| /* |
| * PowerPC Radix MMU mulation helpers for QEMU. |
| * |
| * Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/page-protection.h" |
| #include "qemu/error-report.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "exec/log.h" |
| #include "internal.h" |
| #include "mmu-radix64.h" |
| #include "mmu-book3s-v3.h" |
| #include "mmu-books.h" |
| |
| /* Radix Partition Table Entry Fields */ |
| #define PATE1_R_PRTB 0x0FFFFFFFFFFFF000 |
| #define PATE1_R_PRTS 0x000000000000001F |
| |
| /* Radix Process Table Entry Fields */ |
| #define PRTBE_R_GET_RTS(rts) \ |
| ((((rts >> 58) & 0x18) | ((rts >> 5) & 0x7)) + 31) |
| #define PRTBE_R_RPDB 0x0FFFFFFFFFFFFF00 |
| #define PRTBE_R_RPDS 0x000000000000001F |
| |
| /* Radix Page Directory/Table Entry Fields */ |
| #define R_PTE_VALID 0x8000000000000000 |
| #define R_PTE_LEAF 0x4000000000000000 |
| #define R_PTE_SW0 0x2000000000000000 |
| #define R_PTE_RPN 0x01FFFFFFFFFFF000 |
| #define R_PTE_SW1 0x0000000000000E00 |
| #define R_GET_SW(sw) (((sw >> 58) & 0x8) | ((sw >> 9) & 0x7)) |
| #define R_PTE_R 0x0000000000000100 |
| #define R_PTE_C 0x0000000000000080 |
| #define R_PTE_ATT 0x0000000000000030 |
| #define R_PTE_ATT_NORMAL 0x0000000000000000 |
| #define R_PTE_ATT_SAO 0x0000000000000010 |
| #define R_PTE_ATT_NI_IO 0x0000000000000020 |
| #define R_PTE_ATT_TOLERANT_IO 0x0000000000000030 |
| #define R_PTE_EAA_PRIV 0x0000000000000008 |
| #define R_PTE_EAA_R 0x0000000000000004 |
| #define R_PTE_EAA_RW 0x0000000000000002 |
| #define R_PTE_EAA_X 0x0000000000000001 |
| #define R_PDE_NLB PRTBE_R_RPDB |
| #define R_PDE_NLS PRTBE_R_RPDS |
| |
| static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env, |
| vaddr eaddr, |
| uint64_t *lpid, uint64_t *pid) |
| { |
| /* When EA(2:11) are nonzero, raise a segment interrupt */ |
| if (eaddr & ~R_EADDR_VALID_MASK) { |
| return false; |
| } |
| |
| if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */ |
| switch (eaddr & R_EADDR_QUADRANT) { |
| case R_EADDR_QUADRANT0: |
| *lpid = 0; |
| *pid = env->spr[SPR_BOOKS_PID]; |
| break; |
| case R_EADDR_QUADRANT1: |
| *lpid = env->spr[SPR_LPIDR]; |
| *pid = env->spr[SPR_BOOKS_PID]; |
| break; |
| case R_EADDR_QUADRANT2: |
| *lpid = env->spr[SPR_LPIDR]; |
| *pid = 0; |
| break; |
| case R_EADDR_QUADRANT3: |
| *lpid = 0; |
| *pid = 0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { /* !MSR[HV] -> Guest */ |
| switch (eaddr & R_EADDR_QUADRANT) { |
| case R_EADDR_QUADRANT0: /* Guest application */ |
| *lpid = env->spr[SPR_LPIDR]; |
| *pid = env->spr[SPR_BOOKS_PID]; |
| break; |
| case R_EADDR_QUADRANT1: /* Illegal */ |
| case R_EADDR_QUADRANT2: |
| return false; |
| case R_EADDR_QUADRANT3: /* Guest OS */ |
| *lpid = env->spr[SPR_LPIDR]; |
| *pid = 0; /* pid set to 0 -> addresses guest operating system */ |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| return true; |
| } |
| |
| static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type, |
| vaddr eaddr) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| /* Instruction Segment Interrupt */ |
| cs->exception_index = POWERPC_EXCP_ISEG; |
| break; |
| case MMU_DATA_STORE: |
| case MMU_DATA_LOAD: |
| /* Data Segment Interrupt */ |
| cs->exception_index = POWERPC_EXCP_DSEG; |
| env->spr[SPR_DAR] = eaddr; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->error_code = 0; |
| } |
| |
| static inline const char *access_str(MMUAccessType access_type) |
| { |
| return access_type == MMU_DATA_LOAD ? "reading" : |
| (access_type == MMU_DATA_STORE ? "writing" : "execute"); |
| } |
| |
| static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type, |
| vaddr eaddr, uint32_t cause) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n", |
| __func__, access_str(access_type), |
| eaddr, cause); |
| |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| /* Instruction Storage Interrupt */ |
| cs->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = cause; |
| break; |
| case MMU_DATA_STORE: |
| cause |= DSISR_ISSTORE; |
| /* fall through */ |
| case MMU_DATA_LOAD: |
| /* Data Storage Interrupt */ |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->spr[SPR_DSISR] = cause; |
| env->spr[SPR_DAR] = eaddr; |
| env->error_code = 0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type, |
| vaddr eaddr, hwaddr g_raddr, uint32_t cause) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| |
| env->error_code = 0; |
| if (cause & DSISR_PRTABLE_FAULT) { |
| /* HDSI PRTABLE_FAULT gets the originating access type in error_code */ |
| env->error_code = access_type; |
| access_type = MMU_DATA_LOAD; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%" |
| HWADDR_PRIx" cause %08x\n", |
| __func__, access_str(access_type), |
| eaddr, g_raddr, cause); |
| |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| /* H Instruction Storage Interrupt */ |
| cs->exception_index = POWERPC_EXCP_HISI; |
| env->spr[SPR_ASDR] = g_raddr; |
| env->error_code = cause; |
| break; |
| case MMU_DATA_STORE: |
| cause |= DSISR_ISSTORE; |
| /* fall through */ |
| case MMU_DATA_LOAD: |
| /* H Data Storage Interrupt */ |
| cs->exception_index = POWERPC_EXCP_HDSI; |
| env->spr[SPR_HDSISR] = cause; |
| env->spr[SPR_HDAR] = eaddr; |
| env->spr[SPR_ASDR] = g_raddr; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static int ppc_radix64_get_prot_eaa(uint64_t pte) |
| { |
| return (pte & R_PTE_EAA_R ? PAGE_READ : 0) | |
| (pte & R_PTE_EAA_RW ? PAGE_READ | PAGE_WRITE : 0) | |
| (pte & R_PTE_EAA_X ? PAGE_EXEC : 0); |
| } |
| |
| static int ppc_radix64_get_prot_amr(const PowerPCCPU *cpu) |
| { |
| const CPUPPCState *env = &cpu->env; |
| int amr = env->spr[SPR_AMR] >> 62; /* We only care about key0 AMR63:62 */ |
| int iamr = env->spr[SPR_IAMR] >> 62; /* We only care about key0 IAMR63:62 */ |
| |
| return (amr & 0x2 ? 0 : PAGE_WRITE) | /* Access denied if bit is set */ |
| (amr & 0x1 ? 0 : PAGE_READ) | |
| (iamr & 0x1 ? 0 : PAGE_EXEC); |
| } |
| |
| static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type, |
| uint64_t pte, int *fault_cause, int *prot, |
| int mmu_idx, bool partition_scoped) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| /* Check Page Attributes (pte58:59) */ |
| if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) { |
| /* |
| * Radix PTE entries with the non-idempotent I/O attribute are treated |
| * as guarded storage |
| */ |
| *fault_cause |= SRR1_NOEXEC_GUARD; |
| return true; |
| } |
| |
| /* Determine permissions allowed by Encoded Access Authority */ |
| if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && |
| FIELD_EX64(env->msr, MSR, PR)) { |
| *prot = 0; |
| } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) || |
| partition_scoped) { |
| *prot = ppc_radix64_get_prot_eaa(pte); |
| } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */ |
| *prot = ppc_radix64_get_prot_eaa(pte); |
| *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */ |
| } |
| |
| /* Check if requested access type is allowed */ |
| if (!check_prot_access_type(*prot, access_type)) { |
| /* Page Protected for that Access */ |
| *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD : |
| DSISR_PROTFAULT; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int ppc_radix64_check_rc(MMUAccessType access_type, uint64_t pte) |
| { |
| switch (access_type) { |
| case MMU_DATA_STORE: |
| if (!(pte & R_PTE_C)) { |
| break; |
| } |
| /* fall through */ |
| case MMU_INST_FETCH: |
| case MMU_DATA_LOAD: |
| if (!(pte & R_PTE_R)) { |
| break; |
| } |
| |
| /* R/C bits are already set appropriately for this access */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool ppc_radix64_is_valid_level(int level, int psize, uint64_t nls) |
| { |
| bool ret; |
| |
| /* |
| * Check if this is a valid level, according to POWER9 and POWER10 |
| * Processor User's Manuals, sections 4.10.4.1 and 5.10.6.1, respectively: |
| * Supported Radix Tree Configurations and Resulting Page Sizes. |
| * |
| * Note: these checks are specific to POWER9 and POWER10 CPUs. Any future |
| * CPUs that supports a different Radix MMU configuration will need their |
| * own implementation. |
| */ |
| switch (level) { |
| case 0: /* Root Page Dir */ |
| ret = psize == 52 && nls == 13; |
| break; |
| case 1: |
| case 2: |
| ret = nls == 9; |
| break; |
| case 3: |
| ret = nls == 9 || nls == 5; |
| break; |
| default: |
| ret = false; |
| } |
| |
| if (unlikely(!ret)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "invalid radix configuration: " |
| "level %d size %d nls %"PRIu64"\n", |
| level, psize, nls); |
| } |
| return ret; |
| } |
| |
| static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr, |
| uint64_t *pte_addr, uint64_t *nls, |
| int *psize, uint64_t *pte, int *fault_cause) |
| { |
| uint64_t index, mask, nlb, pde; |
| |
| /* Read page <directory/table> entry from guest address space */ |
| pde = ldq_phys(as, *pte_addr); |
| if (!(pde & R_PTE_VALID)) { /* Invalid Entry */ |
| *fault_cause |= DSISR_NOPTE; |
| return 1; |
| } |
| |
| *pte = pde; |
| *psize -= *nls; |
| if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */ |
| *nls = pde & R_PDE_NLS; |
| index = eaddr >> (*psize - *nls); /* Shift */ |
| index &= ((1UL << *nls) - 1); /* Mask */ |
| nlb = pde & R_PDE_NLB; |
| mask = MAKE_64BIT_MASK(0, *nls + 3); |
| |
| if (nlb & mask) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: misaligned page dir/table base: 0x%" PRIx64 |
| " page dir size: 0x%" PRIx64 "\n", |
| __func__, nlb, mask + 1); |
| nlb &= ~mask; |
| } |
| *pte_addr = nlb + index * sizeof(pde); |
| } |
| return 0; |
| } |
| |
| static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr, |
| uint64_t base_addr, uint64_t nls, |
| hwaddr *raddr, int *psize, uint64_t *pte, |
| int *fault_cause, hwaddr *pte_addr) |
| { |
| uint64_t index, pde, rpn, mask; |
| int level = 0; |
| |
| index = eaddr >> (*psize - nls); /* Shift */ |
| index &= ((1UL << nls) - 1); /* Mask */ |
| mask = MAKE_64BIT_MASK(0, nls + 3); |
| |
| if (base_addr & mask) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: misaligned page dir base: 0x%" PRIx64 |
| " page dir size: 0x%" PRIx64 "\n", |
| __func__, base_addr, mask + 1); |
| base_addr &= ~mask; |
| } |
| *pte_addr = base_addr + index * sizeof(pde); |
| |
| do { |
| int ret; |
| |
| if (!ppc_radix64_is_valid_level(level++, *psize, nls)) { |
| *fault_cause |= DSISR_R_BADCONFIG; |
| return 1; |
| } |
| |
| ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde, |
| fault_cause); |
| if (ret) { |
| return ret; |
| } |
| } while (!(pde & R_PTE_LEAF)); |
| |
| *pte = pde; |
| rpn = pde & R_PTE_RPN; |
| mask = (1UL << *psize) - 1; |
| |
| /* Or high bits of rpn and low bits to ea to form whole real addr */ |
| *raddr = (rpn & ~mask) | (eaddr & mask); |
| return 0; |
| } |
| |
| static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| if (!(pate->dw0 & PATE0_HR)) { |
| return false; |
| } |
| if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) { |
| return false; |
| } |
| if ((pate->dw0 & PATE1_R_PRTS) < 5) { |
| return false; |
| } |
| /* More checks ... */ |
| return true; |
| } |
| |
| static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu, |
| MMUAccessType orig_access_type, |
| vaddr eaddr, hwaddr g_raddr, |
| ppc_v3_pate_t pate, |
| hwaddr *h_raddr, int *h_prot, |
| int *h_page_size, bool pde_addr, |
| int mmu_idx, uint64_t lpid, |
| bool guest_visible) |
| { |
| MMUAccessType access_type = orig_access_type; |
| int fault_cause = 0; |
| hwaddr pte_addr; |
| uint64_t pte; |
| |
| if (pde_addr) { |
| /* |
| * Translation of process-scoped tables/directories is performed as |
| * a read-access. |
| */ |
| access_type = MMU_DATA_LOAD; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx |
| " mmu_idx %u 0x%"HWADDR_PRIx"\n", |
| __func__, access_str(access_type), |
| eaddr, mmu_idx, g_raddr); |
| |
| *h_page_size = PRTBE_R_GET_RTS(pate.dw0); |
| /* No valid pte or access denied due to protection */ |
| if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB, |
| pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size, |
| &pte, &fault_cause, &pte_addr) || |
| ppc_radix64_check_prot(cpu, access_type, pte, |
| &fault_cause, h_prot, mmu_idx, true)) { |
| if (pde_addr) { /* address being translated was that of a guest pde */ |
| fault_cause |= DSISR_PRTABLE_FAULT; |
| } |
| if (guest_visible) { |
| ppc_radix64_raise_hsi(cpu, orig_access_type, |
| eaddr, g_raddr, fault_cause); |
| } |
| return 1; |
| } |
| |
| if (guest_visible) { |
| if (ppc_radix64_check_rc(access_type, pte)) { |
| /* |
| * Per ISA 3.1 Book III, 7.5.3 and 7.5.5, failure to set R/C during |
| * partition-scoped translation when effLPID = 0 results in normal |
| * (non-Hypervisor) Data and Instruction Storage Interrupts |
| * respectively. |
| * |
| * ISA 3.0 is ambiguous about this, but tests on POWER9 hardware |
| * seem to exhibit the same behavior. |
| */ |
| if (lpid > 0) { |
| ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, |
| DSISR_ATOMIC_RC); |
| } else { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_ATOMIC_RC); |
| } |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The spapr vhc has a flat partition scope provided by qemu memory when |
| * not nested. |
| * |
| * When running a nested guest, the addressing is 2-level radix on top of the |
| * vhc memory, so it works practically identically to the bare metal 2-level |
| * radix. So that code is selected directly. A cleaner and more flexible nested |
| * hypervisor implementation would allow the vhc to provide a ->nested_xlate() |
| * function but that is not required for the moment. |
| */ |
| static bool vhyp_flat_addressing(PowerPCCPU *cpu) |
| { |
| if (cpu->vhyp) { |
| return !vhyp_cpu_in_nested(cpu); |
| } |
| return false; |
| } |
| |
| static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu, |
| MMUAccessType access_type, |
| vaddr eaddr, uint64_t pid, |
| ppc_v3_pate_t pate, hwaddr *g_raddr, |
| int *g_prot, int *g_page_size, |
| int mmu_idx, uint64_t lpid, |
| bool guest_visible) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| uint64_t offset, size, prtb, prtbe_addr, prtbe0, base_addr, nls, index, pte; |
| int fault_cause = 0, h_page_size, h_prot; |
| hwaddr h_raddr, pte_addr; |
| int ret; |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx |
| " mmu_idx %u pid %"PRIu64"\n", |
| __func__, access_str(access_type), |
| eaddr, mmu_idx, pid); |
| |
| prtb = (pate.dw1 & PATE1_R_PRTB); |
| size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12); |
| if (prtb & (size - 1)) { |
| /* Process Table not properly aligned */ |
| if (guest_visible) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_R_BADCONFIG); |
| } |
| return 1; |
| } |
| |
| /* Index Process Table by PID to Find Corresponding Process Table Entry */ |
| offset = pid * sizeof(struct prtb_entry); |
| if (offset >= size) { |
| /* offset exceeds size of the process table */ |
| if (guest_visible) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE); |
| } |
| return 1; |
| } |
| prtbe_addr = prtb + offset; |
| |
| if (vhyp_flat_addressing(cpu)) { |
| prtbe0 = ldq_phys(cs->as, prtbe_addr); |
| } else { |
| /* |
| * Process table addresses are subject to partition-scoped |
| * translation |
| * |
| * On a Radix host, the partition-scoped page table for LPID=0 |
| * is only used to translate the effective addresses of the |
| * process table entries. |
| */ |
| /* mmu_idx is 5 because we're translating from hypervisor scope */ |
| ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, |
| prtbe_addr, pate, &h_raddr, |
| &h_prot, &h_page_size, true, |
| 5, lpid, guest_visible); |
| if (ret) { |
| return ret; |
| } |
| prtbe0 = ldq_phys(cs->as, h_raddr); |
| } |
| |
| /* Walk Radix Tree from Process Table Entry to Convert EA to RA */ |
| *g_page_size = PRTBE_R_GET_RTS(prtbe0); |
| base_addr = prtbe0 & PRTBE_R_RPDB; |
| nls = prtbe0 & PRTBE_R_RPDS; |
| if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) { |
| /* |
| * Can treat process table addresses as real addresses |
| */ |
| ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr, |
| nls, g_raddr, g_page_size, &pte, |
| &fault_cause, &pte_addr); |
| if (ret) { |
| /* No valid PTE */ |
| if (guest_visible) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); |
| } |
| return ret; |
| } |
| } else { |
| uint64_t rpn, mask; |
| int level = 0; |
| |
| index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */ |
| index &= ((1UL << nls) - 1); /* Mask */ |
| pte_addr = base_addr + (index * sizeof(pte)); |
| |
| /* |
| * Each process table address is subject to a partition-scoped |
| * translation |
| */ |
| do { |
| /* mmu_idx is 5 because we're translating from hypervisor scope */ |
| ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, |
| pte_addr, pate, &h_raddr, |
| &h_prot, &h_page_size, |
| true, 5, lpid, |
| guest_visible); |
| if (ret) { |
| return ret; |
| } |
| |
| if (!ppc_radix64_is_valid_level(level++, *g_page_size, nls)) { |
| fault_cause |= DSISR_R_BADCONFIG; |
| ret = 1; |
| } else { |
| ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, |
| &h_raddr, &nls, g_page_size, |
| &pte, &fault_cause); |
| } |
| |
| if (ret) { |
| /* No valid pte */ |
| if (guest_visible) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); |
| } |
| return ret; |
| } |
| pte_addr = h_raddr; |
| } while (!(pte & R_PTE_LEAF)); |
| |
| rpn = pte & R_PTE_RPN; |
| mask = (1UL << *g_page_size) - 1; |
| |
| /* Or high bits of rpn and low bits to ea to form whole real addr */ |
| *g_raddr = (rpn & ~mask) | (eaddr & mask); |
| } |
| |
| if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, |
| g_prot, mmu_idx, false)) { |
| /* Access denied due to protection */ |
| if (guest_visible) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); |
| } |
| return 1; |
| } |
| |
| if (guest_visible) { |
| /* R/C bits not appropriately set for access */ |
| if (ppc_radix64_check_rc(access_type, pte)) { |
| ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_ATOMIC_RC); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Radix tree translation is a 2 steps translation process: |
| * |
| * 1. Process-scoped translation: Guest Eff Addr -> Guest Real Addr |
| * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr |
| * |
| * MSR[HV] |
| * +-------------+----------------+---------------+ |
| * | | HV = 0 | HV = 1 | |
| * +-------------+----------------+---------------+ |
| * | Relocation | Partition | No | |
| * | = Off | Scoped | Translation | |
| * Relocation +-------------+----------------+---------------+ |
| * | Relocation | Partition & | Process | |
| * | = On | Process Scoped | Scoped | |
| * +-------------+----------------+---------------+ |
| */ |
| static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr, |
| MMUAccessType access_type, hwaddr *raddr, |
| int *psizep, int *protp, int mmu_idx, |
| bool guest_visible) |
| { |
| CPUPPCState *env = &cpu->env; |
| uint64_t lpid, pid; |
| ppc_v3_pate_t pate; |
| int psize, prot; |
| hwaddr g_raddr; |
| bool relocation; |
| |
| assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp)); |
| |
| relocation = !mmuidx_real(mmu_idx); |
| |
| /* HV or virtual hypervisor Real Mode Access */ |
| if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) { |
| /* In real mode top 4 effective addr bits (mostly) ignored */ |
| *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; |
| |
| /* In HV mode, add HRMOR if top EA bit is clear */ |
| if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) { |
| if (!(eaddr >> 63)) { |
| *raddr |= env->spr[SPR_HRMOR]; |
| } |
| } |
| *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *psizep = TARGET_PAGE_BITS; |
| return true; |
| } |
| |
| /* |
| * Check UPRT (we avoid the check in real mode to deal with |
| * transitional states during kexec. |
| */ |
| if (guest_visible && !ppc64_use_proc_tbl(cpu)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "LPCR:UPRT not set in radix mode ! LPCR=" |
| TARGET_FMT_lx "\n", env->spr[SPR_LPCR]); |
| } |
| |
| /* Virtual Mode Access - get the fully qualified address */ |
| if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) { |
| if (guest_visible) { |
| ppc_radix64_raise_segi(cpu, access_type, eaddr); |
| } |
| return false; |
| } |
| |
| /* Get Partition Table */ |
| if (cpu->vhyp) { |
| if (!cpu->vhyp_class->get_pate(cpu->vhyp, cpu, lpid, &pate)) { |
| if (guest_visible) { |
| ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, |
| DSISR_R_BADCONFIG); |
| } |
| return false; |
| } |
| } else { |
| if (!ppc64_v3_get_pate(cpu, lpid, &pate)) { |
| if (guest_visible) { |
| ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, |
| DSISR_R_BADCONFIG); |
| } |
| return false; |
| } |
| if (!validate_pate(cpu, lpid, &pate)) { |
| if (guest_visible) { |
| ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, |
| DSISR_R_BADCONFIG); |
| } |
| return false; |
| } |
| } |
| |
| *psizep = INT_MAX; |
| *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| |
| /* |
| * Perform process-scoped translation if relocation enabled. |
| * |
| * - Translates an effective address to a host real address in |
| * quadrants 0 and 3 when HV=1. |
| * |
| * - Translates an effective address to a guest real address. |
| */ |
| if (relocation) { |
| int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid, |
| pate, &g_raddr, &prot, |
| &psize, mmu_idx, lpid, |
| guest_visible); |
| if (ret) { |
| return false; |
| } |
| *psizep = MIN(*psizep, psize); |
| *protp &= prot; |
| } else { |
| g_raddr = eaddr & R_EADDR_MASK; |
| } |
| |
| if (vhyp_flat_addressing(cpu)) { |
| *raddr = g_raddr; |
| } else { |
| /* |
| * Perform partition-scoped translation if !HV or HV access to |
| * quadrants 1 or 2. Translates a guest real address to a host |
| * real address. |
| */ |
| if (lpid || !mmuidx_hv(mmu_idx)) { |
| int ret; |
| |
| ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, |
| g_raddr, pate, raddr, |
| &prot, &psize, false, |
| mmu_idx, lpid, |
| guest_visible); |
| if (ret) { |
| return false; |
| } |
| *psizep = MIN(*psizep, psize); |
| *protp &= prot; |
| } else { |
| *raddr = g_raddr; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, |
| hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, |
| bool guest_visible) |
| { |
| bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp, |
| psizep, protp, mmu_idx, guest_visible); |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx |
| " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n", |
| __func__, access_str(access_type), |
| eaddr, mmu_idx, |
| *protp & PAGE_READ ? 'r' : '-', |
| *protp & PAGE_WRITE ? 'w' : '-', |
| *protp & PAGE_EXEC ? 'x' : '-', |
| *raddrp); |
| |
| return ret; |
| } |