| /* |
| * QEMU PowerPC XIVE2 interrupt controller model (POWER10) |
| * |
| * Copyright (c) 2019-2022, IBM Corporation. |
| * |
| * This code is licensed under the GPL version 2 or later. See the |
| * COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qapi/error.h" |
| #include "target/ppc/cpu.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/dma.h" |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/pnv.h" |
| #include "hw/ppc/pnv_chip.h" |
| #include "hw/ppc/pnv_core.h" |
| #include "hw/ppc/pnv_xscom.h" |
| #include "hw/ppc/xive2.h" |
| #include "hw/ppc/pnv_xive.h" |
| #include "hw/ppc/xive_regs.h" |
| #include "hw/ppc/xive2_regs.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/qdev-properties.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/qtest.h" |
| |
| #include <libfdt.h> |
| |
| #include "pnv_xive2_regs.h" |
| |
| #undef XIVE2_DEBUG |
| |
| /* XIVE Sync or Flush Notification Block */ |
| typedef struct XiveSfnBlock { |
| uint8_t bytes[32]; |
| } XiveSfnBlock; |
| |
| /* XIVE Thread Sync or Flush Notification Area */ |
| typedef struct XiveThreadNA { |
| XiveSfnBlock topo[16]; |
| } XiveThreadNA; |
| |
| /* |
| * Virtual structures table (VST) |
| */ |
| #define SBE_PER_BYTE 4 |
| |
| typedef struct XiveVstInfo { |
| const char *name; |
| uint32_t size; |
| uint32_t max_blocks; |
| } XiveVstInfo; |
| |
| static const XiveVstInfo vst_infos[] = { |
| |
| [VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 }, |
| [VST_ESB] = { "ESB", 1, 16 }, |
| [VST_END] = { "ENDT", sizeof(Xive2End), 16 }, |
| |
| [VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 }, |
| [VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 }, |
| [VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 }, |
| |
| [VST_IC] = { "IC", 1, /* ? */ 16 }, /* Topology # */ |
| [VST_SYNC] = { "SYNC", sizeof(XiveThreadNA), 16 }, /* Topology # */ |
| |
| /* |
| * This table contains the backing store pages for the interrupt |
| * fifos of the VC sub-engine in case of overflow. |
| * |
| * 0 - IPI, |
| * 1 - HWD, |
| * 2 - NxC, |
| * 3 - INT, |
| * 4 - OS-Queue, |
| * 5 - Pool-Queue, |
| * 6 - Hard-Queue |
| */ |
| [VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT }, |
| }; |
| |
| #define xive2_error(xive, fmt, ...) \ |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ |
| (xive)->chip->chip_id, ## __VA_ARGS__); |
| |
| /* |
| * TODO: Document block id override |
| */ |
| static uint32_t pnv_xive2_block_id(PnvXive2 *xive) |
| { |
| uint8_t blk = xive->chip->chip_id; |
| uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3]; |
| |
| if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) { |
| blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val); |
| } |
| |
| return blk; |
| } |
| |
| /* |
| * Remote access to controllers. HW uses MMIOs. For now, a simple scan |
| * of the chips is good enough. |
| * |
| * TODO: Block scope support |
| */ |
| static PnvXive2 *pnv_xive2_get_remote(uint8_t blk) |
| { |
| PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); |
| int i; |
| |
| for (i = 0; i < pnv->num_chips; i++) { |
| Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); |
| PnvXive2 *xive = &chip10->xive; |
| |
| if (pnv_xive2_block_id(xive) == blk) { |
| return xive; |
| } |
| } |
| return NULL; |
| } |
| |
| /* |
| * VST accessors for ESB, EAT, ENDT, NVP |
| * |
| * Indirect VST tables are arrays of VSDs pointing to a page (of same |
| * size). Each page is a direct VST table. |
| */ |
| |
| #define XIVE_VSD_SIZE 8 |
| |
| /* Indirect page size can be 4K, 64K, 2M, 16M. */ |
| static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift) |
| { |
| return page_shift == 12 || page_shift == 16 || |
| page_shift == 21 || page_shift == 24; |
| } |
| |
| static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type, |
| uint64_t vsd, uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); |
| uint32_t idx_max; |
| |
| idx_max = vst_tsize / info->size - 1; |
| if (idx > idx_max) { |
| #ifdef XIVE2_DEBUG |
| xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", |
| info->name, idx, idx_max); |
| #endif |
| return 0; |
| } |
| |
| return vst_addr + idx * info->size; |
| } |
| |
| static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type, |
| uint64_t vsd, uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd_addr; |
| uint32_t vsd_idx; |
| uint32_t page_shift; |
| uint32_t vst_per_page; |
| |
| /* Get the page size of the indirect table. */ |
| vsd_addr = vsd & VSD_ADDRESS_MASK; |
| ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE2_DEBUG |
| xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); |
| #endif |
| return 0; |
| } |
| |
| page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| |
| if (!pnv_xive2_vst_page_size_allowed(page_shift)) { |
| xive2_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return 0; |
| } |
| |
| vst_per_page = (1ull << page_shift) / info->size; |
| vsd_idx = idx / vst_per_page; |
| |
| /* Load the VSD we are looking for, if not already done */ |
| if (vsd_idx) { |
| vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; |
| ldq_be_dma(&address_space_memory, vsd_addr, &vsd, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE2_DEBUG |
| xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Check that the pages have a consistent size across the |
| * indirect table |
| */ |
| if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { |
| xive2_error(xive, "VST: %s entry %x indirect page size differ !?", |
| info->name, idx); |
| return 0; |
| } |
| } |
| |
| return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); |
| } |
| |
| static uint8_t pnv_xive2_nvc_table_compress_shift(PnvXive2 *xive) |
| { |
| uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVC_TABLE_COMPRESS, |
| xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); |
| return shift > 8 ? 0 : shift; |
| } |
| |
| static uint8_t pnv_xive2_nvg_table_compress_shift(PnvXive2 *xive) |
| { |
| uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVG_TABLE_COMPRESS, |
| xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); |
| return shift > 8 ? 0 : shift; |
| } |
| |
| static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk, |
| uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd; |
| |
| if (blk >= info->max_blocks) { |
| xive2_error(xive, "VST: invalid block id %d for VST %s %d !?", |
| blk, info->name, idx); |
| return 0; |
| } |
| |
| vsd = xive->vsds[type][blk]; |
| |
| /* Remote VST access */ |
| if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { |
| xive = pnv_xive2_get_remote(blk); |
| |
| return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0; |
| } |
| |
| if (type == VST_NVG) { |
| idx >>= pnv_xive2_nvg_table_compress_shift(xive); |
| } else if (type == VST_NVC) { |
| idx >>= pnv_xive2_nvc_table_compress_shift(xive); |
| } |
| |
| if (VSD_INDIRECT & vsd) { |
| return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx); |
| } |
| |
| return pnv_xive2_vst_addr_direct(xive, type, vsd, idx); |
| } |
| |
| static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk, |
| uint32_t idx, void *data) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); |
| MemTxResult result; |
| |
| if (!addr) { |
| return -1; |
| } |
| |
| result = address_space_read(&address_space_memory, addr, |
| MEMTXATTRS_UNSPECIFIED, data, |
| info->size); |
| if (result != MEMTX_OK) { |
| xive2_error(xive, "VST: read failed at @0x%" HWADDR_PRIx |
| " for VST %s %x/%x\n", addr, info->name, blk, idx); |
| return -1; |
| } |
| return 0; |
| } |
| |
| #define XIVE_VST_WORD_ALL -1 |
| |
| static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk, |
| uint32_t idx, void *data, uint32_t word_number) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); |
| MemTxResult result; |
| |
| if (!addr) { |
| return -1; |
| } |
| |
| if (word_number == XIVE_VST_WORD_ALL) { |
| result = address_space_write(&address_space_memory, addr, |
| MEMTXATTRS_UNSPECIFIED, data, |
| info->size); |
| } else { |
| result = address_space_write(&address_space_memory, |
| addr + word_number * 4, |
| MEMTXATTRS_UNSPECIFIED, |
| data + word_number * 4, 4); |
| } |
| |
| if (result != MEMTX_OK) { |
| xive2_error(xive, "VST: write failed at @0x%" HWADDR_PRIx |
| "for VST %s %x/%x\n", addr, info->name, blk, idx); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xrtr); |
| |
| if (pnv_xive2_block_id(xive) != blk) { |
| xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| *pq = xive_source_esb_get(&xive->ipi_source, idx); |
| return 0; |
| } |
| |
| static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xrtr); |
| |
| if (pnv_xive2_block_id(xive) != blk) { |
| xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); |
| return 0; |
| } |
| |
| static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| Xive2End *end) |
| { |
| return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end); |
| } |
| |
| static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| Xive2End *end, uint8_t word_number) |
| { |
| return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end, |
| word_number); |
| } |
| |
| static inline int pnv_xive2_get_current_pir(PnvXive2 *xive) |
| { |
| if (!qtest_enabled()) { |
| PowerPCCPU *cpu = POWERPC_CPU(current_cpu); |
| return ppc_cpu_pir(cpu); |
| } |
| return 0; |
| } |
| |
| /* |
| * After SW injects a Queue Sync or Cache Flush operation, HW will notify |
| * SW of the completion of the operation by writing a byte of all 1's (0xff) |
| * to a specific memory location. The memory location is calculated by first |
| * looking up a base address in the SYNC VSD using the Topology ID of the |
| * originating thread as the "block" number. This points to a |
| * 64k block of memory that is further divided into 128 512 byte chunks of |
| * memory, which is indexed by the thread id of the requesting thread. |
| * Finally, this 512 byte chunk of memory is divided into 16 32 byte |
| * chunks which are indexed by the topology id of the targeted IC's chip. |
| * The values below are the offsets into that 32 byte chunk of memory for |
| * each type of cache flush or queue sync operation. |
| */ |
| #define PNV_XIVE2_QUEUE_IPI 0x00 |
| #define PNV_XIVE2_QUEUE_HW 0x01 |
| #define PNV_XIVE2_QUEUE_NXC 0x02 |
| #define PNV_XIVE2_QUEUE_INT 0x03 |
| #define PNV_XIVE2_QUEUE_OS 0x04 |
| #define PNV_XIVE2_QUEUE_POOL 0x05 |
| #define PNV_XIVE2_QUEUE_HARD 0x06 |
| #define PNV_XIVE2_CACHE_ENDC 0x08 |
| #define PNV_XIVE2_CACHE_ESBC 0x09 |
| #define PNV_XIVE2_CACHE_EASC 0x0a |
| #define PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO 0x10 |
| #define PNV_XIVE2_QUEUE_NXC_LD_LCL_CO 0x11 |
| #define PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI 0x12 |
| #define PNV_XIVE2_QUEUE_NXC_ST_LCL_CI 0x13 |
| #define PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI 0x14 |
| #define PNV_XIVE2_QUEUE_NXC_ST_RMT_CI 0x15 |
| #define PNV_XIVE2_CACHE_NXC 0x18 |
| |
| static int pnv_xive2_inject_notify(PnvXive2 *xive, int type) |
| { |
| uint64_t addr; |
| int pir = pnv_xive2_get_current_pir(xive); |
| int thread_nr = PNV10_PIR2THREAD(pir); |
| int thread_topo_id = PNV10_PIR2CHIP(pir); |
| int ic_topo_id = xive->chip->chip_id; |
| uint64_t offset = ic_topo_id * sizeof(XiveSfnBlock); |
| uint8_t byte = 0xff; |
| MemTxResult result; |
| |
| /* Retrieve the address of requesting thread's notification area */ |
| addr = pnv_xive2_vst_addr(xive, VST_SYNC, thread_topo_id, thread_nr); |
| |
| if (!addr) { |
| xive2_error(xive, "VST: no SYNC entry %x/%x !?", |
| thread_topo_id, thread_nr); |
| return -1; |
| } |
| |
| address_space_stb(&address_space_memory, addr + offset + type, byte, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| assert(result == MEMTX_OK); |
| |
| return 0; |
| } |
| |
| static int pnv_xive2_end_update(PnvXive2 *xive, uint8_t watch_engine) |
| { |
| uint8_t blk; |
| uint32_t idx; |
| int i, spec_reg, data_reg; |
| uint64_t endc_watch[4]; |
| |
| assert(watch_engine < ARRAY_SIZE(endc_watch)); |
| |
| spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; |
| data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; |
| blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); |
| idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); |
| |
| for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { |
| endc_watch[i] = cpu_to_be64(xive->vc_regs[data_reg + i]); |
| } |
| |
| return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch, |
| XIVE_VST_WORD_ALL); |
| } |
| |
| static void pnv_xive2_end_cache_load(PnvXive2 *xive, uint8_t watch_engine) |
| { |
| uint8_t blk; |
| uint32_t idx; |
| uint64_t endc_watch[4] = { 0 }; |
| int i, spec_reg, data_reg; |
| |
| assert(watch_engine < ARRAY_SIZE(endc_watch)); |
| |
| spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; |
| data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; |
| blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); |
| idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); |
| |
| if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) { |
| xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { |
| xive->vc_regs[data_reg + i] = be64_to_cpu(endc_watch[i]); |
| } |
| } |
| |
| static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| Xive2Nvp *nvp) |
| { |
| return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp); |
| } |
| |
| static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| Xive2Nvp *nvp, uint8_t word_number) |
| { |
| return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp, |
| word_number); |
| } |
| |
| static int pnv_xive2_nxc_to_table_type(uint8_t nxc_type, uint32_t *table_type) |
| { |
| switch (nxc_type) { |
| case PC_NXC_WATCH_NXC_NVP: |
| *table_type = VST_NVP; |
| break; |
| case PC_NXC_WATCH_NXC_NVG: |
| *table_type = VST_NVG; |
| break; |
| case PC_NXC_WATCH_NXC_NVC: |
| *table_type = VST_NVC; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "XIVE: invalid table type for nxc operation\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int pnv_xive2_nxc_update(PnvXive2 *xive, uint8_t watch_engine) |
| { |
| uint8_t blk, nxc_type; |
| uint32_t idx, table_type = -1; |
| int i, spec_reg, data_reg; |
| uint64_t nxc_watch[4]; |
| |
| assert(watch_engine < ARRAY_SIZE(nxc_watch)); |
| |
| spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; |
| data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; |
| nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); |
| blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); |
| idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); |
| |
| assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); |
| |
| for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { |
| nxc_watch[i] = cpu_to_be64(xive->pc_regs[data_reg + i]); |
| } |
| |
| return pnv_xive2_vst_write(xive, table_type, blk, idx, nxc_watch, |
| XIVE_VST_WORD_ALL); |
| } |
| |
| static void pnv_xive2_nxc_cache_load(PnvXive2 *xive, uint8_t watch_engine) |
| { |
| uint8_t blk, nxc_type; |
| uint32_t idx, table_type = -1; |
| uint64_t nxc_watch[4] = { 0 }; |
| int i, spec_reg, data_reg; |
| |
| assert(watch_engine < ARRAY_SIZE(nxc_watch)); |
| |
| spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; |
| data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; |
| nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); |
| blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); |
| idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); |
| |
| assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); |
| |
| if (pnv_xive2_vst_read(xive, table_type, blk, idx, nxc_watch)) { |
| xive2_error(xive, "VST: no NXC entry %x/%x in %s table!?", |
| blk, idx, vst_infos[table_type].name); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { |
| xive->pc_regs[data_reg + i] = be64_to_cpu(nxc_watch[i]); |
| } |
| } |
| |
| static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx, |
| Xive2Eas *eas) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xrtr); |
| |
| if (pnv_xive2_block_id(xive) != blk) { |
| xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas); |
| } |
| |
| static uint32_t pnv_xive2_get_config(Xive2Router *xrtr) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xrtr); |
| uint32_t cfg = 0; |
| |
| if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { |
| cfg |= XIVE2_GEN1_TIMA_OS; |
| } |
| |
| if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) { |
| cfg |= XIVE2_VP_SAVE_RESTORE; |
| } |
| |
| if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, |
| xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) { |
| cfg |= XIVE2_THREADID_8BITS; |
| } |
| |
| return cfg; |
| } |
| |
| static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu) |
| { |
| int pir = ppc_cpu_pir(cpu); |
| uint32_t fc = PNV10_PIR2FUSEDCORE(pir); |
| uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1; |
| uint32_t bit = pir & 0x3f; |
| |
| return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit); |
| } |
| |
| static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format, |
| uint8_t nvt_blk, uint32_t nvt_idx, |
| bool cam_ignore, uint8_t priority, |
| uint32_t logic_serv, XiveTCTXMatch *match) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xptr); |
| PnvChip *chip = xive->chip; |
| int count = 0; |
| int i, j; |
| bool gen1_tima_os = |
| xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; |
| |
| for (i = 0; i < chip->nr_cores; i++) { |
| PnvCore *pc = chip->cores[i]; |
| CPUCore *cc = CPU_CORE(pc); |
| |
| for (j = 0; j < cc->nr_threads; j++) { |
| PowerPCCPU *cpu = pc->threads[j]; |
| XiveTCTX *tctx; |
| int ring; |
| |
| if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { |
| continue; |
| } |
| |
| tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| |
| if (gen1_tima_os) { |
| ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, |
| nvt_idx, cam_ignore, |
| logic_serv); |
| } else { |
| ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk, |
| nvt_idx, cam_ignore, |
| logic_serv); |
| } |
| |
| /* |
| * Save the context and follow on to catch duplicates, |
| * that we don't support yet. |
| */ |
| if (ring != -1) { |
| if (match->tctx) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " |
| "thread context NVT %x/%x\n", |
| nvt_blk, nvt_idx); |
| return false; |
| } |
| |
| match->ring = ring; |
| match->tctx = tctx; |
| count++; |
| } |
| } |
| } |
| |
| return count; |
| } |
| |
| static uint32_t pnv_xive2_presenter_get_config(XivePresenter *xptr) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xptr); |
| uint32_t cfg = 0; |
| |
| if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { |
| cfg |= XIVE_PRESENTER_GEN1_TIMA_OS; |
| } |
| return cfg; |
| } |
| |
| static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr) |
| { |
| return pnv_xive2_block_id(PNV_XIVE2(xrtr)); |
| } |
| |
| /* |
| * The TIMA MMIO space is shared among the chips and to identify the |
| * chip from which the access is being done, we extract the chip id |
| * from the PIR. |
| */ |
| static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu) |
| { |
| int pir = ppc_cpu_pir(cpu); |
| XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; |
| PnvXive2 *xive = PNV_XIVE2(xptr); |
| |
| if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { |
| xive2_error(xive, "IC: CPU %x is not enabled", pir); |
| } |
| return xive; |
| } |
| |
| /* |
| * The internal sources of the interrupt controller have no knowledge |
| * of the XIVE2 chip on which they reside. Encode the block id in the |
| * source interrupt number before forwarding the source event |
| * notification to the Router. This is required on a multichip system. |
| */ |
| static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) |
| { |
| PnvXive2 *xive = PNV_XIVE2(xn); |
| uint8_t blk = pnv_xive2_block_id(xive); |
| |
| xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); |
| } |
| |
| /* |
| * Set Translation Tables |
| * |
| * TODO add support for multiple sets |
| */ |
| static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val) |
| { |
| uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]); |
| uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT, |
| xive->cq_regs[CQ_TAR >> 3]); |
| |
| switch (tsel) { |
| case CQ_TAR_NVPG: |
| case CQ_TAR_ESB: |
| case CQ_TAR_END: |
| case CQ_TAR_NVC: |
| xive->tables[tsel][entry] = val; |
| break; |
| default: |
| xive2_error(xive, "IC: unsupported table %d", tsel); |
| return -1; |
| } |
| |
| if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) { |
| xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT, |
| xive->cq_regs[CQ_TAR >> 3], ++entry); |
| } |
| |
| return 0; |
| } |
| /* |
| * Virtual Structure Tables (VST) configuration |
| */ |
| static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type, |
| uint8_t blk, uint64_t vsd) |
| { |
| Xive2EndSource *end_xsrc = &xive->end_source; |
| XiveSource *xsrc = &xive->ipi_source; |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| uint64_t vst_tsize = 1ull << page_shift; |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| |
| /* Basic checks */ |
| |
| if (VSD_INDIRECT & vsd) { |
| if (!pnv_xive2_vst_page_size_allowed(page_shift)) { |
| xive2_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return; |
| } |
| } |
| |
| if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { |
| xive2_error(xive, "VST: %s table address 0x%"PRIx64 |
| " is not aligned with page shift %d", |
| info->name, vst_addr, page_shift); |
| return; |
| } |
| |
| /* Record the table configuration (in SRAM on HW) */ |
| xive->vsds[type][blk] = vsd; |
| |
| /* Now tune the models with the configuration provided by the FW */ |
| |
| switch (type) { |
| case VST_ESB: |
| /* |
| * Backing store pages for the source PQ bits. The model does |
| * not use these PQ bits backed in RAM because the XiveSource |
| * model has its own. |
| * |
| * If the table is direct, we can compute the number of PQ |
| * entries provisioned by FW (such as skiboot) and resize the |
| * ESB window accordingly. |
| */ |
| if (memory_region_is_mapped(&xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); |
| } |
| if (!(VSD_INDIRECT & vsd)) { |
| memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE |
| * (1ull << xsrc->esb_shift)); |
| } |
| |
| memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio); |
| break; |
| |
| case VST_EAS: /* Nothing to be done */ |
| break; |
| |
| case VST_END: |
| /* |
| * Backing store pages for the END. |
| */ |
| if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); |
| } |
| if (!(VSD_INDIRECT & vsd)) { |
| memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) |
| * (1ull << end_xsrc->esb_shift)); |
| } |
| memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio); |
| break; |
| |
| case VST_NVP: /* Not modeled */ |
| case VST_NVG: /* Not modeled */ |
| case VST_NVC: /* Not modeled */ |
| case VST_IC: /* Not modeled */ |
| case VST_SYNC: /* Not modeled */ |
| case VST_ERQ: /* Not modeled */ |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * Both PC and VC sub-engines are configured as each use the Virtual |
| * Structure Tables |
| */ |
| static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd, |
| uint8_t type, uint8_t blk) |
| { |
| uint8_t mode = GETFIELD(VSD_MODE, vsd); |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| |
| if (type > VST_ERQ) { |
| xive2_error(xive, "VST: invalid table type %d", type); |
| return; |
| } |
| |
| if (blk >= vst_infos[type].max_blocks) { |
| xive2_error(xive, "VST: invalid block id %d for" |
| " %s table", blk, vst_infos[type].name); |
| return; |
| } |
| |
| if (!vst_addr) { |
| xive2_error(xive, "VST: invalid %s table address", |
| vst_infos[type].name); |
| return; |
| } |
| |
| switch (mode) { |
| case VSD_MODE_FORWARD: |
| xive->vsds[type][blk] = vsd; |
| break; |
| |
| case VSD_MODE_EXCLUSIVE: |
| pnv_xive2_vst_set_exclusive(xive, type, blk, vsd); |
| break; |
| |
| default: |
| xive2_error(xive, "VST: unsupported table mode %d", mode); |
| return; |
| } |
| } |
| |
| static void pnv_xive2_vc_vst_set_data(PnvXive2 *xive, uint64_t vsd) |
| { |
| uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT, |
| xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); |
| uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS, |
| xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); |
| |
| pnv_xive2_vst_set_data(xive, vsd, type, blk); |
| } |
| |
| /* |
| * MMIO handlers |
| */ |
| |
| |
| /* |
| * IC BAR layout |
| * |
| * Page 0: Internal CQ register accesses (reads & writes) |
| * Page 1: Internal PC register accesses (reads & writes) |
| * Page 2: Internal VC register accesses (reads & writes) |
| * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes) |
| * Page 4: Notify Port page (writes only, w/data), |
| * Page 5: Reserved |
| * Page 6: Sync Poll page (writes only, dataless) |
| * Page 7: Sync Inject page (writes only, dataless) |
| * Page 8: LSI Trigger page (writes only, dataless) |
| * Page 9: LSI SB Management page (reads & writes dataless) |
| * Pages 10-255: Reserved |
| * Pages 256-383: Direct mapped Thread Context Area (reads & writes) |
| * covering the 128 threads in P10. |
| * Pages 384-511: Reserved |
| */ |
| typedef struct PnvXive2Region { |
| const char *name; |
| uint32_t pgoff; |
| uint32_t pgsize; |
| const MemoryRegionOps *ops; |
| } PnvXive2Region; |
| |
| static const MemoryRegionOps pnv_xive2_ic_cq_ops; |
| static const MemoryRegionOps pnv_xive2_ic_pc_ops; |
| static const MemoryRegionOps pnv_xive2_ic_vc_ops; |
| static const MemoryRegionOps pnv_xive2_ic_tctxt_ops; |
| static const MemoryRegionOps pnv_xive2_ic_notify_ops; |
| static const MemoryRegionOps pnv_xive2_ic_sync_ops; |
| static const MemoryRegionOps pnv_xive2_ic_lsi_ops; |
| static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops; |
| |
| /* 512 pages. 4K: 2M range, 64K: 32M range */ |
| static const PnvXive2Region pnv_xive2_ic_regions[] = { |
| { "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops }, |
| { "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops }, |
| { "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops }, |
| { "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops }, |
| { "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops }, |
| /* page 5 reserved */ |
| { "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops }, |
| { "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops }, |
| /* pages 10-255 reserved */ |
| { "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops }, |
| /* pages 384-511 reserved */ |
| }; |
| |
| /* |
| * CQ operations |
| */ |
| |
| static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint32_t reg = offset >> 3; |
| uint64_t val = 0; |
| |
| switch (offset) { |
| case CQ_XIVE_CAP: /* Set at reset */ |
| case CQ_XIVE_CFG: |
| val = xive->cq_regs[reg]; |
| break; |
| case CQ_MSGSND: /* TODO check the #cores of the machine */ |
| val = 0xffffffff00000000; |
| break; |
| case CQ_CFG_PB_GEN: |
| val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */ |
| break; |
| default: |
| xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static uint64_t pnv_xive2_bar_size(uint64_t val) |
| { |
| return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24); |
| } |
| |
| static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| MemoryRegion *sysmem = get_system_memory(); |
| uint32_t reg = offset >> 3; |
| int i; |
| |
| switch (offset) { |
| case CQ_XIVE_CFG: |
| case CQ_RST_CTL: /* TODO: reset all BARs */ |
| break; |
| |
| case CQ_IC_BAR: |
| xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; |
| if (!(val & CQ_IC_BAR_VALID)) { |
| xive->ic_base = 0; |
| if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) { |
| for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { |
| memory_region_del_subregion(&xive->ic_mmio, |
| &xive->ic_mmios[i]); |
| } |
| memory_region_del_subregion(sysmem, &xive->ic_mmio); |
| } |
| } else { |
| xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); |
| if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) { |
| for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { |
| memory_region_add_subregion(&xive->ic_mmio, |
| pnv_xive2_ic_regions[i].pgoff << xive->ic_shift, |
| &xive->ic_mmios[i]); |
| } |
| memory_region_add_subregion(sysmem, xive->ic_base, |
| &xive->ic_mmio); |
| } |
| } |
| break; |
| |
| case CQ_TM_BAR: |
| xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; |
| if (!(val & CQ_TM_BAR_VALID)) { |
| xive->tm_base = 0; |
| if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->tm_mmio); |
| } |
| } else { |
| xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); |
| if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) { |
| memory_region_add_subregion(sysmem, xive->tm_base, |
| &xive->tm_mmio); |
| } |
| } |
| break; |
| |
| case CQ_ESB_BAR: |
| xive->esb_shift = val & CQ_BAR_64K ? 16 : 12; |
| if (!(val & CQ_BAR_VALID)) { |
| xive->esb_base = 0; |
| if (xive->cq_regs[reg] & CQ_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->esb_mmio); |
| } |
| } else { |
| xive->esb_base = val & CQ_BAR_ADDR; |
| if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { |
| memory_region_set_size(&xive->esb_mmio, |
| pnv_xive2_bar_size(val)); |
| memory_region_add_subregion(sysmem, xive->esb_base, |
| &xive->esb_mmio); |
| } |
| } |
| break; |
| |
| case CQ_END_BAR: |
| xive->end_shift = val & CQ_BAR_64K ? 16 : 12; |
| if (!(val & CQ_BAR_VALID)) { |
| xive->end_base = 0; |
| if (xive->cq_regs[reg] & CQ_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->end_mmio); |
| } |
| } else { |
| xive->end_base = val & CQ_BAR_ADDR; |
| if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { |
| memory_region_set_size(&xive->end_mmio, |
| pnv_xive2_bar_size(val)); |
| memory_region_add_subregion(sysmem, xive->end_base, |
| &xive->end_mmio); |
| } |
| } |
| break; |
| |
| case CQ_NVC_BAR: |
| xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12; |
| if (!(val & CQ_BAR_VALID)) { |
| xive->nvc_base = 0; |
| if (xive->cq_regs[reg] & CQ_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->nvc_mmio); |
| } |
| } else { |
| xive->nvc_base = val & CQ_BAR_ADDR; |
| if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { |
| memory_region_set_size(&xive->nvc_mmio, |
| pnv_xive2_bar_size(val)); |
| memory_region_add_subregion(sysmem, xive->nvc_base, |
| &xive->nvc_mmio); |
| } |
| } |
| break; |
| |
| case CQ_NVPG_BAR: |
| xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12; |
| if (!(val & CQ_BAR_VALID)) { |
| xive->nvpg_base = 0; |
| if (xive->cq_regs[reg] & CQ_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->nvpg_mmio); |
| } |
| } else { |
| xive->nvpg_base = val & CQ_BAR_ADDR; |
| if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { |
| memory_region_set_size(&xive->nvpg_mmio, |
| pnv_xive2_bar_size(val)); |
| memory_region_add_subregion(sysmem, xive->nvpg_base, |
| &xive->nvpg_mmio); |
| } |
| } |
| break; |
| |
| case CQ_TAR: /* Set Translation Table Address */ |
| break; |
| case CQ_TDR: /* Set Translation Table Data */ |
| pnv_xive2_stt_set_data(xive, val); |
| break; |
| case CQ_FIRMASK_OR: /* FIR error reporting */ |
| break; |
| default: |
| xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset); |
| return; |
| } |
| |
| xive->cq_regs[reg] = val; |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_cq_ops = { |
| .read = pnv_xive2_ic_cq_read, |
| .write = pnv_xive2_ic_cq_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static uint8_t pnv_xive2_cache_watch_assign(uint64_t engine_mask, |
| uint64_t *state) |
| { |
| uint8_t val = 0xFF; |
| int i; |
| |
| for (i = 3; i >= 0; i--) { |
| if (BIT(i) & engine_mask) { |
| if (!(BIT(i) & *state)) { |
| *state |= BIT(i); |
| val = 3 - i; |
| break; |
| } |
| } |
| } |
| return val; |
| } |
| |
| static void pnv_xive2_cache_watch_release(uint64_t *state, uint8_t watch_engine) |
| { |
| uint8_t engine_bit = 3 - watch_engine; |
| |
| if (*state & BIT(engine_bit)) { |
| *state &= ~BIT(engine_bit); |
| } |
| } |
| |
| static uint8_t pnv_xive2_endc_cache_watch_assign(PnvXive2 *xive) |
| { |
| uint64_t engine_mask = GETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, |
| xive->vc_regs[VC_ENDC_CFG >> 3]); |
| uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; |
| uint8_t val; |
| |
| /* |
| * We keep track of which engines are currently busy in the |
| * VC_ENDC_WATCH_ASSIGN register directly. When the firmware reads |
| * the register, we don't return its value but the ID of an engine |
| * it can use. |
| * There are 4 engines. 0xFF means no engine is available. |
| */ |
| val = pnv_xive2_cache_watch_assign(engine_mask, &state); |
| if (val != 0xFF) { |
| xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; |
| } |
| return val; |
| } |
| |
| static void pnv_xive2_endc_cache_watch_release(PnvXive2 *xive, |
| uint8_t watch_engine) |
| { |
| uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; |
| |
| pnv_xive2_cache_watch_release(&state, watch_engine); |
| xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; |
| } |
| |
| static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint64_t val = 0; |
| uint32_t reg = offset >> 3; |
| uint8_t watch_engine; |
| |
| switch (offset) { |
| /* |
| * VSD table settings. |
| */ |
| case VC_VSD_TABLE_ADDR: |
| case VC_VSD_TABLE_DATA: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * ESB cache updates (not modeled) |
| */ |
| case VC_ESBC_FLUSH_CTRL: |
| xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID; |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_ESBC_CFG: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * EAS cache updates (not modeled) |
| */ |
| case VC_EASC_FLUSH_CTRL: |
| xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID; |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_ENDC_WATCH_ASSIGN: |
| val = pnv_xive2_endc_cache_watch_assign(xive); |
| break; |
| |
| case VC_ENDC_CFG: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * END cache updates |
| */ |
| case VC_ENDC_WATCH0_SPEC: |
| case VC_ENDC_WATCH1_SPEC: |
| case VC_ENDC_WATCH2_SPEC: |
| case VC_ENDC_WATCH3_SPEC: |
| watch_engine = (offset - VC_ENDC_WATCH0_SPEC) >> 6; |
| xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT); |
| pnv_xive2_endc_cache_watch_release(xive, watch_engine); |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_ENDC_WATCH0_DATA0: |
| case VC_ENDC_WATCH1_DATA0: |
| case VC_ENDC_WATCH2_DATA0: |
| case VC_ENDC_WATCH3_DATA0: |
| /* |
| * Load DATA registers from cache with data requested by the |
| * SPEC register |
| */ |
| watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; |
| pnv_xive2_end_cache_load(xive, watch_engine); |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: |
| case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: |
| case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: |
| case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_ENDC_FLUSH_CTRL: |
| xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID; |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * Indirect invalidation |
| */ |
| case VC_AT_MACRO_KILL_MASK: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| case VC_AT_MACRO_KILL: |
| xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID; |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * Interrupt fifo overflow in memory backing store (Not modeled) |
| */ |
| case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: |
| val = xive->vc_regs[reg]; |
| break; |
| |
| /* |
| * Synchronisation |
| */ |
| case VC_ENDC_SYNC_DONE: |
| val = VC_ENDC_SYNC_POLL_DONE; |
| break; |
| default: |
| xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint32_t reg = offset >> 3; |
| uint8_t watch_engine; |
| |
| switch (offset) { |
| /* |
| * VSD table settings. |
| */ |
| case VC_VSD_TABLE_ADDR: |
| break; |
| case VC_VSD_TABLE_DATA: |
| pnv_xive2_vc_vst_set_data(xive, val); |
| break; |
| |
| /* |
| * ESB cache updates (not modeled) |
| */ |
| /* case VC_ESBC_FLUSH_CTRL: */ |
| case VC_ESBC_FLUSH_POLL: |
| xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID; |
| /* ESB update */ |
| break; |
| |
| case VC_ESBC_FLUSH_INJECT: |
| pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ESBC); |
| break; |
| |
| case VC_ESBC_CFG: |
| break; |
| |
| /* |
| * EAS cache updates (not modeled) |
| */ |
| /* case VC_EASC_FLUSH_CTRL: */ |
| case VC_EASC_FLUSH_POLL: |
| xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID; |
| /* EAS update */ |
| break; |
| |
| case VC_EASC_FLUSH_INJECT: |
| pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_EASC); |
| break; |
| |
| case VC_ENDC_CFG: |
| break; |
| |
| /* |
| * END cache updates |
| */ |
| case VC_ENDC_WATCH0_SPEC: |
| case VC_ENDC_WATCH1_SPEC: |
| case VC_ENDC_WATCH2_SPEC: |
| case VC_ENDC_WATCH3_SPEC: |
| val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */ |
| break; |
| |
| case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: |
| case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: |
| case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: |
| case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: |
| break; |
| case VC_ENDC_WATCH0_DATA0: |
| case VC_ENDC_WATCH1_DATA0: |
| case VC_ENDC_WATCH2_DATA0: |
| case VC_ENDC_WATCH3_DATA0: |
| /* writing to DATA0 triggers the cache write */ |
| watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; |
| xive->vc_regs[reg] = val; |
| pnv_xive2_end_update(xive, watch_engine); |
| break; |
| |
| |
| /* case VC_ENDC_FLUSH_CTRL: */ |
| case VC_ENDC_FLUSH_POLL: |
| xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID; |
| break; |
| |
| case VC_ENDC_FLUSH_INJECT: |
| pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ENDC); |
| break; |
| |
| /* |
| * Indirect invalidation |
| */ |
| case VC_AT_MACRO_KILL: |
| case VC_AT_MACRO_KILL_MASK: |
| break; |
| |
| /* |
| * Interrupt fifo overflow in memory backing store (Not modeled) |
| */ |
| case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: |
| break; |
| |
| /* |
| * Synchronisation |
| */ |
| case VC_ENDC_SYNC_DONE: |
| break; |
| |
| default: |
| xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset); |
| return; |
| } |
| |
| xive->vc_regs[reg] = val; |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_vc_ops = { |
| .read = pnv_xive2_ic_vc_read, |
| .write = pnv_xive2_ic_vc_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static uint8_t pnv_xive2_nxc_cache_watch_assign(PnvXive2 *xive) |
| { |
| uint64_t engine_mask = GETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, |
| xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); |
| uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; |
| uint8_t val; |
| |
| /* |
| * We keep track of which engines are currently busy in the |
| * PC_NXC_WATCH_ASSIGN register directly. When the firmware reads |
| * the register, we don't return its value but the ID of an engine |
| * it can use. |
| * There are 4 engines. 0xFF means no engine is available. |
| */ |
| val = pnv_xive2_cache_watch_assign(engine_mask, &state); |
| if (val != 0xFF) { |
| xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; |
| } |
| return val; |
| } |
| |
| static void pnv_xive2_nxc_cache_watch_release(PnvXive2 *xive, |
| uint8_t watch_engine) |
| { |
| uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; |
| |
| pnv_xive2_cache_watch_release(&state, watch_engine); |
| xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; |
| } |
| |
| static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint64_t val = -1; |
| uint32_t reg = offset >> 3; |
| uint8_t watch_engine; |
| |
| switch (offset) { |
| /* |
| * VSD table settings. |
| */ |
| case PC_VSD_TABLE_ADDR: |
| case PC_VSD_TABLE_DATA: |
| val = xive->pc_regs[reg]; |
| break; |
| |
| case PC_NXC_WATCH_ASSIGN: |
| val = pnv_xive2_nxc_cache_watch_assign(xive); |
| break; |
| |
| case PC_NXC_PROC_CONFIG: |
| val = xive->pc_regs[reg]; |
| break; |
| |
| /* |
| * cache updates |
| */ |
| case PC_NXC_WATCH0_SPEC: |
| case PC_NXC_WATCH1_SPEC: |
| case PC_NXC_WATCH2_SPEC: |
| case PC_NXC_WATCH3_SPEC: |
| watch_engine = (offset - PC_NXC_WATCH0_SPEC) >> 6; |
| xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT); |
| pnv_xive2_nxc_cache_watch_release(xive, watch_engine); |
| val = xive->pc_regs[reg]; |
| break; |
| |
| case PC_NXC_WATCH0_DATA0: |
| case PC_NXC_WATCH1_DATA0: |
| case PC_NXC_WATCH2_DATA0: |
| case PC_NXC_WATCH3_DATA0: |
| /* |
| * Load DATA registers from cache with data requested by the |
| * SPEC register |
| */ |
| watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; |
| pnv_xive2_nxc_cache_load(xive, watch_engine); |
| val = xive->pc_regs[reg]; |
| break; |
| |
| case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: |
| case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: |
| case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: |
| case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: |
| val = xive->pc_regs[reg]; |
| break; |
| |
| case PC_NXC_FLUSH_CTRL: |
| xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID; |
| val = xive->pc_regs[reg]; |
| break; |
| |
| /* |
| * Indirect invalidation |
| */ |
| case PC_AT_KILL: |
| xive->pc_regs[reg] &= ~PC_AT_KILL_VALID; |
| val = xive->pc_regs[reg]; |
| break; |
| |
| default: |
| xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static void pnv_xive2_pc_vst_set_data(PnvXive2 *xive, uint64_t vsd) |
| { |
| uint8_t type = GETFIELD(PC_VSD_TABLE_SELECT, |
| xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); |
| uint8_t blk = GETFIELD(PC_VSD_TABLE_ADDRESS, |
| xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); |
| |
| pnv_xive2_vst_set_data(xive, vsd, type, blk); |
| } |
| |
| static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint32_t reg = offset >> 3; |
| uint8_t watch_engine; |
| |
| switch (offset) { |
| |
| /* |
| * VSD table settings. |
| * The Xive2Router model combines both VC and PC sub-engines. We |
| * allow to configure the tables through both, for the rare cases |
| * where a table only really needs to be configured for one of |
| * them (e.g. the NVG table for the presenter). It assumes that |
| * firmware passes the same address to the VC and PC when tables |
| * are defined for both, which seems acceptable. |
| */ |
| case PC_VSD_TABLE_ADDR: |
| break; |
| case PC_VSD_TABLE_DATA: |
| pnv_xive2_pc_vst_set_data(xive, val); |
| break; |
| |
| case PC_NXC_PROC_CONFIG: |
| break; |
| |
| /* |
| * cache updates |
| */ |
| case PC_NXC_WATCH0_SPEC: |
| case PC_NXC_WATCH1_SPEC: |
| case PC_NXC_WATCH2_SPEC: |
| case PC_NXC_WATCH3_SPEC: |
| val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */ |
| break; |
| |
| case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: |
| case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: |
| case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: |
| case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: |
| break; |
| case PC_NXC_WATCH0_DATA0: |
| case PC_NXC_WATCH1_DATA0: |
| case PC_NXC_WATCH2_DATA0: |
| case PC_NXC_WATCH3_DATA0: |
| /* writing to DATA0 triggers the cache write */ |
| watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; |
| xive->pc_regs[reg] = val; |
| pnv_xive2_nxc_update(xive, watch_engine); |
| break; |
| |
| /* case PC_NXC_FLUSH_CTRL: */ |
| case PC_NXC_FLUSH_POLL: |
| xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID; |
| break; |
| |
| case PC_NXC_FLUSH_INJECT: |
| pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_NXC); |
| break; |
| |
| /* |
| * Indirect invalidation |
| */ |
| case PC_AT_KILL: |
| case PC_AT_KILL_MASK: |
| break; |
| |
| default: |
| xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset); |
| return; |
| } |
| |
| xive->pc_regs[reg] = val; |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_pc_ops = { |
| .read = pnv_xive2_ic_pc_read, |
| .write = pnv_xive2_ic_pc_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| |
| static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint64_t val = -1; |
| uint32_t reg = offset >> 3; |
| |
| switch (offset) { |
| /* |
| * XIVE2 hardware thread enablement |
| */ |
| case TCTXT_EN0: |
| case TCTXT_EN1: |
| val = xive->tctxt_regs[reg]; |
| break; |
| |
| case TCTXT_EN0_SET: |
| case TCTXT_EN0_RESET: |
| val = xive->tctxt_regs[TCTXT_EN0 >> 3]; |
| break; |
| case TCTXT_EN1_SET: |
| case TCTXT_EN1_RESET: |
| val = xive->tctxt_regs[TCTXT_EN1 >> 3]; |
| break; |
| case TCTXT_CFG: |
| val = xive->tctxt_regs[reg]; |
| break; |
| default: |
| xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint32_t reg = offset >> 3; |
| |
| switch (offset) { |
| /* |
| * XIVE2 hardware thread enablement |
| */ |
| case TCTXT_EN0: /* Physical Thread Enable */ |
| case TCTXT_EN1: /* Physical Thread Enable (fused core) */ |
| xive->tctxt_regs[reg] = val; |
| break; |
| |
| case TCTXT_EN0_SET: |
| xive->tctxt_regs[TCTXT_EN0 >> 3] |= val; |
| break; |
| case TCTXT_EN1_SET: |
| xive->tctxt_regs[TCTXT_EN1 >> 3] |= val; |
| break; |
| case TCTXT_EN0_RESET: |
| xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val; |
| break; |
| case TCTXT_EN1_RESET: |
| xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val; |
| break; |
| case TCTXT_CFG: |
| xive->tctxt_regs[reg] = val; |
| break; |
| default: |
| xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset); |
| return; |
| } |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = { |
| .read = pnv_xive2_ic_tctxt_read, |
| .write = pnv_xive2_ic_tctxt_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * Redirect XSCOM to MMIO handlers |
| */ |
| static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint64_t val = -1; |
| uint32_t xscom_reg = offset >> 3; |
| uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; |
| |
| switch (xscom_reg) { |
| case 0x000 ... 0x0FF: |
| val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size); |
| break; |
| case 0x100 ... 0x1FF: |
| val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size); |
| break; |
| case 0x200 ... 0x2FF: |
| val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size); |
| break; |
| case 0x300 ... 0x3FF: |
| val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size); |
| break; |
| default: |
| xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static void pnv_xive2_xscom_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| uint32_t xscom_reg = offset >> 3; |
| uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; |
| |
| switch (xscom_reg) { |
| case 0x000 ... 0x0FF: |
| pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size); |
| break; |
| case 0x100 ... 0x1FF: |
| pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size); |
| break; |
| case 0x200 ... 0x2FF: |
| pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size); |
| break; |
| case 0x300 ... 0x3FF: |
| pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size); |
| break; |
| default: |
| xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_xive2_xscom_ops = { |
| .read = pnv_xive2_xscom_read, |
| .write = pnv_xive2_xscom_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * Notify port page. The layout is compatible between 4K and 64K pages : |
| * |
| * Page 1 Notify page (writes only) |
| * 0x000 - 0x7FF IPI interrupt (NPU) |
| * 0x800 - 0xFFF HW interrupt triggers (PSI, PHB) |
| */ |
| |
| static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr, |
| uint64_t val) |
| { |
| uint8_t blk; |
| uint32_t idx; |
| |
| if (val & XIVE_TRIGGER_END) { |
| xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64, |
| addr, val); |
| return; |
| } |
| |
| /* |
| * Forward the source event notification directly to the Router. |
| * The source interrupt number should already be correctly encoded |
| * with the chip block id by the sending device (PHB, PSI). |
| */ |
| blk = XIVE_EAS_BLOCK(val); |
| idx = XIVE_EAS_INDEX(val); |
| |
| xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), |
| !!(val & XIVE_TRIGGER_PQ)); |
| } |
| |
| static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| /* VC: IPI triggers */ |
| switch (offset) { |
| case 0x000 ... 0x7FF: |
| /* TODO: check IPI notify sub-page routing */ |
| pnv_xive2_ic_hw_trigger(opaque, offset, val); |
| break; |
| |
| /* VC: HW triggers */ |
| case 0x800 ... 0xFFF: |
| pnv_xive2_ic_hw_trigger(opaque, offset, val); |
| break; |
| |
| default: |
| xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset); |
| } |
| } |
| |
| static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| /* loads are invalid */ |
| xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_notify_ops = { |
| .read = pnv_xive2_ic_notify_read, |
| .write = pnv_xive2_ic_notify_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset); |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_lsi_ops = { |
| .read = pnv_xive2_ic_lsi_read, |
| .write = pnv_xive2_ic_lsi_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * Sync MMIO page (write only) |
| */ |
| #define PNV_XIVE2_SYNC_IPI 0x000 |
| #define PNV_XIVE2_SYNC_HW 0x080 |
| #define PNV_XIVE2_SYNC_NxC 0x100 |
| #define PNV_XIVE2_SYNC_INT 0x180 |
| #define PNV_XIVE2_SYNC_OS_ESC 0x200 |
| #define PNV_XIVE2_SYNC_POOL_ESC 0x280 |
| #define PNV_XIVE2_SYNC_HARD_ESC 0x300 |
| #define PNV_XIVE2_SYNC_NXC_LD_LCL_NCO 0x800 |
| #define PNV_XIVE2_SYNC_NXC_LD_LCL_CO 0x880 |
| #define PNV_XIVE2_SYNC_NXC_ST_LCL_NCI 0x900 |
| #define PNV_XIVE2_SYNC_NXC_ST_LCL_CI 0x980 |
| #define PNV_XIVE2_SYNC_NXC_ST_RMT_NCI 0xA00 |
| #define PNV_XIVE2_SYNC_NXC_ST_RMT_CI 0xA80 |
| |
| static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| /* loads are invalid */ |
| xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| /* |
| * The sync MMIO space spans two pages. The lower page is use for |
| * queue sync "poll" requests while the upper page is used for queue |
| * sync "inject" requests. Inject requests require the HW to write |
| * a byte of all 1's to a predetermined location in memory in order |
| * to signal completion of the request. Both pages have the same |
| * layout, so it is easiest to handle both with a single function. |
| */ |
| static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| int inject_type; |
| hwaddr pg_offset_mask = (1ull << xive->ic_shift) - 1; |
| |
| /* adjust offset for inject page */ |
| hwaddr adj_offset = offset & pg_offset_mask; |
| |
| switch (adj_offset) { |
| case PNV_XIVE2_SYNC_IPI: |
| inject_type = PNV_XIVE2_QUEUE_IPI; |
| break; |
| case PNV_XIVE2_SYNC_HW: |
| inject_type = PNV_XIVE2_QUEUE_HW; |
| break; |
| case PNV_XIVE2_SYNC_NxC: |
| inject_type = PNV_XIVE2_QUEUE_NXC; |
| break; |
| case PNV_XIVE2_SYNC_INT: |
| inject_type = PNV_XIVE2_QUEUE_INT; |
| break; |
| case PNV_XIVE2_SYNC_OS_ESC: |
| inject_type = PNV_XIVE2_QUEUE_OS; |
| break; |
| case PNV_XIVE2_SYNC_POOL_ESC: |
| inject_type = PNV_XIVE2_QUEUE_POOL; |
| break; |
| case PNV_XIVE2_SYNC_HARD_ESC: |
| inject_type = PNV_XIVE2_QUEUE_HARD; |
| break; |
| case PNV_XIVE2_SYNC_NXC_LD_LCL_NCO: |
| inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO; |
| break; |
| case PNV_XIVE2_SYNC_NXC_LD_LCL_CO: |
| inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_CO; |
| break; |
| case PNV_XIVE2_SYNC_NXC_ST_LCL_NCI: |
| inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI; |
| break; |
| case PNV_XIVE2_SYNC_NXC_ST_LCL_CI: |
| inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_CI; |
| break; |
| case PNV_XIVE2_SYNC_NXC_ST_RMT_NCI: |
| inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI; |
| break; |
| case PNV_XIVE2_SYNC_NXC_ST_RMT_CI: |
| inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_CI; |
| break; |
| default: |
| xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset); |
| return; |
| } |
| |
| /* Write Queue Sync notification byte if writing to sync inject page */ |
| if ((offset & ~pg_offset_mask) != 0) { |
| pnv_xive2_inject_notify(xive, inject_type); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_sync_ops = { |
| .read = pnv_xive2_ic_sync_read, |
| .write = pnv_xive2_ic_sync_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * When the TM direct pages of the IC controller are accessed, the |
| * target HW thread is deduced from the page offset. |
| */ |
| static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset) |
| { |
| /* On P10, the node ID shift in the PIR register is 8 bits */ |
| return xive->chip->chip_id << 8 | offset >> xive->ic_shift; |
| } |
| |
| static uint32_t pnv_xive2_ic_tm_get_hw_page_offset(PnvXive2 *xive, |
| hwaddr offset) |
| { |
| /* |
| * Indirect TIMA accesses are similar to direct accesses for |
| * privilege ring 0. So remove any traces of the hw thread ID from |
| * the offset in the IC BAR as it could be interpreted as the ring |
| * privilege when calling the underlying direct access functions. |
| */ |
| return offset & ((1ull << xive->ic_shift) - 1); |
| } |
| |
| static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir) |
| { |
| PnvChip *chip = xive->chip; |
| PowerPCCPU *cpu = NULL; |
| |
| cpu = pnv_chip_find_cpu(chip, pir); |
| if (!cpu) { |
| xive2_error(xive, "IC: invalid PIR %x for indirect access", pir); |
| return NULL; |
| } |
| |
| if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { |
| xive2_error(xive, "IC: CPU %x is not enabled", pir); |
| } |
| |
| return XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| } |
| |
| static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| XivePresenter *xptr = XIVE_PRESENTER(xive); |
| hwaddr hw_page_offset; |
| uint32_t pir; |
| XiveTCTX *tctx; |
| uint64_t val = -1; |
| |
| pir = pnv_xive2_ic_tm_get_pir(xive, offset); |
| hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); |
| tctx = pnv_xive2_get_indirect_tctx(xive, pir); |
| if (tctx) { |
| val = xive_tctx_tm_read(xptr, tctx, hw_page_offset, size); |
| } |
| |
| return val; |
| } |
| |
| static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| XivePresenter *xptr = XIVE_PRESENTER(xive); |
| hwaddr hw_page_offset; |
| uint32_t pir; |
| XiveTCTX *tctx; |
| |
| pir = pnv_xive2_ic_tm_get_pir(xive, offset); |
| hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); |
| tctx = pnv_xive2_get_indirect_tctx(xive, pir); |
| if (tctx) { |
| xive_tctx_tm_write(xptr, tctx, hw_page_offset, val, size); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = { |
| .read = pnv_xive2_ic_tm_indirect_read, |
| .write = pnv_xive2_ic_tm_indirect_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * TIMA ops |
| */ |
| static void pnv_xive2_tm_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(current_cpu); |
| PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); |
| XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| XivePresenter *xptr = XIVE_PRESENTER(xive); |
| |
| xive_tctx_tm_write(xptr, tctx, offset, value, size); |
| } |
| |
| static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(current_cpu); |
| PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); |
| XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| XivePresenter *xptr = XIVE_PRESENTER(xive); |
| |
| return xive_tctx_tm_read(xptr, tctx, offset, size); |
| } |
| |
| static const MemoryRegionOps pnv_xive2_tm_ops = { |
| .read = pnv_xive2_tm_read, |
| .write = pnv_xive2_tm_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "NVC: invalid read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| static void pnv_xive2_nvc_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "NVC: invalid write @%"HWADDR_PRIx, offset); |
| } |
| |
| static const MemoryRegionOps pnv_xive2_nvc_ops = { |
| .read = pnv_xive2_nvc_read, |
| .write = pnv_xive2_nvc_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "NVPG: invalid read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| static void pnv_xive2_nvpg_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive2 *xive = PNV_XIVE2(opaque); |
| |
| xive2_error(xive, "NVPG: invalid write @%"HWADDR_PRIx, offset); |
| } |
| |
| static const MemoryRegionOps pnv_xive2_nvpg_ops = { |
| .read = pnv_xive2_nvpg_read, |
| .write = pnv_xive2_nvpg_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * POWER10 default capabilities: 0x2000120076f000FC |
| */ |
| #define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC |
| |
| /* |
| * POWER10 default configuration: 0x0030000033000000 |
| * |
| * 8bits thread id was dropped for P10 |
| */ |
| #define PNV_XIVE2_CONFIGURATION 0x0030000033000000 |
| |
| static void pnv_xive2_reset(void *dev) |
| { |
| PnvXive2 *xive = PNV_XIVE2(dev); |
| XiveSource *xsrc = &xive->ipi_source; |
| Xive2EndSource *end_xsrc = &xive->end_source; |
| |
| xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities; |
| xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config; |
| |
| /* HW hardwires the #Topology of the chip in the block field */ |
| xive->cq_regs[CQ_XIVE_CFG >> 3] |= |
| SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id); |
| |
| /* VC and PC cache watch assign mechanism */ |
| xive->vc_regs[VC_ENDC_CFG >> 3] = |
| SETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 0ull, 0b0111); |
| xive->pc_regs[PC_NXC_PROC_CONFIG >> 3] = |
| SETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 0ull, 0b0111); |
| |
| /* Set default page size to 64k */ |
| xive->ic_shift = xive->esb_shift = xive->end_shift = 16; |
| xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16; |
| |
| /* Clear source MMIOs */ |
| if (memory_region_is_mapped(&xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); |
| } |
| |
| if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); |
| } |
| } |
| |
| /* |
| * Maximum number of IRQs and ENDs supported by HW. Will be tuned by |
| * software. |
| */ |
| #define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) |
| #define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) |
| |
| static void pnv_xive2_realize(DeviceState *dev, Error **errp) |
| { |
| PnvXive2 *xive = PNV_XIVE2(dev); |
| PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev); |
| XiveSource *xsrc = &xive->ipi_source; |
| Xive2EndSource *end_xsrc = &xive->end_source; |
| Error *local_err = NULL; |
| int i; |
| |
| pxc->parent_realize(dev, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| assert(xive->chip); |
| |
| /* |
| * The XiveSource and Xive2EndSource objects are realized with the |
| * maximum allowed HW configuration. The ESB MMIO regions will be |
| * resized dynamically when the controller is configured by the FW |
| * to limit accesses to resources not provisioned. |
| */ |
| object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI, |
| &error_fatal); |
| object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS, |
| &error_fatal); |
| object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), |
| &error_fatal); |
| qdev_realize(DEVICE(xsrc), NULL, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS, |
| &error_fatal); |
| object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), |
| &error_abort); |
| qdev_realize(DEVICE(end_xsrc), NULL, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* XSCOM region, used for initial configuration of the BARs */ |
| memory_region_init_io(&xive->xscom_regs, OBJECT(dev), |
| &pnv_xive2_xscom_ops, xive, "xscom-xive", |
| PNV10_XSCOM_XIVE2_SIZE << 3); |
| |
| /* Interrupt controller MMIO regions */ |
| xive->ic_shift = 16; |
| memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", |
| PNV10_XIVE2_IC_SIZE); |
| |
| for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { |
| memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev), |
| pnv_xive2_ic_regions[i].ops, xive, |
| pnv_xive2_ic_regions[i].name, |
| pnv_xive2_ic_regions[i].pgsize << xive->ic_shift); |
| } |
| |
| /* |
| * VC MMIO regions. |
| */ |
| xive->esb_shift = 16; |
| xive->end_shift = 16; |
| memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb", |
| PNV10_XIVE2_ESB_SIZE); |
| memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end", |
| PNV10_XIVE2_END_SIZE); |
| |
| /* Presenter Controller MMIO region (not modeled) */ |
| xive->nvc_shift = 16; |
| xive->nvpg_shift = 16; |
| memory_region_init_io(&xive->nvc_mmio, OBJECT(dev), |
| &pnv_xive2_nvc_ops, xive, |
| "xive-nvc", PNV10_XIVE2_NVC_SIZE); |
| |
| memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev), |
| &pnv_xive2_nvpg_ops, xive, |
| "xive-nvpg", PNV10_XIVE2_NVPG_SIZE); |
| |
| /* Thread Interrupt Management Area (Direct) */ |
| xive->tm_shift = 16; |
| memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops, |
| xive, "xive-tima", PNV10_XIVE2_TM_SIZE); |
| |
| qemu_register_reset(pnv_xive2_reset, dev); |
| } |
| |
| static Property pnv_xive2_properties[] = { |
| DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0), |
| DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0), |
| DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0), |
| DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0), |
| DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0), |
| DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0), |
| DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities, |
| PNV_XIVE2_CAPABILITIES), |
| DEFINE_PROP_UINT64("config", PnvXive2, config, |
| PNV_XIVE2_CONFIGURATION), |
| DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void pnv_xive2_instance_init(Object *obj) |
| { |
| PnvXive2 *xive = PNV_XIVE2(obj); |
| |
| object_initialize_child(obj, "ipi_source", &xive->ipi_source, |
| TYPE_XIVE_SOURCE); |
| object_initialize_child(obj, "end_source", &xive->end_source, |
| TYPE_XIVE2_END_SOURCE); |
| } |
| |
| static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt, |
| int xscom_offset) |
| { |
| const char compat_p10[] = "ibm,power10-xive-x"; |
| char *name; |
| int offset; |
| uint32_t reg[] = { |
| cpu_to_be32(PNV10_XSCOM_XIVE2_BASE), |
| cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE) |
| }; |
| |
| name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE); |
| offset = fdt_add_subnode(fdt, xscom_offset, name); |
| _FDT(offset); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); |
| _FDT(fdt_setprop(fdt, offset, "compatible", compat_p10, |
| sizeof(compat_p10))); |
| return 0; |
| } |
| |
| static void pnv_xive2_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); |
| Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass); |
| XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); |
| XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); |
| PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass); |
| |
| xdc->dt_xscom = pnv_xive2_dt_xscom; |
| |
| dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)"; |
| device_class_set_parent_realize(dc, pnv_xive2_realize, |
| &pxc->parent_realize); |
| device_class_set_props(dc, pnv_xive2_properties); |
| |
| xrc->get_eas = pnv_xive2_get_eas; |
| xrc->get_pq = pnv_xive2_get_pq; |
| xrc->set_pq = pnv_xive2_set_pq; |
| xrc->get_end = pnv_xive2_get_end; |
| xrc->write_end = pnv_xive2_write_end; |
| xrc->get_nvp = pnv_xive2_get_nvp; |
| xrc->write_nvp = pnv_xive2_write_nvp; |
| xrc->get_config = pnv_xive2_get_config; |
| xrc->get_block_id = pnv_xive2_get_block_id; |
| |
| xnc->notify = pnv_xive2_notify; |
| |
| xpc->match_nvt = pnv_xive2_match_nvt; |
| xpc->get_config = pnv_xive2_presenter_get_config; |
| }; |
| |
| static const TypeInfo pnv_xive2_info = { |
| .name = TYPE_PNV_XIVE2, |
| .parent = TYPE_XIVE2_ROUTER, |
| .instance_init = pnv_xive2_instance_init, |
| .instance_size = sizeof(PnvXive2), |
| .class_init = pnv_xive2_class_init, |
| .class_size = sizeof(PnvXive2Class), |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_PNV_XSCOM_INTERFACE }, |
| { } |
| } |
| }; |
| |
| static void pnv_xive2_register_types(void) |
| { |
| type_register_static(&pnv_xive2_info); |
| } |
| |
| type_init(pnv_xive2_register_types) |
| |
| static void xive2_nvp_pic_print_info(Xive2Nvp *nvp, uint32_t nvp_idx, |
| GString *buf) |
| { |
| uint8_t eq_blk = xive_get_field32(NVP2_W5_VP_END_BLOCK, nvp->w5); |
| uint32_t eq_idx = xive_get_field32(NVP2_W5_VP_END_INDEX, nvp->w5); |
| |
| if (!xive2_nvp_is_valid(nvp)) { |
| return; |
| } |
| |
| g_string_append_printf(buf, " %08x end:%02x/%04x IPB:%02x", |
| nvp_idx, eq_blk, eq_idx, |
| xive_get_field32(NVP2_W2_IPB, nvp->w2)); |
| /* |
| * When the NVP is HW controlled, more fields are updated |
| */ |
| if (xive2_nvp_is_hw(nvp)) { |
| g_string_append_printf(buf, " CPPR:%02x", |
| xive_get_field32(NVP2_W2_CPPR, nvp->w2)); |
| if (xive2_nvp_is_co(nvp)) { |
| g_string_append_printf(buf, " CO:%04x", |
| xive_get_field32(NVP2_W1_CO_THRID, nvp->w1)); |
| } |
| } |
| g_string_append_c(buf, '\n'); |
| } |
| |
| /* |
| * If the table is direct, we can compute the number of PQ entries |
| * provisioned by FW. |
| */ |
| static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive) |
| { |
| uint8_t blk = pnv_xive2_block_id(xive); |
| uint64_t vsd = xive->vsds[VST_ESB][blk]; |
| uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); |
| |
| return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; |
| } |
| |
| /* |
| * Compute the number of entries per indirect subpage. |
| */ |
| static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type) |
| { |
| uint8_t blk = pnv_xive2_block_id(xive); |
| uint64_t vsd = xive->vsds[type][blk]; |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd_addr; |
| uint32_t page_shift; |
| |
| /* For direct tables, fake a valid value */ |
| if (!(VSD_INDIRECT & vsd)) { |
| return 1; |
| } |
| |
| /* Get the page size of the indirect table. */ |
| vsd_addr = vsd & VSD_ADDRESS_MASK; |
| ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE2_DEBUG |
| xive2_error(xive, "VST: invalid %s entry!?", info->name); |
| #endif |
| return 0; |
| } |
| |
| page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| |
| if (!pnv_xive2_vst_page_size_allowed(page_shift)) { |
| xive2_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return 0; |
| } |
| |
| return (1ull << page_shift) / info->size; |
| } |
| |
| void pnv_xive2_pic_print_info(PnvXive2 *xive, GString *buf) |
| { |
| Xive2Router *xrtr = XIVE2_ROUTER(xive); |
| uint8_t blk = pnv_xive2_block_id(xive); |
| uint8_t chip_id = xive->chip->chip_id; |
| uint32_t srcno0 = XIVE_EAS(blk, 0); |
| uint32_t nr_esbs = pnv_xive2_nr_esbs(xive); |
| Xive2Eas eas; |
| Xive2End end; |
| Xive2Nvp nvp; |
| int i; |
| uint64_t xive_nvp_per_subpage; |
| |
| g_string_append_printf(buf, "XIVE[%x] Source %08x .. %08x\n", |
| blk, srcno0, srcno0 + nr_esbs - 1); |
| xive_source_pic_print_info(&xive->ipi_source, srcno0, buf); |
| |
| g_string_append_printf(buf, "XIVE[%x] EAT %08x .. %08x\n", |
| blk, srcno0, srcno0 + nr_esbs - 1); |
| for (i = 0; i < nr_esbs; i++) { |
| if (xive2_router_get_eas(xrtr, blk, i, &eas)) { |
| break; |
| } |
| if (!xive2_eas_is_masked(&eas)) { |
| xive2_eas_pic_print_info(&eas, i, buf); |
| } |
| } |
| |
| g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n", |
| chip_id, blk); |
| i = 0; |
| while (!xive2_router_get_end(xrtr, blk, i, &end)) { |
| xive2_end_eas_pic_print_info(&end, i++, buf); |
| } |
| |
| g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk); |
| i = 0; |
| while (!xive2_router_get_end(xrtr, blk, i, &end)) { |
| xive2_end_pic_print_info(&end, i++, buf); |
| } |
| |
| g_string_append_printf(buf, "XIVE[%x] #%d NVPT %08x .. %08x\n", |
| chip_id, blk, 0, XIVE2_NVP_COUNT - 1); |
| xive_nvp_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP); |
| for (i = 0; i < XIVE2_NVP_COUNT; i += xive_nvp_per_subpage) { |
| while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) { |
| xive2_nvp_pic_print_info(&nvp, i++, buf); |
| } |
| } |
| } |