_cpar = value & 0x3fff;
}
static const ARMCPRegInfo xscale_cp_reginfo[] = {
{ .name = "XSCALE_CPAR",
.cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
.writefn = xscale_cpar_write, },
{ .name = "XSCALE_AUXCR",
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
.resetvalue = 0, },
/* XScale specific cache-lockdown: since we have no cache we NOP these
* and hope the guest does not really rely on cache behaviour.
*/
{ .name = "XSCALE_LOCK_ICACHE_LINE",
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NOP },
{ .name = "XSCALE_UNLOCK_ICACHE",
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NOP },
{ .name = "XSCALE_DCACHE_LOCK",
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "XSCALE_UNLOCK_DCACHE",
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NOP },
REGINFO_SENTINEL
};
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
/* RAZ/WI the whole crn=15 space, when we don't have a more specific
* implementation of this implementation-defined space.
* Ideally this should eventually disappear in favour of actually
* implementing the correct behaviour for all cores.
*/
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW,
.type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
.resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
/* Cache status: RAZ because we have no cache so it's always clean */
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
/* We never have a a block transfer operation in progress */
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = 0 },
/* The cache ops themselves: these all NOP for QEMU */
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
/* The cache test-and-clean instructions always return (1 << 30)
* to indicate that there are no dirty cache lines.
*/
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = (1 << 30) },
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = (1 << 30) },
REGINFO_SENTINEL
};
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
/* Ignore ReadBuffer accesses */
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW, .resetvalue = 0,
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
REGINFO_SENTINEL
};
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
unsigned int cur_el = arm_current_el(env);
if (arm_is_el2_enabled(env) && cur_el == 1) {
return env->cp15.vpidr_el2;
}
return raw_read(env, ri);
}
static uint64_t mpidr_read_val(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
uint64_t mpidr = cpu->mp_affinity;
if (arm_feature(env, ARM_FEATURE_V7MP)) {
mpidr |= (1U << 31);
/* Cores which are uniprocessor (non-coherent)
* but still implement the MP extensions set
* bit 30. (For instance, Cortex-R5).
*/
if (cpu->mp_is_up) {
mpidr |= (1u << 30);
}
}
return mpidr;
}
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
unsigned int cur_el = arm_current_el(env);
if (arm_is_el2_enabled(env) && cur_el == 1) {
return env->cp15.vmpidr_el2;
}
return mpidr_read_val(env);
}
static const ARMCPRegInfo lpae_cp_reginfo[] = {
/* NOP AMAIR0/1 */
{ .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_CONST, .resetvalue = 0 },
/* AMAIR1 is mapped to AMAIR_EL1[63:32] */
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
.access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
offsetof(CPUARMState, cp15.par_ns)} },
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
offsetof(CPUARMState, cp15.ttbr0_ns) },
.writefn = vmsa_ttbr_write, },
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
offsetof(CPUARMState, cp15.ttbr1_ns) },
.writefn = vmsa_ttbr_write, },
REGINFO_SENTINEL
};
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpcr(env);
}
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpcr(env, value);
}
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpsr(env);
}
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpsr(env, value);
}
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->daif = value & PSTATE_DAIF;
}
static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_PAN;
}
static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
}
static const ARMCPRegInfo pan_reginfo = {
.name = "PAN", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
.type = ARM_CP_NO_RAW, .access = PL1_RW,
.readfn = aa64_pan_read, .writefn = aa64_pan_write
};
static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_UAO;
}
static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
}
static const ARMCPRegInfo uao_reginfo = {
.name = "UAO", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
.type = ARM_CP_NO_RAW, .access = PL1_RW,
.readfn = aa64_uao_read, .writefn = aa64_uao_write
};
static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_DIT;
}
static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
}
static const ARMCPRegInfo dit_reginfo = {
.name = "DIT", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
.type = ARM_CP_NO_RAW, .access = PL0_RW,
.readfn = aa64_dit_read, .writefn = aa64_dit_write
};
static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_SSBS;
}
static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
}
static const ARMCPRegInfo ssbs_reginfo = {
.name = "SSBS", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
.type = ARM_CP_NO_RAW, .access = PL0_RW,
.readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
};
static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* Cache invalidate/clean to Point of Coherency or Persistence... */
switch (arm_current_el(env)) {
case 0:
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
return CP_ACCESS_TRAP;
}
/* fall through */
case 1:
/* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
if (arm_hcr_el2_eff(env) & HCR_TPCP) {
return CP_ACCESS_TRAP_EL2;
}
break;
}
return CP_ACCESS_OK;
}
static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
/* Cache invalidate/clean to Point of Unification... */
switch (arm_current_el(env)) {
case 0:
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
return CP_ACCESS_TRAP;
}
/* fall through */
case 1:
/* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
if (arm_hcr_el2_eff(env) & HCR_TPU) {
return CP_ACCESS_TRAP_EL2;
}
break;
}
return CP_ACCESS_OK;
}
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
* Page D4-1736 (DDI0487A.b)
*/
static int vae1_tlbmask(CPUARMState *env)
{
uint64_t hcr = arm_hcr_el2_eff(env);
uint16_t mask;
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
mask = ARMMMUIdxBit_E20_2 |
ARMMMUIdxBit_E20_2_PAN |
ARMMMUIdxBit_E20_0;
} else {
mask = ARMMMUIdxBit_E10_1 |
ARMMMUIdxBit_E10_1_PAN |
ARMMMUIdxBit_E10_0;
}
if (arm_is_secure_below_el3(env)) {
mask >>= ARM_MMU_IDX_A_NS;
}
return mask;
}
/* Return 56 if TBI is enabled, 64 otherwise. */
static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
uint64_t addr)
{
uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
int select = extract64(addr, 55, 1);
return (tbi >> select) & 1 ? 56 : 64;
}
static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
{
uint64_t hcr = arm_hcr_el2_eff(env);
ARMMMUIdx mmu_idx;
/* Only the regime of the mmu_idx below is significant. */
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
mmu_idx = ARMMMUIdx_E20_0;
} else {
mmu_idx = ARMMMUIdx_E10_0;
}
if (arm_is_secure_below_el3(env)) {
mmu_idx &= ~ARM_MMU_IDX_A_NS;
}
return tlbbits_for_regime(env, mmu_idx, addr);
}
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = vae1_tlbmask(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = vae1_tlbmask(env);
if (tlb_force_broadcast(env)) {
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
} else {
tlb_flush_by_mmuidx(cs, mask);
}
}
static int alle1_tlbmask(CPUARMState *env)
{
/*
* Note that the 'ALL' scope must invalidate both stage 1 and
* stage 2 translations, whereas most other scopes only invalidate
* stage 1 translations.
*/
if (arm_is_secure_below_el3(env)) {
return ARMMMUIdxBit_SE10_1 |
ARMMMUIdxBit_SE10_1_PAN |
ARMMMUIdxBit_SE10_0;
} else {
return ARMMMUIdxBit_E10_1 |
ARMMMUIdxBit_E10_1_PAN |
ARMMMUIdxBit_E10_0;
}
}
static int e2_tlbmask(CPUARMState *env)
{
if (arm_is_secure_below_el3(env)) {
return ARMMMUIdxBit_SE20_0 |
ARMMMUIdxBit_SE20_2 |
ARMMMUIdxBit_SE20_2_PAN |
ARMMMUIdxBit_SE2;
} else {
return ARMMMUIdxBit_E20_0 |
ARMMMUIdxBit_E20_2 |
ARMMMUIdxBit_E20_2_PAN |
ARMMMUIdxBit_E2;
}
}
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = alle1_tlbmask(env);
tlb_flush_by_mmuidx(cs, mask);
}
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = e2_tlbmask(env);
tlb_flush_by_mmuidx(cs, mask);
}
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
CPUState *cs = CPU(cpu);
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
}
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = alle1_tlbmask(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = e2_tlbmask(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
}
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by VA, EL2
* Currently handles both VAE2 and VALE2, since we don't support
* flush-last-level-only.
*/
CPUState *cs = env_cpu(env);
int mask = e2_tlbmask(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
}
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by VA, EL3
* Currently handles both VAE3 and VALE3, since we don't support
* flush-last-level-only.
*/
ARMCPU *cpu = env_archcpu(env);
CPUState *cs = CPU(cpu);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
}
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
int mask = vae1_tlbmask(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
int bits = vae1_tlbbits(env, pageaddr);
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
}
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by VA, EL1&0 (AArch64 version).
* Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
* since we don't support flush-for-specific-ASID-only or
* flush-last-level-only.
*/
CPUState *cs = env_cpu(env);
int mask = vae1_tlbmask(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
int bits = vae1_tlbbits(env, pageaddr);
if (tlb_force_broadcast(env)) {
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
} else {
tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
}
}
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
bool secure = arm_is_secure_below_el3(env);
int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
pageaddr);
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
}
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
ARMMMUIdxBit_SE3, bits);
}
#ifdef TARGET_AARCH64
static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
uint64_t value)
{
unsigned int page_shift;
unsigned int page_size_granule;
uint64_t num;
uint64_t scale;
uint64_t exponent;
uint64_t length;
num = extract64(value, 39, 4);
scale = extract64(value, 44, 2);
page_size_granule = extract64(value, 46, 2);
page_shift = page_size_granule * 2 + 12;
if (page_size_granule == 0) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
page_size_granule);
return 0;
}
exponent = (5 * scale) + 1;
length = (num + 1) << (exponent + page_shift);
return length;
}
static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
bool two_ranges)
{
/* TODO: ARMv8.7 FEAT_LPA2 */
uint64_t pageaddr;
if (two_ranges) {
pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
} else {
pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
}
return pageaddr;
}
static void do_rvae_write(CPUARMState *env, uint64_t value,
int idxmap, bool synced)
{
ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
bool two_ranges = regime_has_2_ranges(one_idx);
uint64_t baseaddr, length;
int bits;
baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
length = tlbi_aa64_range_get_length(env, value);
bits = tlbbits_for_regime(env, one_idx, baseaddr);
if (synced) {
tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
baseaddr,
length,
idxmap,
bits);
} else {
tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
length, idxmap, bits);
}
}
static void tlbi_aa64_rvae1_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, EL1&0.
* Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
* since we don't support flush-for-specific-ASID-only or
* flush-last-level-only.
*/
do_rvae_write(env, value, vae1_tlbmask(env),
tlb_force_broadcast(env));
}
static void tlbi_aa64_rvae1is_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, Inner/Outer Shareable EL1&0.
* Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
* RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
* flush-for-specific-ASID-only, flush-last-level-only or inner/outer
* shareable specific flushes.
*/
do_rvae_write(env, value, vae1_tlbmask(env), true);
}
static int vae2_tlbmask(CPUARMState *env)
{
return (arm_is_secure_below_el3(env)
? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
}
static void tlbi_aa64_rvae2_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, EL2.
* Currently handles all of RVAE2 and RVALE2,
* since we don't support flush-for-specific-ASID-only or
* flush-last-level-only.
*/
do_rvae_write(env, value, vae2_tlbmask(env),
tlb_force_broadcast(env));
}
static void tlbi_aa64_rvae2is_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, Inner/Outer Shareable, EL2.
* Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
* since we don't support flush-for-specific-ASID-only,
* flush-last-level-only or inner/outer shareable specific flushes.
*/
do_rvae_write(env, value, vae2_tlbmask(env), true);
}
static void tlbi_aa64_rvae3_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, EL3.
* Currently handles all of RVAE3 and RVALE3,
* since we don't support flush-for-specific-ASID-only or
* flush-last-level-only.
*/
do_rvae_write(env, value, ARMMMUIdxBit_SE3,
tlb_force_broadcast(env));
}
static void tlbi_aa64_rvae3is_write(CPUARMState *env,
const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* Invalidate by VA range, EL3, Inner/Outer Shareable.
* Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
* since we don't support flush-for-specific-ASID-only,
* flush-last-level-only or inner/outer specific flushes.
*/
do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
}
#endif
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int cur_el = arm_current_el(env);
if (cur_el < 2) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (cur_el == 0) {
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
return CP_ACCESS_TRAP_EL2;
}
} else {
if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
return CP_ACCESS_TRAP;
}
if (hcr & HCR_TDZ) {
return CP_ACCESS_TRAP_EL2;
}
}
} else if (hcr & HCR_TDZ) {
return CP_ACCESS_TRAP_EL2;
}
}
return CP_ACCESS_OK;
}
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
int dzp_bit = 1 << 4;
/* DZP indicates whether DC ZVA access is allowed */
if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
dzp_bit = 0;
}
return cpu->dcz_blocksize | dzp_bit;
}
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (!(env->pstate & PSTATE_SP)) {
/* Access to SP_EL0 is undefined if it's being used as
* the stack pointer.
*/
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_SP;
}
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
update_spsel(env, val);
}
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
/* M bit is RAZ/WI for PMSA with no MPU implemented */
value &= ~SCTLR_M;
}
/* ??? Lots of these bits are not implemented. */
if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
if (ri->opc1 == 6) { /* SCTLR_EL3 */
value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
} else {
value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
SCTLR_ATA0 | SCTLR_ATA);
}
}
if (raw_read(env, ri) == value) {
/* Skip the TLB flush if nothing actually changed; Linux likes
* to do a lot of pointless SCTLR writes.
*/
return;
}
raw_write(env, ri, value);
/* This may enable/disable the MMU, so do a TLB flush. */
tlb_flush(CPU(cpu));
if (ri->type & ARM_CP_SUPPRESS_TB_END) {
/*
* Normally we would always end the TB on an SCTLR write; see the
* comment in ARMCPRegInfo sctlr initialization below for why Xscale
* is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
* of hflags from the translator, so do it here.
*/
arm_rebuild_hflags(env);
}
}
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
return CP_ACCESS_TRAP_FP_EL2;
}
if (env->cp15.cptr_el[3] & CPTR_TFP) {
return CP_ACCESS_TRAP_FP_EL3;
}
return CP_ACCESS_OK;
}
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}
static const ARMCPRegInfo v8_cp_reginfo[] = {
/* Minimal set of EL0-visible registers. This will need to be expanded
* significantly for system emulation of AArch64 CPUs.
*/
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
.access = PL0_RW, .type = ARM_CP_NZCV },
{ .name = "DAIF", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
.type = ARM_CP_NO_RAW,
.access = PL0_RW, .accessfn = aa64_daif_access,
.fieldoffset = offsetof(CPUARMState, daif),
.writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
{ .name = "FPCR", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
.readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
.readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
.access = PL0_R, .type = ARM_CP_NO_RAW,
.readfn = aa64_dczid_read },
{ .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
/* Avoid overhead of an access check that always passes in user-mode */
.accessfn = aa64_zva_access,
#endif
},
{ .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
.access = PL1_R, .type = ARM_CP_CURRENTEL },
/* Cache ops: all NOPs since we don't emulate caches */
{ .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_pou_access },
{ .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_pou_access },
{ .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_pou_access },
{ .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
.access = PL1_W, .accessfn = aa64_cacheop_poc_access,
.type = ARM_CP_NOP },
{ .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
{ .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
{ .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_pou_access },
{ .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NOP,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
/* TLBI operations */
{ .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1is_write },
{ .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1is_write },
{ .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1is_write },
{ .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1is_write },
{ .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1is_write },
{ .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1is_write },
{ .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1_write },
{ .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1_write },
{ .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1_write },
{ .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1_write },
{ .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1_write },
{ .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae1_write },
{ .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1is_write },
{ .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1is_write },
{ .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1_write },
{ .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1is_write },
#ifndef CONFIG_USER_ONLY
/* 64 bit address translation operations */
{ .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
/* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
{ .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
.writefn = par_write },
#endif
/* TLB invalidate last level of translation table walk */
{ .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_is_write },
{ .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimvaa_is_write },
{ .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimva_write },
{ .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
.writefn = tlbimvaa_write },
{ .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbimva_hyp_write },
{ .name = "TLBIMVALHIS",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbimva_hyp_is_write },
{ .name = "TLBIIPAS2",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL2_W },
{ .name = "TLBIIPAS2IS",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL2_W },
{ .name = "TLBIIPAS2L",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL2_W },
{ .name = "TLBIIPAS2LIS",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL2_W },
/* 32 bit cache operations */
{ .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
{ .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
.type = ARM_CP_NOP, .access = PL1_W },
{ .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
{ .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
{ .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
.type = ARM_CP_NOP, .access = PL1_W },
{ .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
.type = ARM_CP_NOP, .access = PL1_W },
{ .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
{ .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
{ .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
{ .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
{ .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
/* MMU Domain access control / MPU write buffer control */
{ .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
.writefn = dacr_write, .raw_writefn = raw_write,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
{ .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, elr_el[1]) },
{ .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
/* We rely on the access checks not allowing the guest to write to the
* state field when SPSel indicates that it's being used as the stack
* pointer.
*/
{ .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
.access = PL1_RW, .accessfn = sp_el0_access,
.type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, sp_el[0]) },
{ .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, sp_el[1]) },
{ .name = "SPSel", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW,
.access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
{ .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
.type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
.access = PL2_RW, .accessfn = fpexc32_access },
{ .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
.access = PL2_RW, .resetvalue = 0,
.writefn = dacr_write, .raw_writefn = raw_write,
.fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
{ .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
.access = PL2_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
{ .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
{ .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
{ .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
{ .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
{ .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
.resetvalue = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
{ .name = "SDCR", .type = ARM_CP_ALIAS,
.cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
.writefn = sdcr_write,
.fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
REGINFO_SENTINEL
};
/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
.access = PL2_RW,
.readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
{ .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
.access = PL2_RW,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
.access = PL2_RW,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 6, .crm = 2,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
.access = PL2_RW, .accessfn = access_tda,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HIFAR", .state = ARM_CP_STATE_AA32,
.type = ARM_CP_CONST,
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
.access = PL2_RW, .resetvalue = 0 },
REGINFO_SENTINEL
};
/* Ditto, but for registers which exist in ARMv8 but not v7 */
static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
{ .name = "HCR2", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
.access = PL2_RW,
.type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
{
ARMCPU *cpu = env_archcpu(env);
if (arm_feature(env, ARM_FEATURE_V8)) {
valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
} else {
valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
valid_mask &= ~HCR_HCD;
} else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
/* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
* However, if we're using the SMC PSCI conduit then QEMU is
* effectively acting like EL3 firmware and so the guest at
* EL2 should retain the ability to prevent EL1 from being
* able to make SMC calls into the ersatz firmware, so in
* that case HCR.TSC should be read/write.
*/
valid_mask &= ~HCR_TSC;
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
if (cpu_isar_feature(aa64_vh, cpu)) {
valid_mask |= HCR_E2H;
}
if (cpu_isar_feature(aa64_lor, cpu)) {
valid_mask |= HCR_TLOR;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
valid_mask |= HCR_API | HCR_APK;
}
if (cpu_isar_feature(aa64_mte, cpu)) {
valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
}
}
/* Clear RES0 bits. */
value &= valid_mask;
/*
* These bits change the MMU setup:
* HCR_VM enables stage 2 translation
* HCR_PTW forbids certain page-table setups
* HCR_DC disables stage1 and enables stage2 translation
* HCR_DCT enables tagging on (disabled) stage1 translation
*/
if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
tlb_flush(CPU(cpu));
}
env->cp15.hcr_el2 = value;
/*
* Updates to VI and VF require us to update the status of
* virtual interrupts, which are the logical OR of these bits
* and the state of the input lines from the GIC. (This requires
* that we have the iothread lock, which is done by marking the
* reginfo structs as ARM_CP_IO.)
* Note that if a write to HCR pends a VIRQ or VFIQ it is never
* possible for it to be taken immediately, because VIRQ and
* VFIQ are masked unless running at EL0 or EL1, and HCR
* can only be written at EL2.
*/
g_assert(qemu_mutex_iothread_locked());
arm_cpu_update_virq(cpu);
arm_cpu_update_vfiq(cpu);
}
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
do_hcr_write(env, value, 0);
}
static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
value = deposit64(env->cp15.hcr_el2, 32, 32, value);
do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
}
static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Handle HCR write, i.e. write to low half of HCR_EL2 */
value = deposit64(env->cp15.hcr_el2, 0, 32, value);
do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
}
/*
* Return the effective value of HCR_EL2.
* Bits that are not included here:
* RW (read from SCR_EL3.RW as needed)
*/
uint64_t arm_hcr_el2_eff(CPUARMState *env)
{
uint64_t ret = env->cp15.hcr_el2;
if (!arm_is_el2_enabled(env)) {
/*
* "This register has no effect if EL2 is not enabled in the
* current Security state". This is ARMv8.4-SecEL2 speak for
* !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
*
* Prior to that, the language was "In an implementation that
* includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
* as if this field is 0 for all purposes other than a direct
* read or write access of HCR_EL2". With lots of enumeration
* on a per-field basis. In current QEMU, this is condition
* is arm_is_secure_below_el3.
*
* Since the v8.4 language applies to the entire register, and
* appears to be backward compatible, use that.
*/
return 0;
}
/*
* For a cpu that supports both aarch64 and aarch32, we can set bits
* in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
* Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
*/
if (!arm_el_is_aa64(env, 2)) {
uint64_t aa32_valid;
/*
* These bits are up-to-date as of ARMv8.6.
* For HCR, it's easiest to list just the 2 bits that are invalid.
* For HCR2, list those that are valid.
*/
aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
ret &= aa32_valid;
}
if (ret & HCR_TGE) {
/* These bits are up-to-date as of ARMv8.6. */
if (ret & HCR_E2H) {
ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
} else {
ret |= HCR_FMO | HCR_IMO | HCR_AMO;
}
ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
HCR_TLOR);
}
return ret;
}
static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/*
* For A-profile AArch32 EL3, if NSACR.CP10
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
*/
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
value &= ~(0x3 << 10);
value |= env->cp15.cptr_el[2] & (0x3 << 10);
}
env->cp15.cptr_el[2] = value;
}
static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/*
* For A-profile AArch32 EL3, if NSACR.CP10
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
*/
uint64_t value = env->cp15.cptr_el[2];
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
value |= 0x3 << 10;
}
return value;
}
static const ARMCPRegInfo el2_cp_reginfo[] = {
{ .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_IO,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
.writefn = hcr_write },
{ .name = "HCR", .state = ARM_CP_STATE_AA32,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
.writefn = hcr_writelow },
{ .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, elr_el[2]) },
{ .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
{ .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
{ .name = "HIFAR", .state = ARM_CP_STATE_AA32,
.type = ARM_CP_ALIAS,
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
.access = PL2_RW,
.fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
{ .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
.access = PL2_RW, .writefn = vbar_write,
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
.resetvalue = 0 },
{ .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, sp_el[2]) },
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
.readfn = cptr_el2_read, .writefn = cptr_el2_write },
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
.resetvalue = 0 },
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_ALIAS,
.fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
/* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
{ .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
.access = PL2_RW, .writefn = vmsa_tcr_el12_write,
/* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
{ .name = "VTCR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
.type = ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
.access = PL2_RW,
/* no .writefn needed as this can't cause an ASID change;
* no .raw_writefn or .resetfn needed as we never use mask/base_mask
*/
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 6, .crm = 2,
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
.writefn = vttbr_write },
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
.access = PL2_RW, .writefn = vttbr_write,
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
.access = PL2_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
.access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
{ .name = "TLBIALLNSNH",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbiall_nsnh_write },
{ .name = "TLBIALLNSNHIS",
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbiall_nsnh_is_write },
{ .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbiall_hyp_write },
{ .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbiall_hyp_is_write },
{ .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbimva_hyp_write },
{ .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbimva_hyp_is_write },
{ .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbi_aa64_alle2_write },
{ .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbi_aa64_vae2_write },
{ .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae2_write },
{ .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle2is_write },
{ .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
.type = ARM_CP_NO_RAW, .access = PL2_W,
.writefn = tlbi_aa64_vae2is_write },
{ .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae2is_write },
#ifndef CONFIG_USER_ONLY
/* Unlike the other EL2-related AT operations, these must
* UNDEF from EL3 if EL2 is not implemented, which is why we
* define them here rather than with the rest of the AT ops.
*/
{ .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
.access = PL2_W, .accessfn = at_s1e2_access,
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
{ .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
.access = PL2_W, .accessfn = at_s1e2_access,
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
/* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
* if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
* with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
* to behave as if SCR.NS was 1.
*/
{ .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
.access = PL2_W,
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
{ .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
.access = PL2_W,
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
/* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
* reset values as IMPDEF. We choose to reset to 3 to comply with
* both ARMv7 and ARMv8.
*/
.access = PL2_RW, .resetvalue = 3,
.fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
.writefn = gt_cntvoff_write,
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
.writefn = gt_cntvoff_write,
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
.type = ARM_CP_IO, .access = PL2_RW,
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
.resetfn = gt_hyp_timer_reset,
.readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
.type = ARM_CP_IO,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
.resetvalue = 0,
.writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
#endif
/* The only field of MDCR_EL2 that has a defined architectural reset value
* is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
*/
{ .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
.access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
.fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
{ .name = "HPFAR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
{ .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
{ .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
.cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
REGINFO_SENTINEL
};
static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
{ .name = "HCR2", .state = ARM_CP_STATE_AA32,
.type = ARM_CP_ALIAS | ARM_CP_IO,
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
.access = PL2_RW,
.fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
.writefn = hcr_writehigh },
REGINFO_SENTINEL
};
static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
return CP_ACCESS_OK;
}
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
{ .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
.access = PL2_RW, .accessfn = sel2_access,
.fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
{ .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
.access = PL2_RW, .accessfn = sel2_access,
.fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
REGINFO_SENTINEL
};
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
/* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
* At Secure EL1 it traps to EL3 or EL2.
*/
if (arm_current_el(env) == 3) {
return CP_ACCESS_OK;
}
if (arm_is_secure_below_el3(env)) {
if (env->cp15.scr_el3 & SCR_EEL2) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_TRAP_EL3;
}
/* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
if (isread) {
return CP_ACCESS_OK;
}
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
static const ARMCPRegInfo el3_cp_reginfo[] = {
{ .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
.resetfn = scr_reset, .writefn = scr_write },
{ .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
.fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
.writefn = scr_write },
{ .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
.access = PL3_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.sder) },
{ .name = "SDER",
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
.access = PL3_RW, .resetvalue = 0,
.fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
{ .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
.writefn = vbar_write, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
{ .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
.access = PL3_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
{ .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
.access = PL3_RW,
/* no .writefn needed as this can't cause an ASID change;
* we must provide a .raw_writefn and .resetfn because we handle
* reset and migration for the AArch32 TTBCR(S), which might be
* using mask and base_mask.
*/
.resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
{ .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
.access = PL3_RW,
.fieldoffset = offsetof(CPUARMState, elr_el[3]) },
{ .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
{ .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
{ .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
.access = PL3_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
{ .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
.access = PL3_RW, .writefn = vbar_write,
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
.resetvalue = 0 },
{ .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
{ .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
.access = PL3_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
{ .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle3is_write },
{ .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae3is_write },
{ .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae3is_write },
{ .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle3_write },
{ .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae3_write },
{ .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vae3_write },
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
/* Test if system register redirection is to occur in the current state. */
static bool redirect_for_e2h(CPUARMState *env)
{
return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
}
static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
CPReadFn *readfn;
if (redirect_for_e2h(env)) {
/* Switch to the saved EL2 version of the register. */
ri = ri->opaque;
readfn = ri->readfn;
} else {
readfn = ri->orig_readfn;
}
if (readfn == NULL) {
readfn = raw_read;
}
return readfn(env, ri);
}
static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPWriteFn *writefn;
if (redirect_for_e2h(env)) {
/* Switch to the saved EL2 version of the register. */
ri = ri->opaque;
writefn = ri->writefn;
} else {
writefn = ri->orig_writefn;
}
if (writefn == NULL) {
writefn = raw_write;
}
writefn(env, ri, value);
}
static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
{
struct E2HAlias {
uint32_t src_key, dst_key, new_key;
const char *src_name, *dst_name, *new_name;
bool (*feature)(const ARMISARegisters *id);
};
#define K(op0, op1, crn, crm, op2) \
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
static const struct E2HAlias aliases[] = {
{ K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
"SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
{ K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
"CPACR", "CPTR_EL2", "CPACR_EL12" },
{ K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
"TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
{ K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
"TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
{ K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
"TCR_EL1", "TCR_EL2", "TCR_EL12" },
{ K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
"SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
{ K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
"ELR_EL1", "ELR_EL2", "ELR_EL12" },
{ K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
"AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
{ K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
"AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
{ K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
"ESR_EL1", "ESR_EL2", "ESR_EL12" },
{ K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
"FAR_EL1", "FAR_EL2", "FAR_EL12" },
{ K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
"MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
{ K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
"AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
{ K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
"VBAR", "VBAR_EL2", "VBAR_EL12" },
{ K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
"CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
{ K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
"CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
/*
* Note that redirection of ZCR is mentioned in the description
* of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
* not in the summary table.
*/
{ K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
"ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
{ K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
"TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
/* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
/* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
};
#undef K
size_t i;
for (i = 0; i < ARRAY_SIZE(aliases); i++) {
const struct E2HAlias *a = &aliases[i];
ARMCPRegInfo *src_reg, *dst_reg;
if (a->feature && !a->feature(&cpu->isar)) {
continue;
}
src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
g_assert(src_reg != NULL);
g_assert(dst_reg != NULL);
/* Cross-compare names to detect typos in the keys. */
g_assert(strcmp(src_reg->name, a->src_name) == 0);
g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
/* None of the core system registers use opaque; we will. */
g_assert(src_reg->opaque == NULL);
/* Create alias before redirection so we dup the right data. */
if (a->new_key) {
ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
bool ok;
new_reg->name = a->new_name;
new_reg->type |= ARM_CP_ALIAS;
/* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
new_reg->access &= PL2_RW | PL3_RW;
ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
g_assert(ok);
}
src_reg->opaque = dst_reg;
src_reg->orig_readfn = src_reg->readfn ?: raw_read;
src_reg->orig_writefn = src_reg->writefn ?: raw_write;
if (!src_reg->raw_readfn) {
src_reg->raw_readfn = raw_read;
}
if (!src_reg->raw_writefn) {
src_reg->raw_writefn = raw_write;
}
src_reg->readfn = el2_e2h_read;
src_reg->writefn = el2_e2h_write;
}
}
#endif
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int cur_el = arm_current_el(env);
if (cur_el < 2) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (cur_el == 0) {
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
return CP_ACCESS_TRAP_EL2;
}
} else {
if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
return CP_ACCESS_TRAP;
}
if (hcr & HCR_TID2) {
return CP_ACCESS_TRAP_EL2;
}
}
} else if (hcr & HCR_TID2) {
return CP_ACCESS_TRAP_EL2;
}
}
if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Writes to OSLAR_EL1 may update the OS lock status, which can be
* read via a bit in OSLSR_EL1.
*/
int oslock;
if (ri->state == ARM_CP_STATE_AA32) {
oslock = (value == 0xC5ACCE55);
} else {
oslock = value & 1;
}
env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}
static const ARMCPRegInfo debug_cp_reginfo[] = {
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
* debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
* unlike DBGDRAR it is never accessible from EL0.
* DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
* accessor.
*/
{ .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .accessfn = access_tdra,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL1_R, .accessfn = access_tdra,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .accessfn = access_tdra,
.type = ARM_CP_CONST, .resetvalue = 0 },
/* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
{ .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
.access = PL1_RW, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
.resetvalue = 0 },
/*
* MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
* Debug Communication Channel is not implemented.
*/
{ .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
.access = PL0_R, .accessfn = access_tda,
.type = ARM_CP_CONST, .resetvalue = 0 },
/*
* DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
* it is unlikely a guest will care.
* We don't implement the configurable EL0 access.
*/
{ .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
.cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
.type = ARM_CP_ALIAS,
.access = PL1_R, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
{ .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.accessfn = access_tdosa,
.writefn = oslar_write },
{ .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
.access = PL1_R, .resetvalue = 10,
.accessfn = access_tdosa,
.fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
/* Dummy OSDLR_EL1: 32-bit Linux will read this */
{ .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
.access = PL1_RW, .accessfn = access_tdosa,
.type = ARM_CP_NOP },
/* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
* implement vector catch debug events yet.
*/
{ .name = "DBGVCR",
.cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tda,
.type = ARM_CP_NOP },
/* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
* to save and restore a 32-bit guest's DBGVCR)
*/
{ .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
.access = PL2_RW, .accessfn = access_tda,
.type = ARM_CP_NOP },
/* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
* Channel but Linux may try to access this register. The 32-bit
* alias is DBGDCCINT.
*/
{ .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tda,
.type = ARM_CP_NOP },
REGINFO_SENTINEL
};
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
/* 64 bit access versions of the (dummy) debug registers */
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
REGINFO_SENTINEL
};
/* Return the exception level to which exceptions should be taken
* via SVEAccessTrap. If an exception should be routed through
* AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
* take care of raising that exception.
* C.f. the ARM pseudocode function CheckSVEEnabled.
*/
int sve_exception_el(CPUARMState *env, int el)
{
#ifndef CONFIG_USER_ONLY
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
bool disabled = false;
/* The CPACR.ZEN controls traps to EL1:
* 0, 2 : trap EL0 and EL1 accesses
* 1 : trap only EL0 accesses
* 3 : trap no accesses
*/
if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
disabled = true;
} else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
disabled = el == 0;
}
if (disabled) {
/* route_to_el2 */
return hcr_el2 & HCR_TGE ? 2 : 1;
}
/* Check CPACR.FPEN. */
if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
disabled = true;
} else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
disabled = el == 0;
}
if (disabled) {
return 0;
}
}
/* CPTR_EL2. Since TZ and TFP are positive,
* they will be zero when EL2 is not present.
*/
if (el <= 2 && arm_is_el2_enabled(env)) {
if (env->cp15.cptr_el[2] & CPTR_TZ) {
return 2;
}
if (env->cp15.cptr_el[2] & CPTR_TFP) {
return 0;
}
}
/* CPTR_EL3. Since EZ is negative we must check for EL3. */
if (arm_feature(env, ARM_FEATURE_EL3)
&& !(env->cp15.cptr_el[3] & CPTR_EZ)) {
return 3;
}
#endif
return 0;
}
uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
{
uint32_t end_len;
start_len = MIN(start_len, ARM_MAX_VQ - 1);
end_len = start_len;
if (!test_bit(start_len, cpu->sve_vq_map)) {
end_len = find_last_bit(cpu->sve_vq_map, start_len);
assert(end_len < start_len);
}
return end_len;
}
/*
* Given that SVE is enabled, return the vector length for EL.
*/
uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
{
ARMCPU *cpu = env_archcpu(env);
uint32_t zcr_len = cpu->sve_max_vq - 1;
if (el <= 1) {
zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
}
if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
}
return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
}
static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int cur_el = arm_current_el(env);
int old_len = sve_zcr_len_for_el(env, cur_el);
int new_len;
/* Bits other than [3:0] are RAZ/WI. */
QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
raw_write(env, ri, value & 0xf);
/*
* Because we arrived here, we know both FP and SVE are enabled;
* otherwise we would have trapped access to the ZCR_ELn register.
*/
new_len = sve_zcr_len_for_el(env, cur_el);
if (new_len < old_len) {
aarch64_sve_narrow_vq(env, new_len + 1);
}
}
static const ARMCPRegInfo zcr_el1_reginfo = {
.name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_SVE,
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
.writefn = zcr_write, .raw_writefn = raw_write
};
static const ARMCPRegInfo zcr_el2_reginfo = {
.name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_SVE,
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
.writefn = zcr_write, .raw_writefn = raw_write
};
static const ARMCPRegInfo zcr_no_el2_reginfo = {
.name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_SVE,
.readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
};
static const ARMCPRegInfo zcr_el3_reginfo = {
.name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_SVE,
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
.writefn = zcr_write, .raw_writefn = raw_write
};
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
vaddr len = 0;
vaddr wvr = env->cp15.dbgwvr[n];
uint64_t wcr = env->cp15.dbgwcr[n];
int mask;
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
if (env->cpu_watchpoint[n]) {
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
env->cpu_watchpoint[n] = NULL;
}
if (!extract64(wcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
switch (extract64(wcr, 3, 2)) {
case 0:
/* LSC 00 is reserved and must behave as if the wp is disabled */
return;
case 1:
flags |= BP_MEM_READ;
break;
case 2:
flags |= BP_MEM_WRITE;
break;
case 3:
flags |= BP_MEM_ACCESS;
break;
}
/* Attempts to use both MASK and BAS fields simultaneously are
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
* thus generating a watchpoint for every byte in the masked region.
*/
mask = extract64(wcr, 24, 4);
if (mask == 1 || mask == 2) {
/* Reserved values of MASK; we must act as if the mask value was
* some non-reserved value, or as if the watchpoint were disabled.
* We choose the latter.
*/
return;
} else if (mask) {
/* Watchpoint covers an aligned area up to 2GB in size */
len = 1ULL << mask;
/* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
* whether the watchpoint fires when the unmasked bits match; we opt
* to generate the exceptions.
*/
wvr &= ~(len - 1);
} else {
/* Watchpoint covers bytes defined by the byte address select bits */
int bas = extract64(wcr, 5, 8);
int basstart;
if (extract64(wvr, 2, 1)) {
/* Deprecated case of an only 4-aligned address. BAS[7:4] are
* ignored, and BAS[3:0] define which bytes to watch.
*/
bas &= 0xf;
}
if (bas == 0) {
/* This must act as if the watchpoint is disabled */
return;
}
/* The BAS bits are supposed to be programmed to indicate a contiguous
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
* we fire for each byte in the word/doubleword addressed by the WVR.
* We choose to ignore any non-zero bits after the first range of 1s.
*/
basstart = ctz32(bas);
len = cto32(bas >> basstart);
wvr += basstart;
}
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
&env->cpu_watchpoint[n]);
}
void hw_watchpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/* Completely clear out existing QEMU watchpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
hw_watchpoint_update(cpu, i);
}
}
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
int i = ri->crm;
/* Bits [63:49] are hardwired to the value of bit [48]; that is, the
* register reads and behaves as if values written are sign extended.
* Bits [1:0] are RES0.
*/
value = sextract64(value, 0, 49) & ~3ULL;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
}
static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
int i = ri->crm;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
}
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
uint64_t bvr = env->cp15.dbgbvr[n];
uint64_t bcr = env->cp15.dbgbcr[n];
vaddr addr;
int bt;
int flags = BP_CPU;
if (env->cpu_breakpoint[n]) {
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
env->cpu_breakpoint[n] = NULL;
}
if (!extract64(bcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
bt = extract64(bcr, 20, 4);
switch (bt) {
case 4: /* unlinked address mismatch (reserved if AArch64) */
case 5: /* linked address mismatch (reserved if AArch64) */
qemu_log_mask(LOG_UNIMP,
"arm: address mismatch breakpoint types not implemented\n");
return;
case 0: /* unlinked address match */
case 1: /* linked address match */
{
/* Bits [63:49] are hardwired to the value of bit [48]; that is,
* we behave as if the register was sign extended. Bits [1:0] are
* RES0. The BAS field is used to allow setting breakpoints on 16
* bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
* a bp will fire if the addresses covered by the bp and the addresses
* covered by the insn overlap but the insn doesn't start at the
* start of the bp address range. We choose to require the insn and
* the bp to have the same address. The constraints on writing to
* BAS enforced in dbgbcr_write mean we have only four cases:
* 0b0000 => no breakpoint
* 0b0011 => breakpoint on addr
* 0b1100 => breakpoint on addr + 2
* 0b1111 => breakpoint on addr
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
*/
int bas = extract64(bcr, 5, 4);
addr = sextract64(bvr, 0, 49) & ~3ULL;
if (bas == 0) {
return;
}
if (bas == 0xc) {
addr += 2;
}
break;
}
case 2: /* unlinked context ID match */
case 8: /* unlinked VMID match (reserved if no EL2) */
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
qemu_log_mask(LOG_UNIMP,
"arm: unlinked context breakpoint types not implemented\n");
return;
case 9: /* linked VMID match (reserved if no EL2) */
case 11: /* linked context ID and VMID match (reserved if no EL2) */
case 3: /* linked context ID match */
default:
/* We must generate no events for Linked context matches (unless
* they are linked to by some other bp/wp, which is handled in
* updates for the linking bp/wp). We choose to also generate no events
* for reserved values.
*/
return;
}
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}
void hw_breakpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/* Completely clear out existing QEMU breakpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
hw_breakpoint_update(cpu, i);
}
}
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
int i = ri->crm;
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
}
static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
int i = ri->crm;
/* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
* copy of BAS[0].
*/
value = deposit64(value, 6, 1, extract64(value, 5, 1));
value = deposit64(value, 8, 1, extract64(value, 7, 1));
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
}
static void define_debug_regs(ARMCPU *cpu)
{
/* Define v7 and v8 architectural debug registers.
* These are just dummy implementations for now.
*/
int i;
int wrps, brps, ctx_cmps;
/*
* The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
* use AArch32. Given that bit 15 is RES1, if the value is 0 then
* the register must not exist for this cpu.
*/
if (cpu->isar.dbgdidr != 0) {
ARMCPRegInfo dbgdidr = {
.name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
.opc1 = 0, .opc2 = 0,
.access = PL0_R, .accessfn = access_tda,
.type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
};
define_one_arm_cp_reg(cpu, &dbgdidr);
}
/* Note that all these register fields hold "number of Xs minus 1". */
brps = arm_num_brps(cpu);
wrps = arm_num_wrps(cpu);
ctx_cmps = arm_num_ctx_cmps(cpu);
assert(ctx_cmps <= brps);
define_arm_cp_regs(cpu, debug_cp_reginfo);
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
}
for (i = 0; i < brps; i++) {
ARMCPRegInfo dbgregs[] = {
{ .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
.access = PL1_RW, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
.writefn = dbgbvr_write, .raw_writefn = raw_write
},
{ .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
.access = PL1_RW, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
.writefn = dbgbcr_write, .raw_writefn = raw_write
},
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, dbgregs);
}
for (i = 0; i < wrps; i++) {
ARMCPRegInfo dbgregs[] = {
{ .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
.access = PL1_RW, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
.writefn = dbgwvr_write, .raw_writefn = raw_write
},
{ .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
.access = PL1_RW, .accessfn = access_tda,
.fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
.writefn = dbgwcr_write, .raw_writefn = raw_write
},
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, dbgregs);
}
}
static void define_pmu_regs(ARMCPU *cpu)
{
/*
* v7 performance monitor control register: same implementor
* field as main ID register, and we implement four counters in
* addition to the cycle count register.
*/
unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
ARMCPRegInfo pmcr = {
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
.access = PL0_RW,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
.accessfn = pmreg_access, .writefn = pmcr_write,
.raw_writefn = raw_write,
};
ARMCPRegInfo pmcr64 = {
.name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
.access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
.resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
PMCRLC,
.writefn = pmcr_write, .raw_writefn = raw_write,
};
define_one_arm_cp_reg(cpu, &pmcr);
define_one_arm_cp_reg(cpu, &pmcr64);
for (i = 0; i < pmcrn; i++) {
char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
ARMCPRegInfo pmev_regs[] = {
{ .name = pmevcntr_name, .cp = 15, .crn = 14,
.crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
.accessfn = pmreg_access },
{ .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_IO,
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
.raw_readfn = pmevcntr_rawread,
.raw_writefn = pmevcntr_rawwrite },
{ .name = pmevtyper_name, .cp = 15, .crn = 14,
.crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
.accessfn = pmreg_access },
{ .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
.type = ARM_CP_IO,
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
.raw_writefn = pmevtyper_rawwrite },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, pmev_regs);
g_free(pmevcntr_name);
g_free(pmevcntr_el0_name);
g_free(pmevtyper_name);
g_free(pmevtyper_el0_name);
}
if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
ARMCPRegInfo v81_pmu_regs[] = {
{ .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = extract64(cpu->pmceid0, 32, 32) },
{ .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = extract64(cpu->pmceid1, 32, 32) },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, v81_pmu_regs);
}
if (cpu_isar_feature(any_pmu_8_4, cpu)) {
static const ARMCPRegInfo v84_pmmir = {
.name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
.access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = 0
};
define_one_arm_cp_reg(cpu, &v84_pmmir);
}
}
/* We don't know until after realize whether there's a GICv3
* attached, and that is what registers the gicv3 sysregs.
* So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
* at runtime.
*/
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
uint64_t pfr1 = cpu->isar.id_pfr1;
if (env->gicv3state) {
pfr1 |= 1 << 28;
}
return pfr1;
}
#ifndef CONFIG_USER_ONLY
static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
uint64_t pfr0 = cpu->isar.id_aa64pfr0;
if (env->gicv3state) {
pfr0 |= 1 << 24;
}
return pfr0;
}
#endif
/* Shared logic between LORID and the rest of the LOR* registers.
* Secure state exclusion has already been dealt with.
*/
static CPAccessResult access_lor_ns(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
int el = arm_current_el(env);
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
static CPAccessResult access_lor_other(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
if (arm_is_secure_below_el3(env)) {
/* Access denied in secure mode. */
return CP_ACCESS_TRAP;
}
return access_lor_ns(env, ri, isread);
}
/*
* A trivial implementation of ARMv8.1-LOR leaves all of these
* registers fixed at 0, which indicates that there are zero
* supported Limited Ordering regions.
*/
static const ARMCPRegInfo lor_reginfo[] = {
{ .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
.access = PL1_RW, .accessfn = access_lor_other,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
.access = PL1_RW, .accessfn = access_lor_other,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
.access = PL1_RW, .accessfn = access_lor_other,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
.access = PL1_RW, .accessfn = access_lor_other,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
.access = PL1_R, .accessfn = access_lor_ns,
.type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
#ifdef TARGET_AARCH64
static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
if (el < 2 &&
arm_feature(env, ARM_FEATURE_EL2) &&
!(arm_hcr_el2_eff(env) & HCR_APK)) {
return CP_ACCESS_TRAP_EL2;
}
if (el < 3 &&
arm_feature(env, ARM_FEATURE_EL3) &&
!(env->cp15.scr_el3 & SCR_APK)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo pauth_reginfo[] = {
{ .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
{ .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
{ .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
{ .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
{ .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
{ .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
{ .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
{ .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
{ .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
{ .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
.access = PL1_RW, .accessfn = access_pauth,
.fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
REGINFO_SENTINEL
};
static const ARMCPRegInfo tlbirange_reginfo[] = {
{ .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1is_write },
{ .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1_write },
{ .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1_write },
{ .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1_write },
{ .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae1_write },
{ .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2is_write },
{ .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2is_write },
{ .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2is_write },
{ .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2is_write },
{ .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2_write },
{ .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae2_write },
{ .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3is_write },
{ .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3is_write },
{ .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3is_write },
{ .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3is_write },
{ .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3_write },
{ .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_rvae3_write },
REGINFO_SENTINEL
};
static const ARMCPRegInfo tlbios_reginfo[] = {
{ .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1is_write },
{ .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
.access = PL1_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_vmalle1is_write },
{ .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle2is_write },
{ .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1is_write },
{ .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
.access = PL2_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle1is_write },
{ .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
.access = PL2_W, .type = ARM_CP_NOP },
{ .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_alle3is_write },
REGINFO_SENTINEL
};
static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
Error *err = NULL;
uint64_t ret;
/* Success sets NZCV = 0000. */
env->NF = env->CF = env->VF = 0, env->ZF = 1;
if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
/*
* ??? Failed, for unknown reasons in the crypto subsystem.
* The best we can do is log the reason and return the
* timed-out indication to the guest. There is no reason
* we know to expect this failure to be transitory, so the
* guest may well hang retrying the operation.
*/
qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
ri->name, error_get_pretty(err));
error_free(err);
env->ZF = 0; /* NZCF = 0100 */
return 0;
}
return ret;
}
/* We do not support re-seeding, so the two registers operate the same. */
static const ARMCPRegInfo rndr_reginfo[] = {
{ .name = "RNDR", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
.access = PL0_R, .readfn = rndr_readfn },
{ .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
.access = PL0_R, .readfn = rndr_readfn },
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value)
{
ARMCPU *cpu = env_archcpu(env);
/* CTR_EL0 System register -> DminLine, bits [19:16] */
uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
uint64_t vaddr_in = (uint64_t) value;
uint64_t vaddr = vaddr_in & ~(dline_size - 1);
void *haddr;
int mem_idx = cpu_mmu_index(env, false);
/* This won't be crossing page boundaries */
haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
if (haddr) {
ram_addr_t offset;
MemoryRegion *mr;
/* RCU lock is already being held */
mr = memory_region_from_host(haddr, &offset);
if (mr) {
memory_region_writeback(mr, offset, dline_size);
}
}
}
static const ARMCPRegInfo dcpop_reg[] = {
{ .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
REGINFO_SENTINEL
};
static const ARMCPRegInfo dcpodp_reg[] = {
{ .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
REGINFO_SENTINEL
};
#endif /*CONFIG_USER_ONLY*/
static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
return CP_ACCESS_TRAP_EL2;
}
}
if (el < 3 &&
arm_feature(env, ARM_FEATURE_EL3) &&
!(env->cp15.scr_el3 & SCR_ATA)) {
return CP_ACCESS_TRAP_EL3;
}
return CP_ACCESS_OK;
}
static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_TCO;
}
static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
}
static const ARMCPRegInfo mte_reginfo[] = {
{ .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
.access = PL1_RW, .accessfn = access_mte,
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
{ .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
.access = PL1_RW, .accessfn = access_mte,
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
{ .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
.access = PL2_RW, .accessfn = access_mte,
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
{ .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
.access = PL3_RW,
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
{ .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
.access = PL1_RW, .accessfn = access_mte,
.fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
{ .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
.access = PL1_RW, .accessfn = access_mte,
.fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
{ .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
.access = PL1_R, .accessfn = access_aa64_tid5,
.type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
.type = ARM_CP_NO_RAW,
.access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
{ .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
.type = ARM_CP_NOP, .access = PL1_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL1_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
{ .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
REGINFO_SENTINEL
};
static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
.type = ARM_CP_CONST, .access = PL0_RW, },
REGINFO_SENTINEL
};
static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
{ .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W,
.accessfn = aa64_cacheop_poc_access },
{ .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
.access = PL0_W, .type = ARM_CP_DC_GVA,
#ifndef CONFIG_USER_ONLY
/* Avoid overhead of an access check that always passes in user-mode */
.accessfn = aa64_zva_access,
#endif
},
{ .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
.access = PL0_W, .type = ARM_CP_DC_GZVA,
#ifndef CONFIG_USER_ONLY
/* Avoid overhead of an access check that always passes in user-mode */
.accessfn = aa64_zva_access,
#endif
},
REGINFO_SENTINEL
};
#endif
static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
int el = arm_current_el(env);
if (el == 0) {
uint64_t sctlr = arm_sctlr(env, el);
if (!(sctlr & SCTLR_EnRCTX)) {
return CP_ACCESS_TRAP;
}
} else if (el == 1) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (hcr & HCR_NV) {
return CP_ACCESS_TRAP_EL2;
}
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo predinv_reginfo[] = {
{ .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
{ .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
{ .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
/*
* Note the AArch32 opcodes have a different OPC1.
*/
{ .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
{ .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
{ .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
REGINFO_SENTINEL
};
static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Read the high 32 bits of the current CCSIDR */
return extract64(ccsidr_read(env, ri), 32, 32);
}
static const ARMCPRegInfo ccsidr2_reginfo[] = {
{ .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
.access = PL1_R,
.accessfn = access_aa64_tid2,
.readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
REGINFO_SENTINEL
};
static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_feature(env, ARM_FEATURE_V8)) {
return access_aa64_tid3(env, ri, isread);
}
return CP_ACCESS_OK;
}
static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static CPAccessResult access_joscr_jmcr(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
/*
* HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
* in v7A, not in v8A.
*/
if (!arm_feature(env, ARM_FEATURE_V8) &&
arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
(env->cp15.hstr_el2 & HSTR_TJDBX)) {
return CP_ACCESS_TRAP_EL2;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo jazelle_regs[] = {
{ .name = "JIDR",
.cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
.access = PL1_R, .accessfn = access_jazelle,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "JOSCR",
.cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
.accessfn = access_joscr_jmcr,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "JMCR",
.cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
.accessfn = access_joscr_jmcr,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo vhe_reginfo[] = {
{ .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
{ .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
.access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
.fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
#ifndef CONFIG_USER_ONLY
{ .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
.fieldoffset =
offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
.type = ARM_CP_IO, .access = PL2_RW,
.writefn = gt_hv_cval_write, .raw_writefn = raw_write },
{ .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
.resetfn = gt_hv_timer_reset,
.readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
{ .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
.type = ARM_CP_IO,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
.access = PL2_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
.writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
{ .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = e2h_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
.writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
{ .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = e2h_access,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
.writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
{ .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = e2h_access,
.readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
{ .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
.access = PL2_RW, .accessfn = e2h_access,
.readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
{ .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
.access = PL2_RW, .accessfn = e2h_access,
.writefn = gt_phys_cval_write, .raw_writefn = raw_write },
{ .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
.access = PL2_RW, .accessfn = e2h_access,
.writefn = gt_virt_cval_write, .raw_writefn = raw_write },
#endif
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
static const ARMCPRegInfo ats1e1_reginfo[] = {
{ .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
{ .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write64 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo ats1cp_reginfo[] = {
{ .name = "ATS1CPRP",
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write },
{ .name = "ATS1CPWP",
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
.writefn = ats_write },
REGINFO_SENTINEL
};
#endif
/*
* ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
* ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
* is non-zero, which is never for ARMv7, optionally in ARMv8
* and mandatorily for ARMv8.2 and up.
* ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
* implementation is RAZ/WI we can ignore this detail, as we
* do for ACTLR.
*/
static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
{ .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
.access = PL1_RW, .accessfn = access_tacr,
.type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
REGINFO_SENTINEL
};
void register_cp_regs_for_features(ARMCPU *cpu)
{
/* Register all the coprocessor registers based on feature bits */
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile has no coprocessor registers */
return;
}
define_arm_cp_regs(cpu, cp_reginfo);
if (!arm_feature(env, ARM_FEATURE_V8)) {
/* Must go early as it is full of wildcards that may be
* overridden by later definitions.
*/
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
/* The ID registers all have impdef reset values */
ARMCPRegInfo v6_idregs[] = {
{ .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_pfr0 },
/* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
* the value of the GIC field until after we define these regs.
*/
{ .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_NO_RAW,
.accessfn = access_aa32_tid3,
.readfn = id_pfr1_read,
.writefn = arm_cp_write_ignore },
{ .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_dfr0 },
{ .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->id_afr0 },
{ .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_mmfr0 },
{ .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_mmfr1 },
{ .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_mmfr2 },
{ .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_mmfr3 },
{ .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar0 },
{ .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar1 },
{ .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar2 },
{ .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar3 },
{ .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar4 },
{ .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar5 },
{ .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_mmfr4 },
{ .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_isar6 },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, v6_idregs);
define_arm_cp_regs(cpu, v6_cp_reginfo);
} else {
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
define_arm_cp_regs(cpu, v6k_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7MP) &&
!arm_feature(env, ARM_FEATURE_PMSA)) {
define_arm_cp_regs(cpu, v7mp_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7VE)) {
define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
ARMCPRegInfo clidr = {
.name = "CLIDR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid2,
.resetvalue = cpu->clidr
};
define_one_arm_cp_reg(cpu, &clidr);
define_arm_cp_regs(cpu, v7_cp_reginfo);
define_debug_regs(cpu);
define_pmu_regs(cpu);
} else {
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V8)) {
/* AArch64 ID registers, which all have impdef reset values.
* Note that within the ID register ranges the unused slots
* must all RAZ, not UNDEF; future architecture versions may
* define new registers here.
*/
ARMCPRegInfo v8_idregs[] = {
/*
* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
* emulation because we don't know the right value for the
* GIC field until after we define these regs.
*/
{ .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
.access = PL1_R,
#ifdef CONFIG_USER_ONLY
.type = ARM_CP_CONST,
.resetvalue = cpu->isar.id_aa64pfr0
#else
.type = ARM_CP_NO_RAW,
.accessfn = access_aa64_tid3,
.readfn = id_aa64pfr0_read,
.writefn = arm_cp_write_ignore
#endif
},
{ .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64pfr1},
{ .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64zfr0 },
{ .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64dfr0 },
{ .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64dfr1 },
{ .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->id_aa64afr0 },
{ .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->id_aa64afr1 },
{ .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64isar0 },
{ .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64isar1 },
{ .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64mmfr0 },
{ .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64mmfr1 },
{ .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_aa64mmfr2 },
{ .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.mvfr0 },
{ .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.mvfr1 },
{ .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.mvfr2 },
{ .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = cpu->isar.id_pfr2 },
{ .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
{ .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = extract64(cpu->pmceid0, 0, 32) },
{ .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = cpu->pmceid0 },
{ .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = extract64(cpu->pmceid1, 0, 32) },
{ .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
.resetvalue = cpu->pmceid1 },
REGINFO_SENTINEL
};
#ifdef CONFIG_USER_ONLY
ARMCPRegUserSpaceInfo v8_user_idregs[] = {
{ .name = "ID_AA64PFR0_EL1",
.exported_bits = 0x000f000f00ff0000,
.fixed_bits = 0x0000000000000011 },
{ .name = "ID_AA64PFR1_EL1",
.exported_bits = 0x00000000000000f0 },
{ .name = "ID_AA64PFR*_EL1_RESERVED",
.is_glob = true },
{ .name = "ID_AA64ZFR0_EL1" },
{ .name = "ID_AA64MMFR0_EL1",
.fixed_bits = 0x00000000ff000000 },
{ .name = "ID_AA64MMFR1_EL1" },
{ .name = "ID_AA64MMFR*_EL1_RESERVED",
.is_glob = true },
{ .name = "ID_AA64DFR0_EL1",
.fixed_bits = 0x0000000000000006 },
{ .name = "ID_AA64DFR1_EL1" },
{ .name = "ID_AA64DFR*_EL1_RESERVED",
.is_glob = true },
{ .name = "ID_AA64AFR*",
.is_glob = true },
{ .name = "ID_AA64ISAR0_EL1",
.exported_bits = 0x00fffffff0fffff0 },
{ .name = "ID_AA64ISAR1_EL1",
.exported_bits = 0x000000f0ffffffff },
{ .name = "ID_AA64ISAR*_EL1_RESERVED",
.is_glob = true },
REGUSERINFO_SENTINEL
};
modify_arm_cp_regs(v8_idregs, v8_user_idregs);
#endif
/* RVBAR_EL1 is only implemented if EL1 is the highest EL */
if (!arm_feature(env, ARM_FEATURE_EL3) &&
!arm_feature(env, ARM_FEATURE_EL2)) {
ARMCPRegInfo rvbar = {
.name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
.type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
};
define_one_arm_cp_reg(cpu, &rvbar);
}
define_arm_cp_regs(cpu, v8_idregs);
define_arm_cp_regs(cpu, v8_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_EL2)) {
uint64_t vmpidr_def = mpidr_read_val(env);
ARMCPRegInfo vpidr_regs[] = {
{ .name = "VPIDR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
.access = PL2_RW, .resetvalue = cpu->midr,
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
{ .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
.access = PL2_RW,
.resetvalue = vmpidr_def,
.fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, vpidr_regs);
define_arm_cp_regs(cpu, el2_cp_reginfo);
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
}
if (cpu_isar_feature(aa64_sel2, cpu)) {
define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
}
/* RVBAR_EL2 is only implemented if EL2 is the highest EL */
if (!arm_feature(env, ARM_FEATURE_EL3)) {
ARMCPRegInfo rvbar = {
.name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
.type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
};
define_one_arm_cp_reg(cpu, &rvbar);
}
} else {
/* If EL2 is missing but higher ELs are enabled, we need to
* register the no_el2 reginfos.
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
/* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
* of MIDR_EL1 and MPIDR_EL1.
*/
ARMCPRegInfo vpidr_regs[] = {
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.type = ARM_CP_CONST, .resetvalue = cpu->midr,
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
.access = PL2_RW, .accessfn = access_el3_aa32ns,
.type = ARM_CP_NO_RAW,
.writefn = arm_cp_write_ignore, .readfn = mpidr_read },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, vpidr_regs);
define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
}
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
define_arm_cp_regs(cpu, el3_cp_reginfo);
ARMCPRegInfo el3_regs[] = {
{ .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
.type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
{ .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL3_RW,
.raw_writefn = raw_write, .writefn = sctlr_write,
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
.resetvalue = cpu->reset_sctlr },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, el3_regs);
}
/* The behaviour of NSACR is sufficiently various that we don't
* try to describe it in a single reginfo:
* if EL3 is 64 bit, then trap to EL3 from S EL1,
* reads as constant 0xc00 from NS EL1 and NS EL2
* if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
* if v7 without EL3, register doesn't exist
* if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
ARMCPRegInfo nsacr = {
.name = "NSACR", .type = ARM_CP_CONST,
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL1_RW, .accessfn = nsacr_access,
.resetvalue = 0xc00
};
define_one_arm_cp_reg(cpu, &nsacr);
} else {
ARMCPRegInfo nsacr = {
.name = "NSACR",
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL3_RW | PL1_R,
.resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.nsacr)
};
define_one_arm_cp_reg(cpu, &nsacr);
}
} else {
if (arm_feature(env, ARM_FEATURE_V8)) {
ARMCPRegInfo nsacr = {
.name = "NSACR", .type = ARM_CP_CONST,
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
.access = PL1_R,
.resetvalue = 0xc00
};
define_one_arm_cp_reg(cpu, &nsacr);
}
}
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (arm_feature(env, ARM_FEATURE_V6)) {
/* PMSAv6 not implemented */
assert(arm_feature(env, ARM_FEATURE_V7));
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
} else {
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
}
} else {
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
/* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
if (cpu_isar_feature(aa32_hpd, cpu)) {
define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
}
}
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_VAPA)) {
define_arm_cp_regs(cpu, vapa_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
define_arm_cp_regs(cpu, omap_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
define_arm_cp_regs(cpu, xscale_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, lpae_cp_reginfo);
}
if (cpu_isar_feature(aa32_jazelle, cpu)) {
define_arm_cp_regs(cpu, jazelle_regs);
}
/* Slightly awkwardly, the OMAP and StrongARM cores need all of
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
* be read-only (ie write causes UNDEF exception).
*/
{
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
/* Pre-v8 MIDR space.
* Note that the MIDR isn't a simple constant register because
* of the TI925 behaviour where writes to another register can
* cause the MIDR value to change.
*
* Unimplemented registers in the c15 0 0 0 space default to
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
* and friends override accordingly.
*/
{ .name = "MIDR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .resetvalue = cpu->midr,
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
.readfn = midr_read,
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
.type = ARM_CP_OVERRIDE },
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
{ .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
.readfn = midr_read },
/* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_R, .resetvalue = cpu->midr },
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
.access = PL1_R, .resetvalue = cpu->midr },
{ .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
.access = PL1_R,
.accessfn = access_aa64_tid1,
.type = ARM_CP_CONST, .resetvalue = cpu->revidr },
REGINFO_SENTINEL
};
ARMCPRegInfo id_cp_reginfo[] = {
/* These are common to v8 and pre-v8 */
{ .name = "CTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_R, .accessfn = ctr_el0_access,
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
{ .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
.access = PL0_R, .accessfn = ctr_el0_access,
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
/* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
{ .name = "TCMTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_R,
.accessfn = access_aa32_tid1,
.type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
/* TLBTR is specific to VMSA */
ARMCPRegInfo id_tlbtr_reginfo = {
.name = "TLBTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL1_R,
.accessfn = access_aa32_tid1,
.type = ARM_CP_CONST, .resetvalue = 0,
};
/* MPUIR is specific to PMSA V6+ */
ARMCPRegInfo id_mpuir_reginfo = {
.name = "MPUIR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->pmsav7_dregion << 8
};
ARMCPRegInfo crn0_wi_reginfo = {
.name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_NOP | ARM_CP_OVERRIDE
};
#ifdef CONFIG_USER_ONLY
ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
{ .name = "MIDR_EL1",
.exported_bits = 0x00000000ffffffff },
{ .name = "REVIDR_EL1" },
REGUSERINFO_SENTINEL
};
modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
#endif
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
arm_feature(env, ARM_FEATURE_STRONGARM)) {
ARMCPRegInfo *r;
/* Register the blanket "writes ignored" value first to cover the
* whole space. Then update the specific ID registers to allow write
* access, so that they ignore writes rather than causing them to
* UNDEF.
*/
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
for (r = id_pre_v8_midr_cp_reginfo;
r->type != ARM_CP_SENTINEL; r++) {
r->access = PL1_RW;
}
for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
r->access = PL1_RW;
}
id_mpuir_reginfo.access = PL1_RW;
id_tlbtr_reginfo.access = PL1_RW;
}
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
} else {
define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
}
define_arm_cp_regs(cpu, id_cp_reginfo);
if (!arm_feature(env, ARM_FEATURE_PMSA)) {
define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
}
}
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
ARMCPRegInfo mpidr_cp_reginfo[] = {
{ .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
REGINFO_SENTINEL
};
#ifdef CONFIG_USER_ONLY
ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
{ .name = "MPIDR_EL1",
.fixed_bits = 0x0000000080000000 },
REGUSERINFO_SENTINEL
};
modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
#endif
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
ARMCPRegInfo auxcr_reginfo[] = {
{ .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tacr,
.type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
{ .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST,
.resetvalue = 0 },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, auxcr_reginfo);
if (cpu_isar_feature(aa32_ac2, cpu)) {
define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
}
}
if (arm_feature(env, ARM_FEATURE_CBAR)) {
/*
* CBAR is IMPDEF, but common on Arm Cortex-A implementations.
* There are two flavours:
* (1) older 32-bit only cores have a simple 32-bit CBAR
* (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
* 32-bit register visible to AArch32 at a different encoding
* to the "flavour 1" register and with the bits rearranged to
* be able to squash a 64-bit address into the 32-bit view.
* We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
* in future if we support AArch32-only configs of some of the
* AArch64 cores we might need to add a specific feature flag
* to indicate cores with "flavour 2" CBAR.
*/
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 32 bit view is [31:18] 0...0 [43:32]. */
uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
| extract64(cpu->reset_cbar, 32, 12);
ARMCPRegInfo cbar_reginfo[] = {
{ .name = "CBAR",
.type = ARM_CP_CONST,
.cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
.access = PL1_R, .resetvalue = cbar32 },
{ .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_CONST,
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
.access = PL1_R, .resetvalue = cpu->reset_cbar },
REGINFO_SENTINEL
};
/* We don't implement a r/w 64 bit CBAR currently */
assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
define_arm_cp_regs(cpu, cbar_reginfo);
} else {
ARMCPRegInfo cbar = {
.name = "CBAR",
.cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
.access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
.fieldoffset = offsetof(CPUARMState,
cp15.c15_config_base_address)
};
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
cbar.access = PL1_R;
cbar.fieldoffset = 0;
cbar.type = ARM_CP_CONST;
}
define_one_arm_cp_reg(cpu, &cbar);
}
}
if (arm_feature(env, ARM_FEATURE_VBAR)) {
ARMCPRegInfo vbar_cp_reginfo[] = {
{ .name = "VBAR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .writefn = vbar_write,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
offsetof(CPUARMState, cp15.vbar_ns) },
.resetvalue = 0 },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, vbar_cp_reginfo);
}
/* Generic registers whose values depend on the implementation */
{
ARMCPRegInfo sctlr = {
.name = "SCTLR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
offsetof(CPUARMState, cp15.sctlr_ns) },
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
.raw_writefn = raw_write,
};
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
/* Normally we would always end the TB on an SCTLR write, but Linux
* arch/arm/mach-pxa/sleep.S expects two instructions following
* an MMU enable to execute from cache. Imitate this behaviour.
*/
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
}
define_one_arm_cp_reg(cpu, &sctlr);
}
if (cpu_isar_feature(aa64_lor, cpu)) {
define_arm_cp_regs(cpu, lor_reginfo);
}
if (cpu_isar_feature(aa64_pan, cpu)) {
define_one_arm_cp_reg(cpu, &pan_reginfo);
}
#ifndef CONFIG_USER_ONLY
if (cpu_isar_feature(aa64_ats1e1, cpu)) {
define_arm_cp_regs(cpu, ats1e1_reginfo);
}
if (cpu_isar_feature(aa32_ats1e1, cpu)) {
define_arm_cp_regs(cpu, ats1cp_reginfo);
}
#endif
if (cpu_isar_feature(aa64_uao, cpu)) {
define_one_arm_cp_reg(cpu, &uao_reginfo);
}
if (cpu_isar_feature(aa64_dit, cpu)) {
define_one_arm_cp_reg(cpu, &dit_reginfo);
}
if (cpu_isar_feature(aa64_ssbs, cpu)) {
define_one_arm_cp_reg(cpu, &ssbs_reginfo);
}
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
define_arm_cp_regs(cpu, vhe_reginfo);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
if (arm_feature(env, ARM_FEATURE_EL2)) {
define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
} else {
define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
}
}
#ifdef TARGET_AARCH64
if (cpu_isar_feature(aa64_pauth, cpu)) {
define_arm_cp_regs(cpu, pauth_reginfo);
}
if (cpu_isar_feature(aa64_rndr, cpu)) {
define_arm_cp_regs(cpu, rndr_reginfo);
}
if (cpu_isar_feature(aa64_tlbirange, cpu)) {
define_arm_cp_regs(cpu, tlbirange_reginfo);
}
if (cpu_isar_feature(aa64_tlbios, cpu)) {
define_arm_cp_regs(cpu, tlbios_reginfo);
}
#ifndef CONFIG_USER_ONLY
/* Data Cache clean instructions up to PoP */
if (cpu_isar_feature(aa64_dcpop, cpu)) {
define_one_arm_cp_reg(cpu, dcpop_reg);
if (cpu_isar_feature(aa64_dcpodp, cpu)) {
define_one_arm_cp_reg(cpu, dcpodp_reg);
}
}
#endif /*CONFIG_USER_ONLY*/
/*
* If full MTE is enabled, add all of the system registers.
* If only "instructions available at EL0" are enabled,
* then define only a RAZ/WI version of PSTATE.TCO.
*/
if (cpu_isar_feature(aa64_mte, cpu)) {
define_arm_cp_regs(cpu, mte_reginfo);
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
} else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
}
#endif
if (cpu_isar_feature(any_predinv, cpu)) {
define_arm_cp_regs(cpu, predinv_reginfo);
}
if (cpu_isar_feature(any_ccidx, cpu)) {
define_arm_cp_regs(cpu, ccsidr2_reginfo);
}
#ifndef CONFIG_USER_ONLY
/*
* Register redirections and aliases must be done last,
* after the registers from the other extensions have been defined.
*/
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
define_arm_vh_e2h_redirects_aliases(cpu);
}
#endif
}
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
const char *name_a, *name_b;
name_a = object_class_get_name(class_a);
name_b = object_class_get_name(class_b);
if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
return 1;
} else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
return -1;
} else {
return strcmp(name_a, name_b);
}
}
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
const char *typename;
char *name;
typename = object_class_get_name(oc);
name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
qemu_printf(" %s\n", name);
g_free(name);
}
void arm_cpu_list(void)
{
GSList *list;
list = object_class_get_list(TYPE_ARM_CPU, false);
list = g_slist_sort(list, arm_cpu_list_compare);
qemu_printf("Available CPUs:\n");
g_slist_foreach(list, arm_cpu_list_entry, NULL);
g_slist_free(list);
}
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfo *info;
const char *typename;
typename = object_class_get_name(oc);
info = g_malloc0(sizeof(*info));
info->name = g_strndup(typename,
strlen(typename) - strlen("-" TYPE_ARM_CPU));
info->q_typename = g_strdup(typename);
QAPI_LIST_PREPEND(*cpu_list, info);
}
CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list;
list = object_class_get_list(TYPE_ARM_CPU, false);
g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
g_slist_free(list);
return cpu_list;
}
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
void *opaque, int state, int secstate,
int crm, int opc1, int opc2,
const char *name)
{
/* Private utility function for define_one_arm_cp_reg_with_opaque():
* add a single reginfo struct to the hash table.
*/
uint32_t *key = g_new(uint32_t, 1);
ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
r2->name = g_strdup(name);
/* Reset the secure state to the specific incoming state. This is
* necessary as the register may have been defined with both states.
*/
r2->secure = secstate;
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
/* Register is banked (using both entries in array).
* Overwriting fieldoffset as the array is only used to define
* banked registers but later only fieldoffset is used.
*/
r2->fieldoffset = r->bank_fieldoffsets[ns];
}
if (state == ARM_CP_STATE_AA32) {
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
/* If the register is banked then we don't need to migrate or
* reset the 32-bit instance in certain cases:
*
* 1) If the register has both 32-bit and 64-bit instances then we
* can count on the 64-bit instance taking care of the
* non-secure bank.
* 2) If ARMv8 is enabled then we can count on a 64-bit version
* taking care of the secure bank. This requires that separate
* 32 and 64-bit definitions are provided.
*/
if ((r->state == ARM_CP_STATE_BOTH && ns) ||
(arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
r2->type |= ARM_CP_ALIAS;
}
} else if ((secstate != r->secure) && !ns) {
/* The register is not banked so we only want to allow migration of
* the non-secure instance.
*/
r2->type |= ARM_CP_ALIAS;
}
if (r->state == ARM_CP_STATE_BOTH) {
/* We assume it is a cp15 register if the .cp field is left unset.
*/
if (r2->cp == 0) {
r2->cp = 15;
}
#ifdef HOST_WORDS_BIGENDIAN
if (r2->fieldoffset) {
r2->fieldoffset += sizeof(uint32_t);
}
#endif
}
}
if (state == ARM_CP_STATE_AA64) {
/* To allow abbreviation of ARMCPRegInfo
* definitions, we treat cp == 0 as equivalent to
* the value for "standard guest-visible sysreg".
* STATE_BOTH definitions are also always "standard
* sysreg" in their AArch64 view (the .cp value may
* be non-zero for the benefit of the AArch32 view).
*/
if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
r2->cp = CP_REG_ARM64_SYSREG_CP;
}
*key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
r2->opc0, opc1, opc2);
} else {
*key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
}
if (opaque) {
r2->opaque = opaque;
}
/* reginfo passed to helpers is correct for the actual access,
* and is never ARM_CP_STATE_BOTH:
*/
r2->state = state;
/* Make sure reginfo passed to helpers for wildcarded regs
* has the correct crm/opc1/opc2 for this reg, not CP_ANY:
*/
r2->crm = crm;
r2->opc1 = opc1;
r2->opc2 = opc2;
/* By convention, for wildcarded registers only the first
* entry is used for migration; the others are marked as
* ALIAS so we don't try to transfer the register
* multiple times. Special registers (ie NOP/WFI) are
* never migratable and not even raw-accessible.
*/
if ((r->type & ARM_CP_SPECIAL)) {
r2->type |= ARM_CP_NO_RAW;
}
if (((r->crm == CP_ANY) && crm != 0) ||
((r->opc1 == CP_ANY) && opc1 != 0) ||
((r->opc2 == CP_ANY) && opc2 != 0)) {
r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
}
/* Check that raw accesses are either forbidden or handled. Note that
* we can't assert this earlier because the setup of fieldoffset for
* banked registers has to be done first.
*/
if (!(r2->type & ARM_CP_NO_RAW)) {
assert(!raw_accessors_invalid(r2));
}
/* Overriding of an existing definition must be explicitly
* requested.
*/
if (!(r->type & ARM_CP_OVERRIDE)) {
ARMCPRegInfo *oldreg;
oldreg = g_hash_table_lookup(cpu->cp_regs, key);
if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
fprintf(stderr, "Register redefined: cp=%d %d bit "
"crn=%d crm=%d opc1=%d opc2=%d, "
"was %s, now %s\n", r2->cp, 32 + 32 * is64,
r2->crn, r2->crm, r2->opc1, r2->opc2,
oldreg->name, r2->name);
g_assert_not_reached();
}
}
g_hash_table_insert(cpu->cp_regs, key, r2);
}
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *r, void *opaque)
{
/* Define implementations of coprocessor registers.
* We store these in a hashtable because typically
* there are less than 150 registers in a space which
* is 16*16*16*8*8 = 262144 in size.
* Wildcarding is supported for the crm, opc1 and opc2 fields.
* If a register is defined twice then the second definition is
* used, so this can be used to define some generic registers and
* then override them with implementation specific variations.
* At least one of the original and the second definition should
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
* against accidental use.
*
* The state field defines whether the register is to be
* visible in the AArch32 or AArch64 execution state. If the
* state is set to ARM_CP_STATE_BOTH then we synthesise a
* reginfo structure for the AArch32 view, which sees the lower
* 32 bits of the 64 bit register.
*
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
* be wildcarded. AArch64 registers are always considered to be 64
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
* the register, if any.
*/
int crm, opc1, opc2, state;
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
/* 64 bit registers have only CRm and Opc1 fields */
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
/* op0 only exists in the AArch64 encodings */
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
/*
* This API is only for Arm's system coprocessors (14 and 15) or
* (M-profile or v7A-and-earlier only) for implementation defined
* coprocessors in the range 0..7. Our decode assumes this, since
* 8..13 can be used for other insns including VFP and Neon. See
* valid_cp() in translate.c. Assert here that we haven't tried
* to use an invalid coprocessor number.
*/
switch (r->state) {
case ARM_CP_STATE_BOTH:
/* 0 has a special meaning, but otherwise the same rules as AA32. */
if (r->cp == 0) {
break;
}
/* fall through */
case ARM_CP_STATE_AA32:
if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
!arm_feature(&cpu->env, ARM_FEATURE_M)) {
assert(r->cp >= 14 && r->cp <= 15);
} else {
assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
}
break;
case ARM_CP_STATE_AA64:
assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
break;
default:
g_assert_not_reached();
}
/* The AArch64 pseudocode CheckSystemAccess() specifies that op1
* encodes a minimum access level for the register. We roll this
* runtime check into our general permission check code, so check
* here that the reginfo's specified permissions are strict enough
* to encompass the generic architectural permission check.
*/
if (r->state != ARM_CP_STATE_AA32) {
int mask = 0;
switch (r->opc1) {
case 0:
/* min_EL EL1, but some accessible to EL0 via kernel ABI */
mask = PL0U_R | PL1_RW;
break;
case 1: case 2:
/* min_EL EL1 */
mask = PL1_RW;
break;
case 3:
/* min_EL EL0 */
mask = PL0_RW;
break;
case 4:
case 5:
/* min_EL EL2 */
mask = PL2_RW;
break;
case 6:
/* min_EL EL3 */
mask = PL3_RW;
break;
case 7:
/* min_EL EL1, secure mode only (we don't check the latter) */
mask = PL1_RW;
break;
default:
/* broken reginfo with out-of-range opc1 */
assert(false);
break;
}
/* assert our permissions are not too lax (stricter is fine) */
assert((r->access & ~mask) == 0);
}
/* Check that the register definition has enough info to handle
* reads and writes if they are permitted.
*/
if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
if (r->access & PL3_R) {
assert((r->fieldoffset ||
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
r->readfn);
}
if (r->access & PL3_W) {
assert((r->fieldoffset ||
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
r->writefn);
}
}
/* Bad type field probably means missing sentinel at end of reg list */
assert(cptype_valid(r->type));
for (crm = crmmin; crm <= crmmax; crm++) {
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
for (state = ARM_CP_STATE_AA32;
state <= ARM_CP_STATE_AA64; state++) {
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
continue;
}
if (state == ARM_CP_STATE_AA32) {
/* Under AArch32 CP registers can be common
* (same for secure and non-secure world) or banked.
*/
char *name;
switch (r->secure) {
case ARM_CP_SECSTATE_S:
case ARM_CP_SECSTATE_NS:
add_cpreg_to_hashtable(cpu, r, opaque, state,
r->secure, crm, opc1, opc2,
r->name);
break;
default:
name = g_strdup_printf("%s_S", r->name);
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_S,
crm, opc1, opc2, name);
g_free(name);
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_NS,
crm, opc1, opc2, r->name);
break;
}
} else {
/* AArch64 registers get mapped to non-secure instance
* of AArch32 */
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_NS,
crm, opc1, opc2, r->name);
}
}
}
}
}
}
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque)
{
/* Define a whole list of registers */
const ARMCPRegInfo *r;
for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
}
}
/*
* Modify ARMCPRegInfo for access from userspace.
*
* This is a data driven modification directed by
* ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
* user-space cannot alter any values and dynamic values pertaining to
* execution state are hidden from user space view anyway.
*/
void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
{
const ARMCPRegUserSpaceInfo *m;
ARMCPRegInfo *r;
for (m = mods; m->name; m++) {
GPatternSpec *pat = NULL;
if (m->is_glob) {
pat = g_pattern_spec_new(m->name);
}
for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
if (pat && g_pattern_match_string(pat, r->name)) {
r->type = ARM_CP_CONST;
r->access = PL0U_R;
r->resetvalue = 0;
/* continue */
} else if (strcmp(r->name, m->name) == 0) {
r->type = ARM_CP_CONST;
r->access = PL0U_R;
r->resetvalue &= m->exported_bits;
r->resetvalue |= m->fixed_bits;
break;
}
}
if (pat) {
g_pattern_spec_free(pat);
}
}
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
{
return g_hash_table_lookup(cpregs, &encoded_cp);
}
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Helper coprocessor write function for write-ignore registers */
}
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Helper coprocessor write function for read-as-zero registers */
return 0;
}
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
/* Helper coprocessor reset function for do-nothing-on-reset registers */
}
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
/* Return true if it is not valid for us to switch to
* this CPU mode (ie all the UNPREDICTABLE cases in
* the ARM ARM CPSRWriteByInstr pseudocode).
*/
/* Changes to or from Hyp via MSR and CPS are illegal. */
if (write_type == CPSRWriteByInstr &&
((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
mode == ARM_CPU_MODE_HYP)) {
return 1;
}
switch (mode) {
case ARM_CPU_MODE_USR:
return 0;
case ARM_CPU_MODE_SYS:
case ARM_CPU_MODE_SVC:
case ARM_CPU_MODE_ABT:
case ARM_CPU_MODE_UND:
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_FIQ:
/* Note that we don't implement the IMPDEF NSACR.RFR which in v7
* allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
*/
/* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
* and CPS are treated as illegal mode changes.
*/
if (write_type == CPSRWriteByInstr &&
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
(arm_hcr_el2_eff(env) & HCR_TGE)) {
return 1;
}
return 0;
case ARM_CPU_MODE_HYP:
return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
case ARM_CPU_MODE_MON:
return arm_current_el(env) < 3;
default:
return 1;
}
}
uint32_t cpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| (env->GE << 16) | (env->daif & CPSR_AIF);
}
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
CPSRWriteType write_type)
{
uint32_t changed_daif;
bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
(mask & (CPSR_M | CPSR_E | CPSR_IL));
if (mask & CPSR_NZCV) {
env->ZF = (~val) & CPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & CPSR_Q)
env->QF = ((val & CPSR_Q) != 0);
if (mask & CPSR_T)
env->thumb = ((val & CPSR_T) != 0);
if (mask & CPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & CPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & CPSR_GE) {
env->GE = (val >> 16) & 0xf;
}
/* In a V7 implementation that includes the security extensions but does
* not include Virtualization Extensions the SCR.FW and SCR.AW bits control
* whether non-secure software is allowed to change the CPSR_F and CPSR_A
* bits respectively.
*
* In a V8 implementation, it is permitted for privileged software to
* change the CPSR A/F bits regardless of the SCR.AW/FW bits.
*/
if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
arm_feature(env, ARM_FEATURE_EL3) &&
!arm_feature(env, ARM_FEATURE_EL2) &&
!arm_is_secure(env)) {
changed_daif = (env->daif ^ val) & mask;
if (changed_daif & CPSR_A) {
/* Check to see if we are allowed to change the masking of async
* abort exceptions from a non-secure state.
*/
if (!(env->cp15.scr_el3 & SCR_AW)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Ignoring attempt to switch CPSR_A flag from "
"non-secure world with SCR.AW bit clear\n");
mask &= ~CPSR_A;
}
}
if (changed_daif & CPSR_F) {
/* Check to see if we are allowed to change the masking of FIQ
* exceptions from a non-secure state.
*/
if (!(env->cp15.scr_el3 & SCR_FW)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Ignoring attempt to switch CPSR_F flag from "
"non-secure world with SCR.FW bit clear\n");
mask &= ~CPSR_F;
}
/* Check whether non-maskable FIQ (NMFI) support is enabled.
* If this bit is set software is not allowed to mask
* FIQs, but is allowed to set CPSR_F to 0.
*/
if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
(val & CPSR_F)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Ignoring attempt to enable CPSR_F flag "
"(non-maskable FIQ [NMFI] support enabled)\n");
mask &= ~CPSR_F;
}
}
}
env->daif &= ~(CPSR_AIF & mask);
env->daif |= val & CPSR_AIF & mask;
if (write_type != CPSRWriteRaw &&
((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
/* Note that we can only get here in USR mode if this is a
* gdb stub write; for this case we follow the architectural
* behaviour for guest writes in USR mode of ignoring an attempt
* to switch mode. (Those are caught by translate.c for writes
* triggered by guest instructions.)
*/
mask &= ~CPSR_M;
} else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
/* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
* v7, and has defined behaviour in v8:
* + leave CPSR.M untouched
* + allow changes to the other CPSR fields
* + set PSTATE.IL
* For user changes via the GDB stub, we don't set PSTATE.IL,
* as this would be unnecessarily harsh for a user error.
*/
mask &= ~CPSR_M;
if (write_type != CPSRWriteByGDBStub &&
arm_feature(env, ARM_FEATURE_V8)) {
mask |= CPSR_IL;
val |= CPSR_IL;
}
qemu_log_mask(LOG_GUEST_ERROR,
"Illegal AArch32 mode switch attempt from %s to %s\n",
aarch32_mode_name(env->uncached_cpsr),
aarch32_mode_name(val));
} else {
qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
write_type == CPSRWriteExceptionReturn ?
"Exception return from AArch32" :
"AArch32 mode switch from",
aarch32_mode_name(env->uncached_cpsr),
aarch32_mode_name(val), env->regs[15]);
switch_mode(env, val & CPSR_M);
}
}
mask &= ~CACHED_CPSR_BITS;
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
if (rebuild_hflags) {
arm_rebuild_hflags(env);
}
}
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(int8_t)x;
res |= (uint32_t)(int8_t)(x >> 16) << 16;
return res;
}
static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
{
/*
* Take a division-by-zero exception if necessary; otherwise return
* to get the usual non-trapping division behaviour (result of 0)
*/
if (arm_feature(env, ARM_FEATURE_M)
&& (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
}
}
uint32_t HELPER(uxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(uint8_t)x;
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
return res;
}
int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
{
if (den == 0) {
handle_possible_div0_trap(env, GETPC());
return 0;
}
if (num == INT_MIN && den == -1) {
return INT_MIN;
}
return num / den;
}
uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
{
if (den == 0) {
handle_possible_div0_trap(env, GETPC());
return 0;
}
return num / den;
}
uint32_t HELPER(rbit)(uint32_t x)
{
return revbit32(x);
}
#ifdef CONFIG_USER_ONLY
static void switch_mode(CPUARMState *env, int mode)
{
ARMCPU *cpu = env_archcpu(env);
if (mode != ARM_CPU_MODE_USR) {
cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
}
}
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
uint32_t cur_el, bool secure)
{
return 1;
}
void aarch64_sync_64_to_32(CPUARMState *env)
{
g_assert_not_reached();
}
#else
static void switch_mode(CPUARMState *env, int mode)
{
int old_mode;
int i;
old_mode = env->uncached_cpsr & CPSR_M;
if (mode == old_mode)
return;
if (old_mode == ARM_CPU_MODE_FIQ) {
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
} else if (mode == ARM_CPU_MODE_FIQ) {
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
}
i = bank_number(old_mode);
env->banked_r13[i] = env->regs[13];
env->banked_spsr[i] = env->spsr;
i = bank_number(mode);
env->regs[13] = env->banked_r13[i];
env->spsr = env->banked_spsr[i];
env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
env->regs[14] = env->banked_r14[r14_bank_number(mode)];
}
/* Physical Interrupt Target EL Lookup Table
*
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
*
* The below multi-dimensional table is used for looking up the target
* exception level given numerous condition criteria. Specifically, the
* target EL is based on SCR and HCR routing controls as well as the
* currently executing EL and secure state.
*
* Dimensions:
* target_el_table[2][2][2][2][2][4]
* | | | | | +--- Current EL
* | | | | +------ Non-secure(0)/Secure(1)
* | | | +--------- HCR mask override
* | | +------------ SCR exec state control
* | +--------------- SCR mask override
* +------------------ 32-bit(0)/64-bit(1) EL3
*
* The table values are as such:
* 0-3 = EL0-EL3
* -1 = Cannot occur
*
* The ARM ARM target EL table includes entries indicating that an "exception
* is not taken". The two cases where this is applicable are:
* 1) An exception is taken from EL3 but the SCR does not have the exception
* routed to EL3.
* 2) An exception is taken from EL2 but the HCR does not have the exception
* routed to EL2.
* In these two cases, the below table contain a target of EL1. This value is
* returned as it is expected that the consumer of the table data will check
* for "target EL >= current EL" to ensure the exception is not taken.
*
* SCR HCR
* 64 EA AMO From
* BIT IRQ IMO Non-secure Secure
* EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
*/
static const int8_t target_el_table[2][2][2][2][2][4] = {
{{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
{/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
{{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
{/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
{{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
{/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
{{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
{/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
{{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
{/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
{{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
{/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
{{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
{/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
{{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
{/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
};
/*
* Determine the target EL for physical exceptions
*/
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
uint32_t cur_el, bool secure)
{
CPUARMState *env = cs->env_ptr;
bool rw;
bool scr;
bool hcr;
int target_el;
/* Is the highest EL AArch64? */
bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
uint64_t hcr_el2;
if (arm_feature(env, ARM_FEATURE_EL3)) {
rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
} else {
/* Either EL2 is the highest EL (and so the EL2 register width
* is given by is64); or there is no EL2 or EL3, in which case
* the value of 'rw' does not affect the table lookup anyway.
*/
rw = is64;
}
hcr_el2 = arm_hcr_el2_eff(env);
switch (excp_idx) {
case EXCP_IRQ:
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
hcr = hcr_el2 & HCR_IMO;
break;
case EXCP_FIQ:
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
hcr = hcr_el2 & HCR_FMO;
break;
default:
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
hcr = hcr_el2 & HCR_AMO;
break;
};
/*
* For these purposes, TGE and AMO/IMO/FMO both force the
* interrupt to EL2. Fold TGE into the bit extracted above.
*/
hcr |= (hcr_el2 & HCR_TGE) != 0;
/* Perform a table-lookup for the target EL given the current state */
target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
assert(target_el > 0);
return target_el;
}
void arm_log_exception(int idx)
{
if (qemu_loglevel_mask(CPU_LOG_INT)) {
const char *exc = NULL;
static const char * const excnames[] = {
[EXCP_UDEF] = "Undefined Instruction",
[EXCP_SWI] = "SVC",
[EXCP_PREFETCH_ABORT] = "Prefetch Abort",
[EXCP_DATA_ABORT] = "Data Abort",
[EXCP_IRQ] = "IRQ",
[EXCP_FIQ] = "FIQ",
[EXCP_BKPT] = "Breakpoint",
[EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
[EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
[EXCP_HVC] = "Hypervisor Call",
[EXCP_HYP_TRAP] = "Hypervisor Trap",
[EXCP_SMC] = "Secure Monitor Call",
[EXCP_VIRQ] = "Virtual IRQ",
[EXCP_VFIQ] = "Virtual FIQ",
[EXCP_SEMIHOST] = "Semihosting call",
[EXCP_NOCP] = "v7M NOCP UsageFault",
[EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
[EXCP_STKOF] = "v8M STKOF UsageFault",
[EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
[EXCP_LSERR] = "v8M LSERR UsageFault",
[EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
[EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
};
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
exc = excnames[idx];
}
if (!exc) {
exc = "unknown";
}
qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
}
}
/*
* Function used to synchronize QEMU's AArch64 register set with AArch32
* register set. This is necessary when switching between AArch32 and AArch64
* execution state.
*/
void aarch64_sync_32_to_64(CPUARMState *env)
{
int i;
uint32_t mode = env->uncached_cpsr & CPSR_M;
/* We can blanket copy R[0:7] to X[0:7] */
for (i = 0; i < 8; i++) {
env->xregs[i] = env->regs[i];
}
/*
* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
* Otherwise, they come from the banked user regs.
*/
if (mode == ARM_CPU_MODE_FIQ) {
for (i = 8; i < 13; i++) {
env->xregs[i] = env->usr_regs[i - 8];
}
} else {
for (i = 8; i < 13; i++) {
env->xregs[i] = env->regs[i];
}
}
/*
* Registers x13-x23 are the various mode SP and FP registers. Registers
* r13 and r14 are only copied if we are in that mode, otherwise we copy
* from the mode banked register.
*/
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
env->xregs[13] = env->regs[13];
env->xregs[14] = env->regs[14];
} else {
env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
/* HYP is an exception in that it is copied from r14 */
if (mode == ARM_CPU_MODE_HYP) {
env->xregs[14] = env->regs[14];
} else {
env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
}
}
if (mode == ARM_CPU_MODE_HYP) {
env->xregs[15] = env->regs[13];
} else {
env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
}
if (mode == ARM_CPU_MODE_IRQ) {
env->xregs[16] = env->regs[14];
env->xregs[17] = env->regs[13];
} else {
env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
}
if (mode == ARM_CPU_MODE_SVC) {
env->xregs[18] = env->regs[14];
env->xregs[19] = env->regs[13];
} else {
env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
}
if (mode == ARM_CPU_MODE_ABT) {
env->xregs[20] = env->regs[14];
env->xregs[21] = env->regs[13];
} else {
env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
}
if (mode == ARM_CPU_MODE_UND) {
env->xregs[22] = env->regs[14];
env->xregs[23] = env->regs[13];
} else {
env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
}
/*
* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
* mode, then we can copy from r8-r14. Otherwise, we copy from the
* FIQ bank for r8-r14.
*/
if (mode == ARM_CPU_MODE_FIQ) {
for (i = 24; i < 31; i++) {
env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
}
} else {
for (i = 24; i < 29; i++) {
env->xregs[i] = env->fiq_regs[i - 24];
}
env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
}
env->pc = env->regs[15];
}
/*
* Function used to synchronize QEMU's AArch32 register set with AArch64
* register set. This is necessary when switching between AArch32 and AArch64
* execution state.
*/
void aarch64_sync_64_to_32(CPUARMState *env)
{
int i;
uint32_t mode = env->uncached_cpsr & CPSR_M;
/* We can blanket copy X[0:7] to R[0:7] */
for (i = 0; i < 8; i++) {
env->regs[i] = env->xregs[i];
}
/*
* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
* Otherwise, we copy x8-x12 into the banked user regs.
*/
if (mode == ARM_CPU_MODE_FIQ) {
for (i = 8; i < 13; i++) {
env->usr_regs[i - 8] = env->xregs[i];
}
} else {
for (i = 8; i < 13; i++) {
env->regs[i] = env->xregs[i];
}
}
/*
* Registers r13 & r14 depend on the current mode.
* If we are in a given mode, we copy the corresponding x registers to r13
* and r14. Otherwise, we copy the x register to the banked r13 and r14
* for the mode.
*/
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
env->regs[13] = env->xregs[13];
env->regs[14] = env->xregs[14];
} else {
env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
/*
* HYP is an exception in that it does not have its own banked r14 but
* shares the USR r14
*/
if (mode == ARM_CPU_MODE_HYP) {
env->regs[14] = env->xregs[14];
} else {
env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
}
}
if (mode == ARM_CPU_MODE_HYP) {
env->regs[13] = env->xregs[15];
} else {
env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
}
if (mode == ARM_CPU_MODE_IRQ) {
env->regs[14] = env->xregs[16];
env->regs[13] = env->xregs[17];
} else {
env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
}
if (mode == ARM_CPU_MODE_SVC) {
env->regs[14] = env->xregs[18];
env->regs[13] = env->xregs[19];
} else {
env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
}
if (mode == ARM_CPU_MODE_ABT) {
env->regs[14] = env->xregs[20];
env->regs[13] = env->xregs[21];
} else {
env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
}
if (mode == ARM_CPU_MODE_UND) {
env->regs[14] = env->xregs[22];
env->regs[13] = env->xregs[23];
} else {
env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
}
/* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
* mode, then we can copy to r8-r14. Otherwise, we copy to the
* FIQ bank for r8-r14.
*/
if (mode == ARM_CPU_MODE_FIQ) {
for (i = 24; i < 31; i++) {
env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
}
} else {
for (i = 24; i < 29; i++) {
env->fiq_regs[i - 24] = env->xregs[i];
}
env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
}
env->regs[15] = env->pc;
}
static void take_aarch32_exception(CPUARMState *env, int new_mode,
uint32_t mask, uint32_t offset,
uint32_t newpc)
{
int new_el;
/* Change the CPU state so as to actually take the exception. */
switch_mode(env, new_mode);
/*
* For exceptions taken to AArch32 we must clear the SS bit in both
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
*/
env->pstate &= ~PSTATE_SS;
env->spsr = cpsr_read(env);
/* Clear IT bits. */
env->condexec_bits = 0;
/* Switch to the new mode, and to the correct instruction set. */
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
/* This must be after mode switching. */
new_el = arm_current_el(env);
/* Set new mode endianness */
env->uncached_cpsr &= ~CPSR_E;
if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
env->uncached_cpsr |= CPSR_E;
}
/* J and IL must always be cleared for exception entry */
env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
env->daif |= mask;
if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
env->uncached_cpsr |= CPSR_SSBS;
} else {
env->uncached_cpsr &= ~CPSR_SSBS;
}
}
if (new_mode == ARM_CPU_MODE_HYP) {
env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
env->elr_el[2] = env->regs[15];
} else {
/* CPSR.PAN is normally preserved preserved unless... */
if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
switch (new_el) {
case 3:
if (!arm_is_secure_below_el3(env)) {
/* ... the target is EL3, from non-secure state. */
env->uncached_cpsr &= ~CPSR_PAN;
break;
}
/* ... the target is EL3, from secure state ... */
/* fall through */
case 1:
/* ... the target is EL1 and SCTLR.SPAN is 0. */
if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
env->uncached_cpsr |= CPSR_PAN;
}
break;
}
}
/*
* this is a lie, as there was no c1_sys on V4T/V5, but who cares
* and we should just guard the thumb mode on V4
*/
if (arm_feature(env, ARM_FEATURE_V4T)) {
env->thumb =
(A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
}
env->regs[14] = env->regs[15] + offset;
}
env->regs[15] = newpc;
arm_rebuild_hflags(env);
}
static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
{
/*
* Handle exception entry to Hyp mode; this is sufficiently
* different to entry to other AArch32 modes that we handle it
* separately here.
*
* The vector table entry used is always the 0x14 Hyp mode entry point,
* unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
* The offset applied to the preferred return address is always zero
* (see DDI0487C.a section G1.12.3).
* PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
*/
uint32_t addr, mask;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (cs->exception_index) {
case EXCP_UDEF:
addr = 0x04;
break;
case EXCP_SWI:
addr = 0x14;
break;
case EXCP_BKPT:
/* Fall through to prefetch abort. */
case EXCP_PREFETCH_ABORT:
env->cp15.ifar_s = env->exception.vaddress;
qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
(uint32_t)env->exception.vaddress);
addr = 0x0c;
break;
case EXCP_DATA_ABORT:
env->cp15.dfar_s = env->exception.vaddress;
qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
(uint32_t)env->exception.vaddress);
addr = 0x10;
break;
case EXCP_IRQ:
addr = 0x18;
break;
case EXCP_FIQ:
addr = 0x1c;
break;
case EXCP_HVC:
addr = 0x08;
break;
case EXCP_HYP_TRAP:
addr = 0x14;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
}
if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
if (!arm_feature(env, ARM_FEATURE_V8)) {
/*
* QEMU syndrome values are v8-style. v7 has the IL bit
* UNK/SBZP for "field not valid" cases, where v8 uses RES1.
* If this is a v7 CPU, squash the IL bit in those cases.
*/
if (cs->exception_index == EXCP_PREFETCH_ABORT ||
(cs->exception_index == EXCP_DATA_ABORT &&
!(env->exception.syndrome & ARM_EL_ISV)) ||
syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
env->exception.syndrome &= ~ARM_EL_IL;
}
}
env->cp15.esr_el[2] = env->exception.syndrome;
}
if (arm_current_el(env) != 2 && addr < 0x14) {
addr = 0x14;
}
mask = 0;
if (!(env->cp15.scr_el3 & SCR_EA)) {
mask |= CPSR_A;
}
if (!(env->cp15.scr_el3 & SCR_IRQ)) {
mask |= CPSR_I;
}
if (!(env->cp15.scr_el3 & SCR_FIQ)) {
mask |= CPSR_F;
}
addr += env->cp15.hvbar;
take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
}
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t addr;
uint32_t mask;
int new_mode;
uint32_t offset;
uint32_t moe;
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
switch (syn_get_ec(env->exception.syndrome)) {
case EC_BREAKPOINT:
case EC_BREAKPOINT_SAME_EL:
moe = 1;
break;
case EC_WATCHPOINT:
case EC_WATCHPOINT_SAME_EL:
moe = 10;
break;
case EC_AA32_BKPT:
moe = 3;
break;
case EC_VECTORCATCH:
moe = 5;
break;
default:
moe = 0;
break;
}
if (moe) {
env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
}
if (env->exception.target_el == 2) {
arm_cpu_do_interrupt_aarch32_hyp(cs);
return;
}
switch (cs->exception_index) {
case EXCP_UDEF:
new_mode = ARM_CPU_MODE_UND;
addr = 0x04;
mask = CPSR_I;
if (env->thumb)
offset = 2;
else
offset = 4;
break;
case EXCP_SWI:
new_mode = ARM_CPU_MODE_SVC;
addr = 0x08;
mask = CPSR_I;
/* The PC already points to the next instruction. */
offset = 0;
break;
case EXCP_BKPT:
/* Fall through to prefetch abort. */
case EXCP_PREFETCH_ABORT:
A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
env->exception.fsr, (uint32_t)env->exception.vaddress);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x0c;
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_DATA_ABORT:
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
env->exception.fsr,
(uint32_t)env->exception.vaddress);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x10;
mask = CPSR_A | CPSR_I;
offset = 8;
break;
case EXCP_IRQ:
new_mode = ARM_CPU_MODE_IRQ;
addr = 0x18;
/* Disable IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I;
offset = 4;
if (env->cp15.scr_el3 & SCR_IRQ) {
/* IRQ routed to monitor mode */
new_mode = ARM_CPU_MODE_MON;
mask |= CPSR_F;
}
break;
case EXCP_FIQ:
new_mode = ARM_CPU_MODE_FIQ;
addr = 0x1c;
/* Disable FIQ, IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I | CPSR_F;
if (env->cp15.scr_el3 & SCR_FIQ) {
/* FIQ routed to monitor mode */
new_mode = ARM_CPU_MODE_MON;
}
offset = 4;
break;
case EXCP_VIRQ:
new_mode = ARM_CPU_MODE_IRQ;
addr = 0x18;
/* Disable IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_VFIQ:
new_mode = ARM_CPU_MODE_FIQ;
addr = 0x1c;
/* Disable FIQ, IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 4;
break;
case EXCP_SMC:
new_mode = ARM_CPU_MODE_MON;
addr = 0x08;
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 0;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
return; /* Never happens. Keep compiler happy. */
}
if (new_mode == ARM_CPU_MODE_MON) {
addr += env->cp15.mvbar;
} else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
/* High vectors. When enabled, base address cannot be remapped. */
addr += 0xffff0000;
} else {
/* ARM v7 architectures provide a vector base address register to remap
* the interrupt vector table.
* This register is only followed in non-monitor mode, and is banked.
* Note: only bits 31:5 are valid.
*/
addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
}
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
env->cp15.scr_el3 &= ~SCR_NS;
}
take_aarch32_exception(env, new_mode, mask, offset, addr);
}
static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
{
/*
* Return the register number of the AArch64 view of the AArch32
* register @aarch32_reg. The CPUARMState CPSR is assumed to still
* be that of the AArch32 mode the exception came from.
*/
int mode = env->uncached_cpsr & CPSR_M;
switch (aarch32_reg) {
case 0 ... 7:
return aarch32_reg;
case 8 ... 12:
return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
case 13:
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return 13;
case ARM_CPU_MODE_HYP:
return 15;
case ARM_CPU_MODE_IRQ:
return 17;
case ARM_CPU_MODE_SVC:
return 19;
case ARM_CPU_MODE_ABT:
return 21;
case ARM_CPU_MODE_UND:
return 23;
case ARM_CPU_MODE_FIQ:
return 29;
default:
g_assert_not_reached();
}
case 14:
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
case ARM_CPU_MODE_HYP:
return 14;
case ARM_CPU_MODE_IRQ:
return 16;
case ARM_CPU_MODE_SVC:
return 18;
case ARM_CPU_MODE_ABT:
return 20;
case ARM_CPU_MODE_UND:
return 22;
case ARM_CPU_MODE_FIQ:
return 30;
default:
g_assert_not_reached();
}
case 15:
return 31;
default:
g_assert_not_reached();
}
}
static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
{
uint32_t ret = cpsr_read(env);
/* Move DIT to the correct location for SPSR_ELx */
if (ret & CPSR_DIT) {
ret &= ~CPSR_DIT;
ret |= PSTATE_DIT;
}
/* Merge PSTATE.SS into SPSR_ELx */
ret |= env->pstate & PSTATE_SS;
return ret;
}
/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
unsigned int new_el = env->exception.target_el;
target_ulong addr = env->cp15.vbar_el[new_el];
unsigned int new_mode = aarch64_pstate_mode(new_el, true);
unsigned int old_mode;
unsigned int cur_el = arm_current_el(env);
int rt;
/*
* Note that new_el can never be 0. If cur_el is 0, then
* el0_a64 is is_a64(), else el0_a64 is ignored.
*/
aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
if (cur_el < new_el) {
/* Entry vector offset depends on whether the implemented EL
* immediately lower than the target level is using AArch32 or AArch64
*/
bool is_aa64;
uint64_t hcr;
switch (new_el) {
case 3:
is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
break;
case 2:
hcr = arm_hcr_el2_eff(env);
if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
is_aa64 = (hcr & HCR_RW) != 0;
break;
}
/* fall through */
case 1:
is_aa64 = is_a64(env);
break;
default:
g_assert_not_reached();
}
if (is_aa64) {
addr += 0x400;
} else {
addr += 0x600;
}
} else if (pstate_read(env) & PSTATE_SP) {
addr += 0x200;
}
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
env->cp15.far_el[new_el] = env->exception.vaddress;
qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
env->cp15.far_el[new_el]);
/* fall through */
case EXCP_BKPT:
case EXCP_UDEF:
case EXCP_SWI:
case EXCP_HVC:
case EXCP_HYP_TRAP:
case EXCP_SMC:
switch (syn_get_ec(env->exception.syndrome)) {
case EC_ADVSIMDFPACCESSTRAP:
/*
* QEMU internal FP/SIMD syndromes from AArch32 include the
* TA and coproc fields which are only exposed if the exception
* is taken to AArch32 Hyp mode. Mask them out to get a valid
* AArch64 format syndrome.
*/
env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
break;
case EC_CP14RTTRAP:
case EC_CP15RTTRAP:
case EC_CP14DTTRAP:
/*
* For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
* the raw register field from the insn; when taking this to
* AArch64 we must convert it to the AArch64 view of the register
* number. Notice that we read a 4-bit AArch32 register number and
* write back a 5-bit AArch64 one.
*/
rt = extract32(env->exception.syndrome, 5, 4);
rt = aarch64_regnum(env, rt);
env->exception.syndrome = deposit32(env->exception.syndrome,
5, 5, rt);
break;
case EC_CP15RRTTRAP:
case EC_CP14RRTTRAP:
/* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
rt = extract32(env->exception.syndrome, 5, 4);
rt = aarch64_regnum(env, rt);
env->exception.syndrome = deposit32(env->exception.syndrome,
5, 5, rt);
rt = extract32(env->exception.syndrome, 10, 4);
rt = aarch64_regnum(env, rt);
env->exception.syndrome = deposit32(env->exception.syndrome,
10, 5, rt);
break;
}
env->cp15.esr_el[new_el] = env->exception.syndrome;
break;
case EXCP_IRQ:
case EXCP_VIRQ:
addr += 0x80;
break;
case EXCP_FIQ:
case EXCP_VFIQ:
addr += 0x100;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
}
if (is_a64(env)) {
old_mode = pstate_read(env);
aarch64_save_sp(env, arm_current_el(env));
env->elr_el[new_el] = env->pc;
} else {
old_mode = cpsr_read_for_spsr_elx(env);
env->elr_el[new_el] = env->regs[15];
aarch64_sync_32_to_64(env);
env->condexec_bits = 0;
}
env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
env->elr_el[new_el]);
if (cpu_isar_feature(aa64_pan, cpu)) {
/* The value of PSTATE.PAN is normally preserved, except when ... */
new_mode |= old_mode & PSTATE_PAN;
switch (new_el) {
case 2:
/* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
!= (HCR_E2H | HCR_TGE)) {
break;
}
/* fall through */
case 1:
/* ... the target is EL1 ... */
/* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
new_mode |= PSTATE_PAN;
}
break;
}
}
if (cpu_isar_feature(aa64_mte, cpu)) {
new_mode |= PSTATE_TCO;
}
if (cpu_isar_feature(aa64_ssbs, cpu)) {
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
new_mode |= PSTATE_SSBS;
} else {
new_mode &= ~PSTATE_SSBS;
}
}
pstate_write(env, PSTATE_DAIF | new_mode);
env->aarch64 = 1;
aarch64_restore_sp(env, new_el);
helper_rebuild_hflags_a64(env, new_el);
env->pc = addr;
qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
new_el, env->pc, pstate_read(env));
}
/*
* Do semihosting call and set the appropriate return value. All the
* permission and validity checks have been done at translate time.
*
* We only see semihosting exceptions in TCG only as they are not
* trapped to the hypervisor in KVM.
*/
#ifdef CONFIG_TCG
static void handle_semihosting(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
qemu_log_mask(CPU_LOG_INT,
"...handling as semihosting call 0x%" PRIx64 "\n",
env->xregs[0]);
env->xregs[0] = do_common_semihosting(cs);
env->pc += 4;
} else {
qemu_log_mask(CPU_LOG_INT,
"...handling as semihosting call 0x%x\n",
env->regs[0]);
env->regs[0] = do_common_semihosting(cs);
env->regs[15] += env->thumb ? 2 : 4;
}
}
#endif
/* Handle a CPU exception for A and R profile CPUs.
* Do any appropriate logging, handle PSCI calls, and then hand off
* to the AArch64-entry or AArch32-entry function depending on the
* target exception level's register width.
*
* Note: this is used for both TCG (as the do_interrupt tcg op),
* and KVM to re-inject guest debug exceptions, and to
* inject a Synchronous-External-Abort.
*/
void arm_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
unsigned int new_el = env->exception.target_el;
assert(!arm_feature(env, ARM_FEATURE_M));
arm_log_exception(cs->exception_index);
qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
new_el);
if (qemu_loglevel_mask(CPU_LOG_INT)
&& !excp_is_internal(cs->exception_index)) {
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
syn_get_ec(env->exception.syndrome),
env->exception.syndrome);
}
if (arm_is_psci_call(cpu, cs->exception_index)) {
arm_handle_psci_call(cpu);
qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
return;
}
/*
* Semihosting semantics depend on the register width of the code
* that caused the exception, not the target exception level, so
* must be handled here.
*/
#ifdef CONFIG_TCG
if (cs->exception_index == EXCP_SEMIHOST) {
handle_semihosting(cs);
return;
}
#endif
/* Hooks may change global state so BQL should be held, also the
* BQL needs to be held for any modification of
* cs->interrupt_request.
*/
g_assert(qemu_mutex_iothread_locked());
arm_call_pre_el_change_hook(cpu);
assert(!excp_is_internal(cs->exception_index));
if (arm_el_is_aa64(env, new_el)) {
arm_cpu_do_interrupt_aarch64(cs);
} else {
arm_cpu_do_interrupt_aarch32(cs);
}
arm_call_el_change_hook(cpu);
if (!kvm_enabled()) {
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
}
#endif /* !CONFIG_USER_ONLY */
uint64_t arm_sctlr(CPUARMState *env, int el)
{
/* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
if (el == 0) {
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
? 2 : 1;
}
return env->cp15.sctlr_el[el];
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}
#ifndef CONFIG_USER_ONLY
/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
ARMMMUIdx mmu_idx)
{
uint64_t hcr_el2;
if (arm_feature(env, ARM_FEATURE_M)) {
switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
(R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
case R_V7M_MPU_CTRL_ENABLE_MASK:
/* Enabled, but not for HardFault and NMI */
return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
/* Enabled for all cases */
return false;
case 0:
default:
/* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
* we warned about that in armv7m_nvic.c when the guest set it.
*/
return true;
}
}
hcr_el2 = arm_hcr_el2_eff(env);
if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
/* HCR.DC means HCR.VM behaves as 1 */
return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
}
if (hcr_el2 & HCR_TGE) {
/* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
return true;
}
}
if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
/* HCR.DC means SCTLR_EL1.M behaves as 0 */
return true;
}
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}
static inline bool regime_translation_big_endian(CPUARMState *env,
ARMMMUIdx mmu_idx)
{
return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
int ttbrn)
{
if (mmu_idx == ARMMMUIdx_Stage2) {
return env->cp15.vttbr_el2;
}
if (mmu_idx == ARMMMUIdx_Stage2_S) {
return env->cp15.vsttbr_el2;
}
if (ttbrn == 0) {
return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
} else {
return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
}
}
#endif /* !CONFIG_USER_ONLY */
/* Convert a possible stage1+2 MMU index into the appropriate
* stage 1 MMU index
*/
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_SE10_0:
return ARMMMUIdx_Stage1_SE0;
case ARMMMUIdx_SE10_1:
return ARMMMUIdx_Stage1_SE1;
case ARMMMUIdx_SE10_1_PAN:
return ARMMMUIdx_Stage1_SE1_PAN;
case ARMMMUIdx_E10_0:
return ARMMMUIdx_Stage1_E0;
case ARMMMUIdx_E10_1:
return ARMMMUIdx_Stage1_E1;
case ARMMMUIdx_E10_1_PAN:
return ARMMMUIdx_Stage1_E1_PAN;
default:
return mmu_idx;
}
}
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_LPAE)
&& (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
return true;
}
return false;
}
/* Returns true if the stage 1 translation regime is using LPAE format page
* tables. Used when raising alignment exceptions, whose FSR changes depending
* on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
mmu_idx = stage_1_mmu_idx(mmu_idx);
return regime_using_lpae_format(env, mmu_idx);
}
#ifndef CONFIG_USER_ONLY
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_SE10_0:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_SE20_0:
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_SE0:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSUser:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MSUserNegPri:
return true;
default:
return false;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
g_assert_not_reached();
}
}
/* Translate section/page access permissions to page
* R/W protection flags
*
* @env: CPUARMState
* @mmu_idx: MMU index indicating required translation regime
* @ap: The 3-bit access permissions (AP[2:0])
* @domain_prot: The 2-bit domain access permissions
*/
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
int ap, int domain_prot)
{
bool is_user = regime_is_user(env, mmu_idx);
if (domain_prot == 3) {
return PAGE_READ | PAGE_WRITE;
}
switch (ap) {
case 0:
if (arm_feature(env, ARM_FEATURE_V7)) {
return 0;
}
switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
case SCTLR_S:
return is_user ? 0 : PAGE_READ;
case SCTLR_R:
return PAGE_READ;
default:
return 0;
}
case 1:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 2:
if (is_user) {
return PAGE_READ;
} else {
return PAGE_READ | PAGE_WRITE;
}
case 3:
return PAGE_READ | PAGE_WRITE;
case 4: /* Reserved. */
return 0;
case 5:
return is_user ? 0 : PAGE_READ;
case 6:
return PAGE_READ;
case 7:
if (!arm_feature(env, ARM_FEATURE_V6K)) {
return 0;
}
return PAGE_READ;
default:
g_assert_not_reached();
}
}
/* Translate section/page access permissions to page
* R/W protection flags.
*
* @ap: The 2-bit simple AP (AP[2:1])
* @is_user: TRUE if accessing from PL0
*/
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
{
switch (ap) {
case 0:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 1:
return PAGE_READ | PAGE_WRITE;
case 2:
return is_user ? 0 : PAGE_READ;
case 3:
return PAGE_READ;
default:
g_assert_not_reached();
}
}
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}
/* Translate S2 section/page access permissions to protection flags
*
* @env: CPUARMState
* @s2ap: The 2-bit stage2 access permissions (S2AP)
* @xn: XN (execute-never) bits
* @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
*/
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
{
int prot = 0;
if (s2ap & 1) {
prot |= PAGE_READ;
}
if (s2ap & 2) {
prot |= PAGE_WRITE;
}
if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
switch (xn) {
case 0:
prot |= PAGE_EXEC;
break;
case 1:
if (s1_is_el0) {
prot |= PAGE_EXEC;
}
break;
case 2:
break;
case 3:
if (!s1_is_el0) {
prot |= PAGE_EXEC;
}
break;
default:
g_assert_not_reached();
}
} else {
if (!extract32(xn, 1, 1)) {
if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
prot |= PAGE_EXEC;
}
}
}
return prot;
}
/* Translate section/page access permissions to protection flags
*
* @env: CPUARMState
* @mmu_idx: MMU index indicating required translation regime
* @is_aa64: TRUE if AArch64
* @ap: The 2-bit simple AP (AP[2:1])
* @ns: NS (non-secure) bit
* @xn: XN (execute-never) bit
* @pxn: PXN (privileged execute-never) bit
*/
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
int ap, int ns, int xn, int pxn)
{
bool is_user = regime_is_user(env, mmu_idx);
int prot_rw, user_rw;
bool have_wxn;
int wxn = 0;
assert(mmu_idx != ARMMMUIdx_Stage2);
assert(mmu_idx != ARMMMUIdx_Stage2_S);
user_rw = simple_ap_to_rw_prot_is_user(ap, true);
if (is_user) {
prot_rw = user_rw;
} else {
if (user_rw && regime_is_pan(env, mmu_idx)) {
/* PAN forbids data accesses but doesn't affect insn fetch */
prot_rw = 0;
} else {
prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
}
}
if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
return prot_rw;
}
/* TODO have_wxn should be replaced with
* ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
* when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
* compatible processors have EL2, which is required for [U]WXN.
*/
have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
if (have_wxn) {
wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
}
if (is_aa64) {
if (regime_has_2_ranges(mmu_idx) && !is_user) {
xn = pxn || (user_rw & PAGE_WRITE);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
switch (regime_el(env, mmu_idx)) {
case 1:
case 3:
if (is_user) {
xn = xn || !(user_rw & PAGE_READ);
} else {
int uwxn = 0;
if (have_wxn) {
uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
}
xn = xn || !(prot_rw & PAGE_READ) || pxn ||
(uwxn && (user_rw & PAGE_WRITE));
}
break;
case 2:
break;
}
} else {
xn = wxn = 0;
}
if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
return prot_rw;
}
return prot_rw | PAGE_EXEC;
}
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
uint32_t *table, uint32_t address)
{
/* Note that we can only get here for an AArch32 PL0/PL1 lookup */
TCR *tcr = regime_tcr(env, mmu_idx);
if (address & tcr->mask) {
if (tcr->raw_tcr & TTBCR_PD1) {
/* Translation table walk disabled for TTBR1 */
return false;
}
*table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
} else {
if (tcr->raw_tcr & TTBCR_PD0) {
/* Translation table walk disabled for TTBR0 */
return false;
}
*table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
}
*table |= (address >> 18) & 0x3ffc;
return true;
}
/* Translate a S1 pagetable walk through S2 if needed. */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
hwaddr addr, bool *is_secure,
ARMMMUFaultInfo *fi)
{
if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
!regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
target_ulong s2size;
hwaddr s2pa;
int s2prot;
int ret;
ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
: ARMMMUIdx_Stage2;
ARMCacheAttrs cacheattrs = {};
MemTxAttrs txattrs = {};
ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
&s2pa, &txattrs, &s2prot, &s2size, fi,
&cacheattrs);
if (ret) {
assert(fi->type != ARMFault_None);
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = !*is_secure;
return ~0;
}
if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
(cacheattrs.attrs & 0xf0) == 0) {
/*
* PTW set and S1 walk touched S2 Device memory:
* generate Permission fault.
*/
fi->type = ARMFault_Permission;
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = !*is_secure;
return ~0;
}
if (arm_is_secure_below_el3(env)) {
/* Check if page table walk is to secure or non-secure PA space. */
if (*is_secure) {
*is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
} else {
*is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
}
} else {
assert(!*is_secure);
}
addr = s2pa;
}
return addr;
}
/* All loads done in the course of a page table walk go through here. */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
MemTxAttrs attrs = {};
MemTxResult result = MEMTX_OK;
AddressSpace *as;
uint32_t data;
addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
attrs.secure = is_secure;
as = arm_addressspace(cs, attrs);
if (fi->s1ptw) {
return 0;
}
if (regime_translation_big_endian(env, mmu_idx)) {
data = address_space_ldl_be(as, addr, attrs, &result);
} else {
data = address_space_ldl_le(as, addr, attrs, &result);
}
if (result == MEMTX_OK) {
return data;
}
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
MemTxAttrs attrs = {};
MemTxResult result = MEMTX_OK;
AddressSpace *as;
uint64_t data;
addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
attrs.secure = is_secure;
as = arm_addressspace(cs, attrs);
if (fi->s1ptw) {
return 0;
}
if (regime_translation_big_endian(env, mmu_idx)) {
data = address_space_ldq_be(as, addr, attrs, &result);
} else {
data = address_space_ldq_le(as, addr, attrs, &result);
}
if (result == MEMTX_OK) {
return data;
}
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
int level = 1;
uint32_t table;
uint32_t desc;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
uint32_t dacr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, mmu_idx, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
fi->type = ARMFault_Translation;
goto do_fault;
}
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
mmu_idx, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
type = (desc & 3);
domain = (desc >> 5) & 0x0f;
if (regime_el(env, mmu_idx) == 1) {
dacr = env->cp15.dacr_ns;
} else {
dacr = env->cp15.dacr_s;
}
domain_prot = (dacr >> (domain * 2)) & 3;
if (type == 0) {
/* Section translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
}
if (type != 2) {
level = 2;
}
if (domain_prot == 0 || domain_prot == 2) {
fi->type = ARMFault_Domain;
goto do_fault;
}
if (type == 2) {
/* 1Mb section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
ap = (desc >> 10) & 3;
*page_size = 1024 * 1024;
} else {
/* Lookup l2 entry. */
if (type == 1) {
/* Coarse pagetable. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
} else {
/* Fine pagetable. */
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
}
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
mmu_idx, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
switch (desc & 3) {
case 0: /* Page translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
*page_size = 0x10000;
break;
case 2: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
*page_size = 0x1000;
break;
case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
if (type == 1) {
/* ARMv6/XScale extended small page format */
if (arm_feature(env, ARM_FEATURE_XSCALE)
|| arm_feature(env, ARM_FEATURE_V6)) {
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
*page_size = 0x1000;
} else {
/* UNPREDICTABLE in ARMv5; we choose to take a
* page translation fault.
*/
fi->type = ARMFault_Translation;
goto do_fault;
}
} else {
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
*page_size = 0x400;
}
ap = (desc >> 4) & 3;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
}
*prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
*prot |= *prot ? PAGE_EXEC : 0;
if (!(*prot & (1 << access_type))) {
/* Access permission fault. */
fi->type = ARMFault_Permission;
goto do_fault;
}
*phys_ptr = phys_addr;
return false;
do_fault:
fi->domain = domain;
fi->level = level;
return true;
}
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size, ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
ARMCPU *cpu = env_archcpu(env);
int level = 1;
uint32_t table;
uint32_t desc;
uint32_t xn;
uint32_t pxn = 0;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
uint32_t dacr;
bool ns;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, mmu_idx, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
fi->type = ARMFault_Translation;
goto do_fault;
}
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
mmu_idx, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
type = (desc & 3);
if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
/* Section translation fault, or attempt to use the encoding
* which is Reserved on implementations without PXN.
*/
fi->type = ARMFault_Translation;
goto do_fault;
}
if ((type == 1) || !(desc & (1 << 18))) {
/* Page or Section. */
domain = (desc >> 5) & 0x0f;
}
if (regime_el(env, mmu_idx) == 1) {
dacr = env->cp15.dacr_ns;
} else {
dacr = env->cp15.dacr_s;
}
if (type == 1) {
level = 2;
}
domain_prot = (dacr >> (domain * 2)) & 3;
if (domain_prot == 0 || domain_prot == 2) {
/* Section or Page domain fault */
fi->type = ARMFault_Domain;
goto do_fault;
}
if (type != 1) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
*page_size = 0x1000000;
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
*page_size = 0x100000;
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
pxn = desc & 1;
ns = extract32(desc, 19, 1);
} else {
if (cpu_isar_feature(aa32_pxn, cpu)) {
pxn = (desc >> 2) & 1;
}
ns = extract32(desc, 3, 1);
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
mmu_idx, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
*page_size = 0x10000;
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
*page_size = 0x1000;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
}
if (domain_prot == 3) {
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
} else {
if (pxn && !regime_is_user(env, mmu_idx)) {
xn = 1;
}
if (xn && access_type == MMU_INST_FETCH) {
fi->type = ARMFault_Permission;
goto do_fault;
}
if (arm_feature(env, ARM_FEATURE_V6K) &&
(regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
/* The simplified model uses AP[0] as an access control bit. */
if ((ap & 1) == 0) {
/* Access flag fault. */
fi->type = ARMFault_AccessFlag;
goto do_fault;
}
*prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
} else {
*prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
}
if (*prot && !xn) {
*prot |= PAGE_EXEC;
}
if (!(*prot & (1 << access_type))) {
/* Access permission fault. */
fi->type = ARMFault_Permission;
goto do_fault;
}
}
if (ns) {
/* The NS bit will (as required by the architecture) have no effect if
* the CPU doesn't support TZ or this is a non-secure translation
* regime, because the attribute will already be non-secure.
*/
attrs->secure = false;
}
*phys_ptr = phys_addr;
return false;
do_fault:
fi->domain = domain;
fi->level = level;
return true;
}
/*
* check_s2_mmu_setup
* @cpu: ARMCPU
* @is_aa64: True if the translation regime is in AArch64 state
* @startlevel: Suggested starting level
* @inputsize: Bitsize of IPAs
* @stride: Page-table stride (See the ARM ARM)
*
* Returns true if the suggested S2 translation parameters are OK and
* false otherwise.
*/
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
int inputsize, int stride)
{
const int grainsize = stride + 3;
int startsizecheck;
/* Negative levels are never allowed. */
if (level < 0) {
return false;
}
startsizecheck = inputsize - ((3 - level) * stride + grainsize);
if (startsizecheck < 1 || startsizecheck > stride + 4) {
return false;
}
if (is_aa64) {
CPUARMState *env = &cpu->env;
unsigned int pamax = arm_pamax(cpu);
switch (stride) {
case 13: /* 64KB Pages. */
if (level == 0 || (level == 1 && pamax <= 42)) {
return false;
}
break;
case 11: /* 16KB Pages. */
if (level == 0 || (level == 1 && pamax <= 40)) {
return false;
}
break;
case 9: /* 4KB Pages. */
if (level == 0 && pamax <= 42) {
return false;
}
break;
default:
g_assert_not_reached();
}
/* Inputsize checks. */
if (inputsize > pamax &&
(arm_el_is_aa64(env, 1) || inputsize > 40)) {
/* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
return false;
}
} else {
/* AArch32 only supports 4KB pages. Assert on that. */
assert(stride == 9);
if (level == 0) {
return false;
}
}
return true;
}
/* Translate from the 4-bit stage 2 representation of
* memory attributes (without cache-allocation hints) to
* the 8-bit representation of the stage 1 MAIR registers
* (which includes allocation hints).
*
* ref: shared/translation/attrs/S2AttrDecode()
* .../S2ConvertAttrsHints()
*/
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
{
uint8_t hiattr = extract32(s2attrs, 2, 2);
uint8_t loattr = extract32(s2attrs, 0, 2);
uint8_t hihint = 0, lohint = 0;
if (hiattr != 0) { /* normal memory */
if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
hiattr = loattr = 1; /* non-cacheable */
} else {
if (hiattr != 1) { /* Write-through or write-back */
hihint = 3; /* RW allocate */
}
if (loattr != 1) { /* Write-through or write-back */
lohint = 3; /* RW allocate */
}
}
}
return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}
#endif /* !CONFIG_USER_ONLY */
static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 37, 2);
} else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
return 0; /* VTCR_EL2 */
} else {
/* Replicate the single TBI bit so we always have 2 bits. */
return extract32(tcr, 20, 1) * 3;
}
}
static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 51, 2);
} else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
return 0; /* VTCR_EL2 */
} else {
/* Replicate the single TBID bit so we always have 2 bits. */
return extract32(tcr, 29, 1) * 3;
}
}
static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 57, 2);
} else {
/* Replicate the single TCMA bit so we always have 2 bits. */
return extract32(tcr, 30, 1) * 3;
}
}
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx, bool data)
{
uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
bool epd, hpd, using16k, using64k;
int select, tsz, tbi, max_tsz;
if (!regime_has_2_ranges(mmu_idx)) {
select = 0;
tsz = extract32(tcr, 0, 6);
using64k = extract32(tcr, 14, 1);
using16k = extract32(tcr, 15, 1);
if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
/* VTCR_EL2 */
hpd = false;
} else {
hpd = extract32(tcr, 24, 1);
}
epd = false;
} else {
/*
* Bit 55 is always between the two regions, and is canonical for
* determining if address tagging is enabled.
*/
select = extract64(va, 55, 1);
if (!select) {
tsz = extract32(tcr, 0, 6);
epd = extract32(tcr, 7, 1);
using64k = extract32(tcr, 14, 1);
using16k = extract32(tcr, 15, 1);
hpd = extract64(tcr, 41, 1);
} else {
int tg = extract32(tcr, 30, 2);
using16k = tg == 1;
using64k = tg == 3;
tsz = extract32(tcr, 16, 6);
epd = extract32(tcr, 23, 1);
hpd = extract64(tcr, 42, 1);
}
}
if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
max_tsz = 48 - using64k;
} else {
max_tsz = 39;
}
tsz = MIN(tsz, max_tsz);
tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
/* Present TBI as a composite with TBID. */
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (!data) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> select) & 1;
return (ARMVAParameters) {
.tsz = tsz,
.select = select,
.tbi = tbi,
.epd = epd,
.hpd = hpd,
.using16k = using16k,
.using64k = using64k,
};
}
#ifndef CONFIG_USER_ONLY
static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
ARMMMUIdx mmu_idx)
{
uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
uint32_t el = regime_el(env, mmu_idx);
int select, tsz;
bool epd, hpd;
assert(mmu_idx != ARMMMUIdx_Stage2_S);
if (mmu_idx == ARMMMUIdx_Stage2) {
/* VTCR */
bool sext = extract32(tcr, 4, 1);
bool sign = extract32(tcr, 3, 1);
/*
* If the sign-extend bit is not the same as t0sz[3], the result
* is unpredictable. Flag this as a guest error.
*/
if (sign != sext) {
qemu_log_mask(LOG_GUEST_ERROR,
"AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
}
tsz = sextract32(tcr, 0, 4) + 8;
select = 0;
hpd = false;
epd = false;
} else if (el == 2) {
/* HTCR */
tsz = extract32(tcr, 0, 3);
select = 0;
hpd = extract64(tcr, 24, 1);
epd = false;
} else {
int t0sz = extract32(tcr, 0, 3);
int t1sz = extract32(tcr, 16, 3);
if (t1sz == 0) {
select = va > (0xffffffffu >> t0sz);
} else {
/* Note that we will detect errors later. */
select = va >= ~(0xffffffffu >> t1sz);
}
if (!select) {
tsz = t0sz;
epd = extract32(tcr, 7, 1);
hpd = extract64(tcr, 41, 1);
} else {
tsz = t1sz;
epd = extract32(tcr, 23, 1);
hpd = extract64(tcr, 42, 1);
}
/* For aarch32, hpd0 is not enabled without t2e as well. */
hpd &= extract32(tcr, 6, 1);
}
return (ARMVAParameters) {
.tsz = tsz,
.select = select,
.epd = epd,
.hpd = hpd,
};
}
/**
* get_phys_addr_lpae: perform one stage of page table walk, LPAE format
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a long-format
* DFSR/IFSR fault register, with the following caveats:
* * the WnR bit is never set (the caller must do this).
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
* @mmu_idx: MMU index indicating required translation regime
* @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
* walk), must be true if this is stage 2 of a stage 1+2 walk for an
* EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
* @phys_ptr: set to the physical address corresponding to the virtual address
* @attrs: set to the memory transaction attributes to use
* @prot: set to the permissions for the page containing phys_ptr
* @page_size_ptr: set to the size of the page containing phys_ptr
* @fi: set to fault info if the translation fails
* @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
*/
static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
ARMCPU *cpu = env_archcpu(env);
CPUState *cs = CPU(cpu);
/* Read an LPAE long-descriptor translation table. */
ARMFaultType fault_type = ARMFault_Translation;
uint32_t level;
ARMVAParameters param;
uint64_t ttbr;
hwaddr descaddr, indexmask, indexmask_grainsize;
uint32_t tableattrs;
target_ulong page_size;
uint32_t attrs;
int32_t stride;
int addrsize, inputsize;
TCR *tcr = regime_tcr(env, mmu_idx);
int ap, ns, xn, pxn;
uint32_t el = regime_el(env, mmu_idx);
uint64_t descaddrmask;
bool aarch64 = arm_el_is_aa64(env, el);
bool guarded = false;
/* TODO: This code does not support shareability levels. */
if (aarch64) {
param = aa64_va_parameters(env, address, mmu_idx,
access_type != MMU_INST_FETCH);
level = 0;
addrsize = 64 - 8 * param.tbi;
inputsize = 64 - param.tsz;
} else {
param = aa32_va_parameters(env, address, mmu_idx);
level = 1;
addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
inputsize = addrsize - param.tsz;
}
/*
* We determined the region when collecting the parameters, but we
* have not yet validated that the address is valid for the region.
* Extract the top bits and verify that they all match select.
*
* For aa32, if inputsize == addrsize, then we have selected the
* region by exclusion in aa32_va_parameters and there is no more
* validation to do here.
*/
if (inputsize < addrsize) {
target_ulong top_bits = sextract64(address, inputsize,
addrsize - inputsize);
if (-top_bits != param.select) {
/* The gap between the two regions is a Translation fault */
fault_type = ARMFault_Translation;
goto do_fault;
}
}
if (param.using64k) {
stride = 13;
} else if (param.using16k) {
stride = 11;
} else {
stride = 9;
}
/* Note that QEMU ignores shareability and cacheability attributes,
* so we don't need to do anything with the SH, ORGN, IRGN fields
* in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
* ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
* implement any ASID-like capability so we can ignore it (instead
* we will always flush the TLB any time the ASID is changed).
*/
ttbr = regime_ttbr(env, mmu_idx, param.select);
/* Here we should have set up all the parameters for the translation:
* inputsize, ttbr, epd, stride, tbi
*/
if (param.epd) {
/* Translation table walk disabled => Translation fault on TLB miss
* Note: This is always 0 on 64-bit EL2 and EL3.
*/
goto do_fault;
}
if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
/* The starting level depends on the virtual address size (which can
* be up to 48 bits) and the translation granule size. It indicates
* the number of strides (stride bits at a time) needed to
* consume the bits of the input address. In the pseudocode this is:
* level = 4 - RoundUp((inputsize - grainsize) / stride)
* where their 'inputsize' is our 'inputsize', 'grainsize' is
* our 'stride + 3' and 'stride' is our 'stride'.
* Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
* = 4 - (inputsize - stride - 3 + stride - 1) / stride
* = 4 - (inputsize - 4) / stride;
*/
level = 4 - (inputsize - 4) / stride;
} else {
/* For stage 2 translations the starting level is specified by the
* VTCR_EL2.SL0 field (whose interpretation depends on the page size)
*/
uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
uint32_t startlevel;
bool ok;
if (!aarch64 || stride == 9) {
/* AArch32 or 4KB pages */
startlevel = 2 - sl0;
if (cpu_isar_feature(aa64_st, cpu)) {
startlevel &= 3;
}
} else {
/* 16KB or 64KB pages */
startlevel = 3 - sl0;
}
/* Check that the starting level is valid. */
ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
inputsize, stride);
if (!ok) {
fault_type = ARMFault_Translation;
goto do_fault;
}
level = startlevel;
}
indexmask_grainsize = (1ULL << (stride + 3)) - 1;
indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
/* Now we can extract the actual base address from the TTBR */
descaddr = extract64(ttbr, 0, 48);
/*
* We rely on this masking to clear the RES0 bits at the bottom of the TTBR
* and also to mask out CnP (bit 0) which could validly be non-zero.
*/
descaddr &= ~indexmask;
/* The address field in the descriptor goes up to bit 39 for ARMv7
* but up to bit 47 for ARMv8, but we use the descaddrmask
* up to bit 39 for AArch32, because we don't need other bits in that case
* to construct next descriptor address (anyway they should be all zeroes).
*/
descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
~indexmask_grainsize;
/* Secure accesses start with the page table in secure memory and
* can be downgraded to non-secure at any step. Non-secure accesses
* remain non-secure. We implement this by just ORing in the NSTable/NS
* bits at each step.
*/
tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
for (;;) {
uint64_t descriptor;
bool nstable;
descaddr |= (address >> (stride * (4 - level))) & indexmask;
descaddr &= ~7ULL;
nstable = extract32(tableattrs, 4, 1);
descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
if (!(descriptor & 1) ||
(!(descriptor & 2) && (level == 3))) {
/* Invalid, or the Reserved level 3 encoding */
goto do_fault;
}
descaddr = descriptor & descaddrmask;
if ((descriptor & 2) && (level < 3)) {
/* Table entry. The top five bits are attributes which may
* propagate down through lower levels of the table (and
* which are all arranged so that 0 means "no effect", so
* we can gather them up by ORing in the bits at each level).
*/
tableattrs |= extract64(descriptor, 59, 5);
level++;
indexmask = indexmask_grainsize;
continue;
}
/* Block entry at level 1 or 2, or page entry at level 3.
* These are basically the same thing, although the number
* of bits we pull in from the vaddr varies.
*/
page_size = (1ULL << ((stride * (4 - level)) + 3));
descaddr |= (address & (page_size - 1));
/* Extract attributes from the descriptor */
attrs = extract64(descriptor, 2, 10)
| (extract64(descriptor, 52, 12) << 10);
if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
/* Stage 2 table descriptors do not include any attribute fields */
break;
}
/* Merge in attributes from table descriptors */
attrs |= nstable << 3; /* NS */
guarded = extract64(descriptor, 50, 1); /* GP */
if (param.hpd) {
/* HPD disables all the table attributes except NSTable. */
break;
}
attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
/* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
* means "force PL1 access only", which means forcing AP[1] to 0.
*/
attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
break;
}
/* Here descaddr is the final physical address, and attributes
* are all in attrs.
*/
fault_type = ARMFault_AccessFlag;
if ((attrs & (1 << 8)) == 0) {
/* Access flag */
goto do_fault;
}
ap = extract32(attrs, 4, 2);
if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
ns = mmu_idx == ARMMMUIdx_Stage2;
xn = extract32(attrs, 11, 2);
*prot = get_S2prot(env, ap, xn, s1_is_el0);
} else {
ns = extract32(attrs, 3, 1);
xn = extract32(attrs, 12, 1);
pxn = extract32(attrs, 11, 1);
*prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
}
fault_type = ARMFault_Permission;
if (!(*prot & (1 << access_type))) {
goto do_fault;
}
if (ns) {
/* The NS bit will (as required by the architecture) have no effect if
* the CPU doesn't support TZ or this is a non-secure translation
* regime, because the attribute will already be non-secure.
*/
txattrs->secure = false;
}
/* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
arm_tlb_bti_gp(txattrs) = true;
}
if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
} else {
/* Index into MAIR registers for cache attributes */
uint8_t attrindx = extract32(attrs, 0, 3);
uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
assert(attrindx <= 7);
cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
}
cacheattrs->shareability = extract32(attrs, 6, 2);
*phys_ptr = descaddr;
*page_size_ptr = page_size;
return false;
do_fault:
fi->type = fault_type;
fi->level = level;
/* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
mmu_idx == ARMMMUIdx_Stage2_S);
fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
return true;
}
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
ARMMMUIdx mmu_idx,
int32_t address, int *prot)
{
if (!arm_feature(env, ARM_FEATURE_M)) {
*prot = PAGE_READ | PAGE_WRITE;
switch (address) {
case 0xF0000000 ... 0xFFFFFFFF:
if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
/* hivecs execing is ok */
*prot |= PAGE_EXEC;
}
break;
case 0x00000000 ... 0x7FFFFFFF:
*prot |= PAGE_EXEC;
break;
}
} else {
/* Default system address map for M profile cores.
* The architecture specifies which regions are execute-never;
* at the MPU level no other checks are defined.
*/
switch (address) {
case 0x00000000 ... 0x1fffffff: /* ROM */
case 0x20000000 ... 0x3fffffff: /* SRAM */
case 0x60000000 ... 0x7fffffff: /* RAM */
case 0x80000000 ... 0x9fffffff: /* RAM */
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
break;
case 0x40000000 ... 0x5fffffff: /* Peripheral */
case 0xa0000000 ... 0xbfffffff: /* Device */
case 0xc0000000 ... 0xdfffffff: /* Device */
case 0xe0000000 ... 0xffffffff: /* System */
*prot = PAGE_READ | PAGE_WRITE;
break;
default:
g_assert_not_reached();
}
}
}
static bool pmsav7_use_background_region(ARMCPU *cpu,
ARMMMUIdx mmu_idx, bool is_user)
{
/* Return true if we should use the default memory map as a
* "background" region if there are no hits against any MPU regions.
*/
CPUARMState *env = &cpu->env;
if (is_user) {
return false;
}
if (arm_feature(env, ARM_FEATURE_M)) {
return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
& R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
} else {
return regime_sctlr(env, mmu_idx) & SCTLR_BR;
}
}
static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
/* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
return arm_feature(env, ARM_FEATURE_M) &&
extract32(address, 20, 12) == 0xe00;
}
static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
{
/* True if address is in the M profile system region
* 0xe0000000 - 0xffffffff
*/
return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
int n;
bool is_user = regime_is_user(env, mmu_idx);
*phys_ptr = address;
*page_size = TARGET_PAGE_SIZE;
*prot = 0;
if (regime_translation_disabled(env, mmu_idx) ||
m_is_ppb_region(env, address)) {
/* MPU disabled or M profile PPB access: use default memory map.
* The other case which uses the default memory map in the
* v7M ARM ARM pseudocode is exception vector reads from the vector
* table. In QEMU those accesses are done in arm_v7m_load_vector(),
* which always does a direct read using address_space_ldl(), rather
* than going via this function, so we don't need to check that here.
*/
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
} else { /* MPU enabled */
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
/* region search */
uint32_t base = env->pmsav7.drbar[n];
uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
uint32_t rmask;
bool srdis = false;
if (!(env->pmsav7.drsr[n] & 0x1)) {
continue;
}
if (!rsize) {
qemu_log_mask(LOG_GUEST_ERROR,
"DRSR[%d]: Rsize field cannot be 0\n", n);
continue;
}
rsize++;
rmask = (1ull << rsize) - 1;
if (base & rmask) {
qemu_log_mask(LOG_GUEST_ERROR,
"DRBAR[%d]: 0x%" PRIx32 " misaligned "
"to DRSR region size, mask = 0x%" PRIx32 "\n",
n, base, rmask);
continue;
}
if (address < base || address > base + rmask) {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result in
* incorrect TLB hits for subsequent accesses to addresses that
* are in this MPU region.
*/
if (ranges_overlap(base, rmask,
address & TARGET_PAGE_MASK,
TARGET_PAGE_SIZE)) {
*page_size = 1;
}
continue;
}
/* Region matched */
if (rsize >= 8) { /* no subregions for regions < 256 bytes */
int i, snd;
uint32_t srdis_mask;
rsize -= 3; /* sub region size (power of 2) */
snd = ((address - base) >> rsize) & 0x7;
srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
srdis_mask = srdis ? 0x3 : 0x0;
for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
/* This will check in groups of 2, 4 and then 8, whether
* the subregion bits are consistent. rsize is incremented
* back up to give the region size, considering consistent
* adjacent subregions as one region. Stop testing if rsize
* is already big enough for an entire QEMU page.
*/
int snd_rounded = snd & ~(i - 1);
uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
snd_rounded + 8, i);
if (srdis_mask ^ srdis_multi) {
break;
}
srdis_mask = (srdis_mask << i) | srdis_mask;
rsize++;
}
}
if (srdis) {
continue;
}
if (rsize < TARGET_PAGE_BITS) {
*page_size = 1 << rsize;
}
break;
}
if (n == -1) { /* no hits */
if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
/* background fault */
fi->type = ARMFault_Background;
return true;
}
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
} else { /* a MPU hit! */
uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
if (m_is_system_region(env, address)) {
/* System space is always execute never */
xn = 1;
}
if (is_user) { /* User mode AP bit decoding */
switch (ap) {
case 0:
case 1:
case 5:
break; /* no access */
case 3:
*prot |= PAGE_WRITE;
/* fall through */
case 2:
case 6:
*prot |= PAGE_READ | PAGE_EXEC;
break;
case 7:
/* for v7M, same as 6; for R profile a reserved value */
if (arm_feature(env, ARM_FEATURE_M)) {
*prot |= PAGE_READ | PAGE_EXEC;
break;
}
/* fall through */
default:
qemu_log_mask(LOG_GUEST_ERROR,
"DRACR[%d]: Bad value for AP bits: 0x%"
PRIx32 "\n", n, ap);
}
} else { /* Priv. mode AP bits decoding */
switch (ap) {
case 0:
break; /* no access */
case 1:
case 2:
case 3:
*prot |= PAGE_WRITE;
/* fall through */
case 5:
case 6:
*prot |= PAGE_READ | PAGE_EXEC;
break;
case 7:
/* for v7M, same as 6; for R profile a reserved value */
if (arm_feature(env, ARM_FEATURE_M)) {
*prot |= PAGE_READ | PAGE_EXEC;
break;
}
/* fall through */
default:
qemu_log_mask(LOG_GUEST_ERROR,
"DRACR[%d]: Bad value for AP bits: 0x%"
PRIx32 "\n", n, ap);
}
}
/* execute never */
if (xn) {
*prot &= ~PAGE_EXEC;
}
}
}
fi->type = ARMFault_Permission;
fi->level = 1;
return !(*prot & (1 << access_type));
}
static bool v8m_is_sau_exempt(CPUARMState *env,
uint32_t address, MMUAccessType access_type)
{
/* The architecture specifies that certain address ranges are
* exempt from v8M SAU/IDAU checks.
*/
return
(access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
(address >= 0xe0000000 && address <= 0xe0002fff) ||
(address >= 0xe000e000 && address <= 0xe000efff) ||
(address >= 0xe002e000 && address <= 0xe002efff) ||
(address >= 0xe0040000 && address <= 0xe0041fff) ||
(address >= 0xe00ff000 && address <= 0xe00fffff);
}
void v8m_security_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
V8M_SAttributes *sattrs)
{
/* Look up the security attributes for this address. Compare the
* pseudocode SecurityCheck() function.
* We assume the caller has zero-initialized *sattrs.
*/
ARMCPU *cpu = env_archcpu(env);
int r;
bool idau_exempt = false, idau_ns = true, idau_nsc = true;
int idau_region = IREGION_NOTVALID;
uint32_t addr_page_base = address & TARGET_PAGE_MASK;
uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
if (cpu->idau) {
IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
&idau_nsc);
}
if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
/* 0xf0000000..0xffffffff is always S for insn fetches */
return;
}
if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
sattrs->ns = !regime_is_secure(env, mmu_idx);
return;
}
if (idau_region != IREGION_NOTVALID) {
sattrs->irvalid = true;
sattrs->iregion = idau_region;
}
switch (env->sau.ctrl & 3) {
case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
break;
case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
sattrs->ns = true;
break;
default: /* SAU.ENABLE == 1 */
for (r = 0; r < cpu->sau_sregion; r++) {
if (env->sau.rlar[r] & 1) {
uint32_t base = env->sau.rbar[r] & ~0x1f;
uint32_t limit = env->sau.rlar[r] | 0x1f;
if (base <= address && limit >= address) {
if (base > addr_page_base || limit < addr_page_limit) {
sattrs->subpage = true;
}
if (sattrs->srvalid) {
/* If we hit in more than one region then we must report
* as Secure, not NS-Callable, with no valid region
* number info.
*/
sattrs->ns = false;
sattrs->nsc = false;
sattrs->sregion = 0;
sattrs->srvalid = false;
break;
} else {
if (env->sau.rlar[r] & 2) {
sattrs->nsc = true;
} else {
sattrs->ns = true;
}
sattrs->srvalid = true;
sattrs->sregion = r;
}
} else {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result
* in incorrect TLB hits for subsequent accesses to
* addresses that are in this MPU region.
*/
if (limit >= base &&
ranges_overlap(base, limit - base + 1,
addr_page_base,
TARGET_PAGE_SIZE)) {
sattrs->subpage = true;
}
}
}
}
break;
}
/*
* The IDAU will override the SAU lookup results if it specifies
* higher security than the SAU does.
*/
if (!idau_ns) {
if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
sattrs->ns = false;
sattrs->nsc = idau_nsc;
}
}
}
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, bool *is_subpage,
ARMMMUFaultInfo *fi, uint32_t *mregion)
{
/* Perform a PMSAv8 MPU lookup (without also doing the SAU check
* that a full phys-to-virt translation does).
* mregion is (if not NULL) set to the region number which matched,
* or -1 if no region number is returned (MPU off, address did not
* hit a region, address hit in multiple regions).
* We set is_subpage to true if the region hit doesn't cover the
* entire TARGET_PAGE the address is within.
*/
ARMCPU *cpu = env_archcpu(env);
bool is_user = regime_is_user(env, mmu_idx);
uint32_t secure = regime_is_secure(env, mmu_idx);
int n;
int matchregion = -1;
bool hit = false;
uint32_t addr_page_base = address & TARGET_PAGE_MASK;
uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
*is_subpage = false;
*phys_ptr = address;
*prot = 0;
if (mregion) {
*mregion = -1;
}
/* Unlike the ARM ARM pseudocode, we don't need to check whether this
* was an exception vector read from the vector table (which is always
* done using the default system address map), because those accesses
* are done in arm_v7m_load_vector(), which always does a direct
* read using address_space_ldl(), rather than going via this function.
*/
if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
hit = true;
} else if (m_is_ppb_region(env, address)) {
hit = true;
} else {
if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
hit = true;
}
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
/* region search */
/* Note that the base address is bits [31:5] from the register
* with bits [4:0] all zeroes, but the limit address is bits
* [31:5] from the register with bits [4:0] all ones.
*/
uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
/* Region disabled */
continue;
}
if (address < base || address > limit) {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result in
* incorrect TLB hits for subsequent accesses to addresses that
* are in this MPU region.
*/
if (limit >= base &&
ranges_overlap(base, limit - base + 1,
addr_page_base,
TARGET_PAGE_SIZE)) {
*is_subpage = true;
}
continue;
}
if (base > addr_page_base || limit < addr_page_limit) {
*is_subpage = true;
}
if (matchregion != -1) {
/* Multiple regions match -- always a failure (unlike
* PMSAv7 where highest-numbered-region wins)
*/
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
matchregion = n;
hit = true;
}
}
if (!hit) {
/* background fault */
fi->type = ARMFault_Background;
return true;
}
if (matchregion == -1) {
/* hit using the background region */
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
} else {
uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
bool pxn = false;
if (arm_feature(env, ARM_FEATURE_V8_1M)) {
pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
}
if (m_is_system_region(env, address)) {
/* System space is always execute never */
xn = 1;
}
*prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
if (*prot && !xn && !(pxn && !is_user)) {
*prot |= PAGE_EXEC;
}
/* We don't need to look the attribute up in the MAIR0/MAIR1
* registers because that only tells us about cacheability.
*/
if (mregion) {
*mregion = matchregion;
}
}
fi->type = ARMFault_Permission;
fi->level = 1;
return !(*prot & (1 << access_type));
}
static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
uint32_t secure = regime_is_secure(env, mmu_idx);
V8M_SAttributes sattrs = {};
bool ret;
bool mpu_is_subpage;
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
if (access_type == MMU_INST_FETCH) {
/* Instruction fetches always use the MMU bank and the
* transaction attribute determined by the fetch address,
* regardless of CPU state. This is painful for QEMU
* to handle, because it would mean we need to encode
* into the mmu_idx not just the (user, negpri) information
* for the current security state but also that for the
* other security state, which would balloon the number
* of mmu_idx values needed alarmingly.
* Fortunately we can avoid this because it's not actually
* possible to arbitrarily execute code from memory with
* the wrong security attribute: it will always generate
* an exception of some kind or another, apart from the
* special case of an NS CPU executing an SG instruction
* in S&NSC memory. So we always just fail the translation
* here and sort things out in the exception handler
* (including possibly emulating an SG instruction).
*/
if (sattrs.ns != !secure) {
if (sattrs.nsc) {
fi->type = ARMFault_QEMU_NSCExec;
} else {
fi->type = ARMFault_QEMU_SFault;
}
*page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
*phys_ptr = address;
*prot = 0;
return true;
}
} else {
/* For data accesses we always use the MMU bank indicated
* by the current CPU state, but the security attributes
* might downgrade a secure access to nonsecure.
*/
if (sattrs.ns) {
txattrs->secure = false;
} else if (!secure) {
/* NS access to S memory must fault.
* Architecturally we should first check whether the
* MPU information for this address indicates that we
* are doing an unaligned access to Device memory, which
* should generate a UsageFault instead. QEMU does not
* currently check for that kind of unaligned access though.
* If we added it we would need to do so as a special case
* for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
*/
fi->type = ARMFault_QEMU_SFault;
*page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
*phys_ptr = address;
*prot = 0;
return true;
}
}
}
ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
txattrs, prot, &mpu_is_subpage, fi, NULL);
*page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
return ret;
}
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
ARMMMUFaultInfo *fi)
{
int n;
uint32_t mask;
uint32_t base;
bool is_user = regime_is_user(env, mmu_idx);
if (regime_translation_disabled(env, mmu_idx)) {
/* MPU disabled. */
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return false;
}
*phys_ptr = address;
for (n = 7; n >= 0; n--) {
base = env->cp15.c6_region[n];
if ((base & 1) == 0) {
continue;
}
mask = 1 << ((base >> 1) & 0x1f);
/* Keep this shift separate from the above to avoid an
(undefined) << 32. */
mask = (mask << 1) - 1;
if (((base ^ address) & ~mask) == 0) {
break;
}
}
if (n < 0) {
fi->type = ARMFault_Background;
return true;
}
if (access_type == MMU_INST_FETCH) {
mask = env->cp15.pmsav5_insn_ap;
} else {
mask = env->cp15.pmsav5_data_ap;
}
mask = (mask >> (n * 4)) & 0xf;
switch (mask) {
case 0:
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
case 1:
if (is_user) {
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
*prot = PAGE_READ | PAGE_WRITE;
break;
case 2:
*prot = PAGE_READ;
if (!is_user) {
*prot |= PAGE_WRITE;
}
break;
case 3:
*prot = PAGE_READ | PAGE_WRITE;
break;
case 5:
if (is_user) {
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
*prot = PAGE_READ;
break;
case 6:
*prot = PAGE_READ;
break;
default:
/* Bad permission. */
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
*prot |= PAGE_EXEC;
return false;
}
/* Combine either inner or outer cacheability attributes for normal
* memory, according to table D4-42 and pseudocode procedure
* CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
*
* NB: only stage 1 includes allocation hints (RW bits), leading to
* some asymmetry.
*/
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
if (s1 == 4 || s2 == 4) {
/* non-cacheable has precedence */
return 4;
} else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
/* stage 1 write-through takes precedence */
return s1;
} else if (extract32(s2, 2, 2) == 2) {
/* stage 2 write-through takes precedence, but the allocation hint
* is still taken from stage 1
*/
return (2 << 2) | extract32(s1, 0, 2);
} else { /* write-back */
return s1;
}
}
/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
* and CombineS1S2Desc()
*
* @s1: Attributes from stage 1 walk
* @s2: Attributes from stage 2 walk
*/
static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
{
uint8_t s1lo, s2lo, s1hi, s2hi;
ARMCacheAttrs ret;
bool tagged = false;
if (s1.attrs == 0xf0) {
tagged = true;
s1.attrs = 0xff;
}
s1lo = extract32(s1.attrs, 0, 4);
s2lo = extract32(s2.attrs, 0, 4);
s1hi = extract32(s1.attrs, 4, 4);
s2hi = extract32(s2.attrs, 4, 4);
/* Combine shareability attributes (table D4-43) */
if (s1.shareability == 2 || s2.shareability == 2) {
/* if either are outer-shareable, the result is outer-shareable */
ret.shareability = 2;
} else if (s1.shareability == 3 || s2.shareability == 3) {
/* if either are inner-shareable, the result is inner-shareable */
ret.shareability = 3;
} else {
/* both non-shareable */
ret.shareability = 0;
}
/* Combine memory type and cacheability attributes */
if (s1hi == 0 || s2hi == 0) {
/* Device has precedence over normal */
if (s1lo == 0 || s2lo == 0) {
/* nGnRnE has precedence over anything */
ret.attrs = 0;
} else if (s1lo == 4 || s2lo == 4) {
/* non-Reordering has precedence over Reordering */
ret.attrs = 4; /* nGnRE */
} else if (s1lo == 8 || s2lo == 8) {
/* non-Gathering has precedence over Gathering */
ret.attrs = 8; /* nGRE */
} else {
ret.attrs = 0xc; /* GRE */
}
/* Any location for which the resultant memory type is any
* type of Device memory is always treated as Outer Shareable.
*/
ret.shareability = 2;
} else { /* Normal memory */
/* Outer/inner cacheability combine independently */
ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
| combine_cacheattr_nibble(s1lo, s2lo);
if (ret.attrs == 0x44) {
/* Any location for which the resultant memory type is Normal
* Inner Non-cacheable, Outer Non-cacheable is always treated
* as Outer Shareable.
*/
ret.shareability = 2;
}
}
/* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
if (tagged && ret.attrs == 0xff) {
ret.attrs = 0xf0;
}
return ret;
}
/* get_phys_addr - get the physical address for this virtual address
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for PSMAv5 based systems we don't bother to return a full FSR format
* value.
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @phys_ptr: set to the physical address corresponding to the virtual address
* @attrs: set to the memory transaction attributes to use
* @prot: set to the permissions for the page containing phys_ptr
* @page_size: set to the size of the page containing phys_ptr
* @fi: set to fault info if the translation fails
* @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
*/
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
if (mmu_idx != s1_mmu_idx) {
/* Call ourselves recursively to do the stage 1 and then stage 2
* translations if mmu_idx is a two-stage regime.
*/
if (arm_feature(env, ARM_FEATURE_EL2)) {
hwaddr ipa;
int s2_prot;
int ret;
ARMCacheAttrs cacheattrs2 = {};
ARMMMUIdx s2_mmu_idx;
bool is_el0;
ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
attrs, prot, page_size, fi, cacheattrs);
/* If S1 fails or S2 is disabled, return early. */
if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
*phys_ptr = ipa;
return ret;
}
s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
/* S1 is done. Now do S2 translation. */
ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
phys_ptr, attrs, &s2_prot,
page_size, fi, &cacheattrs2);
fi->s2addr = ipa;
/* Combine the S1 and S2 perms. */
*prot &= s2_prot;
/* If S2 fails, return early. */
if (ret) {
return ret;
}
/* Combine the S1 and S2 cache attributes. */
if (arm_hcr_el2_eff(env) & HCR_DC) {
/*
* HCR.DC forces the first stage attributes to
* Normal Non-Shareable,
* Inner Write-Back Read-Allocate Write-Allocate,
* Outer Write-Back Read-Allocate Write-Allocate.
* Do not overwrite Tagged within attrs.
*/
if (cacheattrs->attrs != 0xf0) {
cacheattrs->attrs = 0xff;
}
cacheattrs->shareability = 0;
}
*cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
/* Check if IPA translates to secure or non-secure PA space. */
if (arm_is_secure_below_el3(env)) {
if (attrs->secure) {
attrs->secure =
!(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
} else {
attrs->secure =
!((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
|| (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
}
}
return 0;
} else {
/*
* For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
*/
mmu_idx = stage_1_mmu_idx(mmu_idx);
}
}
/* The page table entries may downgrade secure to non-secure, but
* cannot upgrade an non-secure translation regime's attributes
* to secure.
*/
attrs->secure = regime_is_secure(env, mmu_idx);
attrs->user = regime_is_user(env, mmu_idx);
/* Fast Context Switch Extension. This doesn't exist at all in v8.
* In v7 and earlier it affects all stage 1 translations.
*/
if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
&& !arm_feature(env, ARM_FEATURE_V8)) {
if (regime_el(env, mmu_idx) == 3) {
address += env->cp15.fcseidr_s;
} else {
address += env->cp15.fcseidr_ns;
}
}
if (arm_feature(env, ARM_FEATURE_PMSA)) {
bool ret;
*page_size = TARGET_PAGE_SIZE;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
/* PMSAv7 */
ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
} else {
/* Pre-v7 MPU */
ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
phys_ptr, prot, fi);
}
qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
" mmu_idx %u -> %s (prot %c%c%c)\n",
access_type == MMU_DATA_LOAD ? "reading" :
(access_type == MMU_DATA_STORE ? "writing" : "execute"),
(uint32_t)address, mmu_idx,
ret ? "Miss" : "Hit",
*prot & PAGE_READ ? 'r' : '-',
*prot & PAGE_WRITE ? 'w' : '-',
*prot & PAGE_EXEC ? 'x' : '-');
return ret;
}
/* Definitely a real MMU, not an MPU */
if (regime_translation_disabled(env, mmu_idx)) {
uint64_t hcr;
uint8_t memattr;
/*
* MMU disabled. S1 addresses within aa64 translation regimes are
* still checked for bounds -- see AArch64.TranslateAddressS1Off.
*/
if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
int r_el = regime_el(env, mmu_idx);
if (arm_el_is_aa64(env, r_el)) {
int pamax = arm_pamax(env_archcpu(env));
uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
int addrtop, tbi;
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (access_type == MMU_INST_FETCH) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> extract64(address, 55, 1)) & 1;
addrtop = (tbi ? 55 : 63);
if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
fi->type = ARMFault_AddressSize;
fi->level = 0;
fi->stage2 = false;
return 1;
}
/*
* When TBI is disabled, we've just validated that all of the
* bits above PAMax are zero, so logically we only need to
* clear the top byte for TBI. But it's clearer to follow
* the pseudocode set of addrdesc.paddress.
*/
address = extract64(address, 0, 52);
}
}
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
/* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
hcr = arm_hcr_el2_eff(env);
cacheattrs->shareability = 0;
if (hcr & HCR_DC) {
if (hcr & HCR_DCT) {
memattr = 0xf0; /* Tagged, Normal, WB, RWA */
} else {
memattr = 0xff; /* Normal, WB, RWA */
}
} else if (access_type == MMU_INST_FETCH) {
if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
memattr = 0xee; /* Normal, WT, RA, NT */
} else {
memattr = 0x44; /* Normal, NC, No */
}
cacheattrs->shareability = 2; /* outer sharable */
} else {
memattr = 0x00; /* Device, nGnRnE */
}
cacheattrs->attrs = memattr;
return 0;
}
if (regime_using_lpae_format(env, mmu_idx)) {
return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
phys_ptr, attrs, prot, page_size,
fi, cacheattrs);
} else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
return get_phys_addr_v6(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else {
return get_phys_addr_v5(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
}
}
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
MemTxAttrs *attrs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
hwaddr phys_addr;
target_ulong page_size;
int prot;
bool ret;
ARMMMUFaultInfo fi = {};
ARMMMUIdx mmu_idx = arm_mmu_idx(env);
ARMCacheAttrs cacheattrs = {};
*attrs = (MemTxAttrs) {};
ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
attrs, &prot, &page_size, &fi, &cacheattrs);
if (ret) {
return -1;
}
return phys_addr;
}
#endif
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
/* Signed saturating arithmetic. */
/* Perform 16-bit signed saturating addition. */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating addition. */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
/* Perform 16-bit signed saturating subtraction. */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a - b;
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating subtraction. */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a - b;
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
#define PFX q
#include "op_addsub.h"
/* Unsigned saturating arithmetic. */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (res < a)
res = 0xffff;
return res;
}
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
if (a > b)
return a - b;
else
return 0;
}
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (res < a)
res = 0xff;
return res;
}
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return 0;
}
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
#define PFX uq
#include "op_addsub.h"
/* Signed modulo arithmetic. */
#define SARITH16(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
RESULT(sum, n, 16); \
if (sum >= 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SARITH8(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
RESULT(sum, n, 8); \
if (sum >= 0) \
ge |= 1 << n; \
} while(0)
#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n) SARITH8(a, b, n, +)
#define SUB8(a, b, n) SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE
#include "op_addsub.h"
/* Unsigned modulo arithmetic. */
#define ADD16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 1) \
ge |= 3 << (n * 2); \
} while(0)
#define ADD8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 1) \
ge |= 1 << n; \
} while(0)
#define SUB16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 1 << n; \
} while(0)
#define PFX u
#define ARITH_GE
#include "op_addsub.h"
/* Halved signed arithmetic. */
#define ADD16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh
#include "op_addsub.h"
/* Halved unsigned arithmetic. */
#define ADD16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh
#include "op_addsub.h"
static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return b - a;
}
/* Unsigned sum of absolute byte differences. */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
uint32_t sum;
sum = do_usad(a, b);
sum += do_usad(a >> 8, b >> 8);
sum += do_usad(a >> 16, b >> 16);
sum += do_usad(a >> 24, b >> 24);
return sum;
}
/* For ARMv6 SEL instruction. */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
uint32_t mask;
mask = 0;
if (flags & 1)
mask |= 0xff;
if (flags & 2)
mask |= 0xff00;
if (flags & 4)
mask |= 0xff0000;
if (flags & 8)
mask |= 0xff000000;
return (a & mask) | (b & ~mask);
}
/* CRC helpers.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
uint8_t buf[4];
stl_le_p(buf, val);
/* zlib crc32 converts the accumulator and output to one's complement. */
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
uint8_t buf[4];
stl_le_p(buf, val);
/* Linux crc32c converts the output to one's complement. */
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
/* Return the exception level to which FP-disabled exceptions should
* be taken, or 0 if FP is enabled.
*/
int fp_exception_el(CPUARMState *env, int cur_el)
{
#ifndef CONFIG_USER_ONLY
/* CPACR and the CPTR registers don't exist before v6, so FP is
* always accessible
*/
if (!arm_feature(env, ARM_FEATURE_V6)) {
return 0;
}
if (arm_feature(env, ARM_FEATURE_M)) {
/* CPACR can cause a NOCP UsageFault taken to current security state */
if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
return 1;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
if (!extract32(env->v7m.nsacr, 10, 1)) {
/* FP insns cause a NOCP UsageFault taken to Secure */
return 3;
}
}
return 0;
}
/* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
* 0, 2 : trap EL0 and EL1/PL1 accesses
* 1 : trap only EL0 accesses
* 3 : trap no accesses
* This register is ignored if E2H+TGE are both set.
*/
if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
switch (fpen) {
case 0:
case 2:
if (cur_el == 0 || cur_el == 1) {
/* Trap to PL1, which might be EL1 or EL3 */
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
return 3;
}
return 1;
}
if (cur_el == 3 && !is_a64(env)) {
/* Secure PL1 running at EL3 */
return 3;
}
break;
case 1:
if (cur_el == 0) {
return 1;
}
break;
case 3:
break;
}
}
/*
* The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
* to control non-secure access to the FPU. It doesn't have any
* effect if EL3 is AArch64 or if EL3 doesn't exist at all.
*/
if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
cur_el <= 2 && !arm_is_secure_below_el3(env))) {
if (!extract32(env->cp15.nsacr, 10, 1)) {
/* FP insns act as UNDEF */
return cur_el == 2 ? 2 : 1;
}
}
/* For the CPTR registers we don't need to guard with an ARM_FEATURE
* check because zero bits in the registers mean "don't trap".
*/
/* CPTR_EL2 : present in v7VE or v8 */
if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
&& arm_is_el2_enabled(env)) {
/* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
return 2;
}
/* CPTR_EL3 : present in v8 */
if (extract32(env->cp15.cptr_el[3], 10, 1)) {
/* Trap all FP ops to EL3 */
return 3;
}
#endif
return 0;
}
/* Return the exception level we're running at if this is our mmu_idx */
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
{
if (mmu_idx & ARM_MMU_IDX_M) {
return mmu_idx & ARM_MMU_IDX_M_PRIV;
}
switch (mmu_idx) {
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_SE10_0:
case ARMMMUIdx_SE20_0:
return 0;
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_SE10_1:
case ARMMMUIdx_SE10_1_PAN:
return 1;
case ARMMMUIdx_E2:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_SE2:
case ARMMMUIdx_SE20_2:
case ARMMMUIdx_SE20_2_PAN:
return 2;
case ARMMMUIdx_SE3:
return 3;
default:
g_assert_not_reached();
}
}
#ifndef CONFIG_TCG
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
{
g_assert_not_reached();
}
#endif
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
{
ARMMMUIdx idx;
uint64_t hcr;
if (arm_feature(env, ARM_FEATURE_M)) {
return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
}
/* See ARM pseudo-function ELIsInHost. */
switch (el) {
case 0:
hcr = arm_hcr_el2_eff(env);
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
idx = ARMMMUIdx_E20_0;
} else {
idx = ARMMMUIdx_E10_0;
}
break;
case 1:
if (env->pstate & PSTATE_PAN) {
idx = ARMMMUIdx_E10_1_PAN;
} else {
idx = ARMMMUIdx_E10_1;
}
break;
case 2:
/* Note that TGE does not apply at EL2. */
if (arm_hcr_el2_eff(env) & HCR_E2H) {
if (env->pstate & PSTATE_PAN) {
idx = ARMMMUIdx_E20_2_PAN;
} else {
idx = ARMMMUIdx_E20_2;
}
} else {
idx = ARMMMUIdx_E2;
}
break;
case 3:
return ARMMMUIdx_SE3;
default:
g_assert_not_reached();
}
if (arm_is_secure_below_el3(env)) {
idx &= ~ARM_MMU_IDX_A_NS;
}
return idx;
}
ARMMMUIdx arm_mmu_idx(CPUARMState *env)
{
return arm_mmu_idx_el(env, arm_current_el(env));
}
#ifndef CONFIG_USER_ONLY
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
return stage_1_mmu_idx(arm_mmu_idx(env));
}
#endif
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
if (arm_singlestep_active(env)) {
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
}
return flags;
}
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
bool sctlr_b = arm_sctlr_b(env);
if (sctlr_b) {
DP_TBFLAG_A32(flags, SCTLR__B, 1);
}
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_v7m_is_handler_mode(env)) {
DP_TBFLAG_M32(flags, HANDLER, 1);
}
/*
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
* is suppressing them because the requested execution priority
* is less than 0.
*/
if (arm_feature(env, ARM_FEATURE_V8) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
DP_TBFLAG_M32(flags, STACKCHECK, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
{
CPUARMTBFlags flags = {};
DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
return flags;
}
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
int el = arm_current_el(env);
if (arm_sctlr(env, el) & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_el_is_aa64(env, 1)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
if (el < 2 && env->cp15.hstr_el2 &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
}
if (env->uncached_cpsr & CPSR_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
uint64_t sctlr;
int tbii, tbid;
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
/* Get control bits for tagged addresses. */
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
DP_TBFLAG_A64(flags, TBII, tbii);
DP_TBFLAG_A64(flags, TBID, tbid);
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
int sve_el = sve_exception_el(env, el);
uint32_t zcr_len;
/*
* If SVE is disabled, but FP is enabled,
* then the effective len is 0.
*/
if (sve_el != 0 && fp_el == 0) {
zcr_len = 0;
} else {
zcr_len = sve_zcr_len_for_el(env, el);
}
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
}
sctlr = regime_sctlr(env, stage1);
if (sctlr & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
/*
* In order to save space in flags, we record only whether
* pauth is "inactive", meaning all insns are implemented as
* a nop, or "active" when some action must be performed.
* The decision of which action to take is left to a helper.
*/
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
}
}
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
DP_TBFLAG_A64(flags, BT, 1);
}
}
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
if (!(env->pstate & PSTATE_UAO)) {
switch (mmu_idx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_SE10_1:
case ARMMMUIdx_SE10_1_PAN:
/* TODO: ARMv8.3-NV */
DP_TBFLAG_A64(flags, UNPRIV, 1);
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_SE20_2:
case ARMMMUIdx_SE20_2_PAN:
/*
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
*/
if (env->cp15.hcr_el2 & HCR_TGE) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
default:
break;
}
}
if (env->pstate & PSTATE_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
/*
* Set MTE_ACTIVE if any access may be Checked, and leave clear
* if all accesses must be Unchecked:
* 1) If no TBI, then there are no tags in the address to check,
* 2) If Tag Check Override, then all accesses are Unchecked,
* 3) If Tag Check Fail == 0, then Checked access have no effect,
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
*/
if (allocation_tag_access_enabled(env, el, sctlr)) {
DP_TBFLAG_A64(flags, ATA, 1);
if (tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
}
}
/* And again for unprivileged accesses, if required. */
if (EX_TBFLAG_A64(flags, UNPRIV)
&& tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & SCTLR_TCF0)
&& allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
/* Cache TCMA as well as TBI. */
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
}
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
if (is_a64(env)) {
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
} else if (arm_feature(env, ARM_FEATURE_M)) {
return rebuild_hflags_m32(env, fp_el, mmu_idx);
} else {
return rebuild_hflags_a32(env, fp_el, mmu_idx);
}
}
void arm_rebuild_hflags(CPUARMState *env)
{
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
CPUARMTBFlags c = env->hflags;
CPUARMTBFlags r = rebuild_hflags_internal(env);
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
fprintf(stderr, "TCG hflags mismatch "
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
c.flags, c.flags2, r.flags, r.flags2);
abort();
}
#endif
}
static bool mve_no_pred(CPUARMState *env)
{
/*
* Return true if there is definitely no predication of MVE
* instructions by VPR or LTPSIZE. (Returning false even if there
* isn't any predication is OK; generated code will just be
* a little worse.)
* If the CPU does not implement MVE then this TB flag is always 0.
*
* NOTE: if you change this logic, the "recalculate s->mve_no_pred"
* logic in gen_update_fp_context() needs to be updated to match.
*
* We do not include the effect of the ECI bits here -- they are
* tracked in other TB flags. This simplifies the logic for
* "when did we emit code that changes the MVE_NO_PRED TB flag
* and thus need to end the TB?".
*/
if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
return false;
}
if (env->v7m.vpr) {
return false;
}
if (env->v7m.ltpsize < 4) {
return false;
}
return true;
}
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *pflags)
{
CPUARMTBFlags flags;
assert_hflags_rebuild_correctly(env);
flags = env->hflags;
if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
*pc = env->pc;
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
DP_TBFLAG_A64(flags, BTYPE, env->btype);
}
} else {
*pc = env->regs[15];
if (arm_feature(env, ARM_FEATURE_M)) {
if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
!= env->v7m.secure) {
DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
}
if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
(!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
(env->v7m.secure &&
!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
/*
* ASPEN is set, but FPCA/SFPA indicate that there is no
* active FP context; we must create a new FP context before
* executing any FP insn.
*/
DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
}
bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
DP_TBFLAG_M32(flags, LSPACT, 1);
}
if (mve_no_pred(env)) {
DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
}
} else {
/*
* Note that XSCALE_CPAR shares bits with VECSTRIDE.
* Note that VECLEN+VECSTRIDE are RES0 for M-profile.
*/
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
} else {
DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
}
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
}
DP_TBFLAG_AM32(flags, THUMB, env->thumb);
DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
}
/*
* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
* SS_ACTIVE PSTATE.SS State
* 0 x Inactive (the TB flag for SS is always 0)
* 1 0 Active-pending
* 1 1 Active-not-pending
* SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
*/
if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
}
*pflags = flags.flags;
*cs_base = flags.flags2;
}
#ifdef TARGET_AARCH64
/*
* The manual says that when SVE is enabled and VQ is widened the
* implementation is allowed to zero the previously inaccessible
* portion of the registers. The corollary to that is that when
* SVE is enabled and VQ is narrowed we are also allowed to zero
* the now inaccessible portion of the registers.
*
* The intent of this is that no predicate bit beyond VQ is ever set.
* Which means that some operations on predicate registers themselves
* may operate on full uint64_t or even unrolled across the maximum
* uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
* may well be cheaper than conditionals to restrict the operation
* to the relevant portion of a uint16_t[16].
*/
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
{
int i, j;
uint64_t pmask;
assert(vq >= 1 && vq <= ARM_MAX_VQ);
assert(vq <= env_archcpu(env)->sve_max_vq);
/* Zap the high bits of the zregs. */
for (i = 0; i < 32; i++) {
memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
}
/* Zap the high bits of the pregs and ffr. */
pmask = 0;
if (vq & 3) {
pmask = ~(-1ULL << (16 * (vq & 3)));
}
for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
for (i = 0; i < 17; ++i) {
env->vfp.pregs[i].p[j] &= pmask;
}
pmask = 0;
}
}
/*
* Notice a change in SVE vector size when changing EL.
*/
void aarch64_sve_change_el(CPUARMState *env, int old_el,
int new_el, bool el0_a64)
{
ARMCPU *cpu = env_archcpu(env);
int old_len, new_len;
bool old_a64, new_a64;
/* Nothing to do if no SVE. */
if (!cpu_isar_feature(aa64_sve, cpu)) {
return;
}
/* Nothing to do if FP is disabled in either EL. */
if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
return;
}
/*
* DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
* at ELx, or not available because the EL is in AArch32 state, then
* for all purposes other than a direct read, the ZCR_ELx.LEN field
* has an effective value of 0".
*
* Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
* If we ignore aa32 state, we would fail to see the vq4->vq0 transition
* from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
* we already have the correct register contents when encountering the
* vq0->vq0 transition between EL0->EL1.
*/
old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
old_len = (old_a64 && !sve_exception_el(env, old_el)
? sve_zcr_len_for_el(env, old_el) : 0);
new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
new_len = (new_a64 && !sve_exception_el(env, new_el)
? sve_zcr_len_for_el(env, new_el) : 0);
/* When changing vector length, clear inaccessible state. */
if (new_len < old_len) {
aarch64_sve_narrow_vq(env, new_len + 1);
}
}
#endif