|  | #include "qemu/osdep.h" | 
|  | #include "ui/console.h" | 
|  |  | 
|  | #include "cursor_hidden.xpm" | 
|  | #include "cursor_left_ptr.xpm" | 
|  |  | 
|  | /* for creating built-in cursors */ | 
|  | static QEMUCursor *cursor_parse_xpm(const char *xpm[]) | 
|  | { | 
|  | QEMUCursor *c; | 
|  | uint32_t ctab[128]; | 
|  | unsigned int width, height, colors, chars; | 
|  | unsigned int line = 0, i, r, g, b, x, y, pixel; | 
|  | char name[16]; | 
|  | uint8_t idx; | 
|  |  | 
|  | /* parse header line: width, height, #colors, #chars */ | 
|  | if (sscanf(xpm[line], "%u %u %u %u", | 
|  | &width, &height, &colors, &chars) != 4) { | 
|  | fprintf(stderr, "%s: header parse error: \"%s\"\n", | 
|  | __func__, xpm[line]); | 
|  | return NULL; | 
|  | } | 
|  | if (chars != 1) { | 
|  | fprintf(stderr, "%s: chars != 1 not supported\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  | line++; | 
|  |  | 
|  | /* parse color table */ | 
|  | for (i = 0; i < colors; i++, line++) { | 
|  | if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) { | 
|  | if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) { | 
|  | ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r; | 
|  | continue; | 
|  | } | 
|  | if (strcmp(name, "None") == 0) { | 
|  | ctab[idx] = 0x00000000; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | fprintf(stderr, "%s: color parse error: \"%s\"\n", | 
|  | __func__, xpm[line]); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* parse pixel data */ | 
|  | c = cursor_alloc(width, height); | 
|  | assert(c != NULL); | 
|  |  | 
|  | for (pixel = 0, y = 0; y < height; y++, line++) { | 
|  | for (x = 0; x < height; x++, pixel++) { | 
|  | idx = xpm[line][x]; | 
|  | c->data[pixel] = ctab[idx]; | 
|  | } | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* nice for debugging */ | 
|  | void cursor_print_ascii_art(QEMUCursor *c, const char *prefix) | 
|  | { | 
|  | uint32_t *data = c->data; | 
|  | int x,y; | 
|  |  | 
|  | for (y = 0; y < c->height; y++) { | 
|  | fprintf(stderr, "%s: %2d: |", prefix, y); | 
|  | for (x = 0; x < c->width; x++, data++) { | 
|  | if ((*data & 0xff000000) != 0xff000000) { | 
|  | fprintf(stderr, " "); /* transparent */ | 
|  | } else if ((*data & 0x00ffffff) == 0x00ffffff) { | 
|  | fprintf(stderr, "."); /* white */ | 
|  | } else if ((*data & 0x00ffffff) == 0x00000000) { | 
|  | fprintf(stderr, "X"); /* black */ | 
|  | } else { | 
|  | fprintf(stderr, "o"); /* other */ | 
|  | } | 
|  | } | 
|  | fprintf(stderr, "|\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | QEMUCursor *cursor_builtin_hidden(void) | 
|  | { | 
|  | return cursor_parse_xpm(cursor_hidden_xpm); | 
|  | } | 
|  |  | 
|  | QEMUCursor *cursor_builtin_left_ptr(void) | 
|  | { | 
|  | return cursor_parse_xpm(cursor_left_ptr_xpm); | 
|  | } | 
|  |  | 
|  | QEMUCursor *cursor_alloc(uint16_t width, uint16_t height) | 
|  | { | 
|  | QEMUCursor *c; | 
|  | size_t datasize = width * height * sizeof(uint32_t); | 
|  |  | 
|  | /* Modern physical hardware typically uses 512x512 sprites */ | 
|  | if (width > 512 || height > 512) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | c = g_malloc0(sizeof(QEMUCursor) + datasize); | 
|  | c->width  = width; | 
|  | c->height = height; | 
|  | c->refcount = 1; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | QEMUCursor *cursor_ref(QEMUCursor *c) | 
|  | { | 
|  | c->refcount++; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | void cursor_unref(QEMUCursor *c) | 
|  | { | 
|  | if (c == NULL) | 
|  | return; | 
|  | c->refcount--; | 
|  | if (c->refcount) | 
|  | return; | 
|  | g_free(c); | 
|  | } | 
|  |  | 
|  | int cursor_get_mono_bpl(QEMUCursor *c) | 
|  | { | 
|  | return DIV_ROUND_UP(c->width, 8); | 
|  | } | 
|  |  | 
|  | void cursor_set_mono(QEMUCursor *c, | 
|  | uint32_t foreground, uint32_t background, uint8_t *image, | 
|  | int transparent, uint8_t *mask) | 
|  | { | 
|  | uint32_t *data = c->data; | 
|  | uint8_t bit; | 
|  | int x,y,bpl; | 
|  | bool expand_bitmap_only = image == mask; | 
|  | bool has_inverted_colors = false; | 
|  | const uint32_t inverted = 0x80000000; | 
|  |  | 
|  | /* | 
|  | * Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask': | 
|  | * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers | 
|  | */ | 
|  | bpl = cursor_get_mono_bpl(c); | 
|  | for (y = 0; y < c->height; y++) { | 
|  | bit = 0x80; | 
|  | for (x = 0; x < c->width; x++, data++) { | 
|  | if (transparent && mask[x/8] & bit) { | 
|  | if (!expand_bitmap_only && image[x / 8] & bit) { | 
|  | *data = inverted; | 
|  | has_inverted_colors = true; | 
|  | } else { | 
|  | *data = 0x00000000; | 
|  | } | 
|  | } else if (!transparent && !(mask[x/8] & bit)) { | 
|  | *data = 0x00000000; | 
|  | } else if (image[x/8] & bit) { | 
|  | *data = 0xff000000 | foreground; | 
|  | } else { | 
|  | *data = 0xff000000 | background; | 
|  | } | 
|  | bit >>= 1; | 
|  | if (bit == 0) { | 
|  | bit = 0x80; | 
|  | } | 
|  | } | 
|  | mask  += bpl; | 
|  | image += bpl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are any pixels with inverted colors, create an outline (fill | 
|  | * transparent neighbors with the background color) and use the foreground | 
|  | * color as "inverted" color. | 
|  | */ | 
|  | if (has_inverted_colors) { | 
|  | data = c->data; | 
|  | for (y = 0; y < c->height; y++) { | 
|  | for (x = 0; x < c->width; x++, data++) { | 
|  | if (*data == 0 /* transparent */ && | 
|  | ((x > 0 && data[-1] == inverted) || | 
|  | (x + 1 < c->width && data[1] == inverted) || | 
|  | (y > 0 && data[-c->width] == inverted) || | 
|  | (y + 1 < c->height && data[c->width] == inverted))) { | 
|  | *data = 0xff000000 | background; | 
|  | } | 
|  | } | 
|  | } | 
|  | data = c->data; | 
|  | for (x = 0; x < c->width * c->height; x++, data++) { | 
|  | if (*data == inverted) { | 
|  | *data = 0xff000000 | foreground; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image) | 
|  | { | 
|  | uint32_t *data = c->data; | 
|  | uint8_t bit; | 
|  | int x,y,bpl; | 
|  |  | 
|  | bpl = cursor_get_mono_bpl(c); | 
|  | memset(image, 0, bpl * c->height); | 
|  | for (y = 0; y < c->height; y++) { | 
|  | bit = 0x80; | 
|  | for (x = 0; x < c->width; x++, data++) { | 
|  | if (((*data & 0xff000000) == 0xff000000) && | 
|  | ((*data & 0x00ffffff) == foreground)) { | 
|  | image[x/8] |= bit; | 
|  | } | 
|  | bit >>= 1; | 
|  | if (bit == 0) { | 
|  | bit = 0x80; | 
|  | } | 
|  | } | 
|  | image += bpl; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask) | 
|  | { | 
|  | uint32_t *data = c->data; | 
|  | uint8_t bit; | 
|  | int x,y,bpl; | 
|  |  | 
|  | bpl = cursor_get_mono_bpl(c); | 
|  | memset(mask, 0, bpl * c->height); | 
|  | for (y = 0; y < c->height; y++) { | 
|  | bit = 0x80; | 
|  | for (x = 0; x < c->width; x++, data++) { | 
|  | if ((*data & 0xff000000) != 0xff000000) { | 
|  | if (transparent != 0) { | 
|  | mask[x/8] |= bit; | 
|  | } | 
|  | } else { | 
|  | if (transparent == 0) { | 
|  | mask[x/8] |= bit; | 
|  | } | 
|  | } | 
|  | bit >>= 1; | 
|  | if (bit == 0) { | 
|  | bit = 0x80; | 
|  | } | 
|  | } | 
|  | mask += bpl; | 
|  | } | 
|  | } |