|  | /* | 
|  | * Device model for Cadence UART | 
|  | * | 
|  | * Reference: Xilinx Zynq 7000 reference manual | 
|  | *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf | 
|  | *   - Chapter 19 UART Controller | 
|  | *   - Appendix B for Register details | 
|  | * | 
|  | * Copyright (c) 2010 Xilinx Inc. | 
|  | * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) | 
|  | * Copyright (c) 2012 PetaLogix Pty Ltd. | 
|  | * Written by Haibing Ma | 
|  | *            M.Habib | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "chardev/char-fe.h" | 
|  | #include "chardev/char-serial.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/module.h" | 
|  | #include "hw/char/cadence_uart.h" | 
|  | #include "hw/irq.h" | 
|  | #include "hw/qdev-clock.h" | 
|  | #include "hw/qdev-properties-system.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | #ifdef CADENCE_UART_ERR_DEBUG | 
|  | #define DB_PRINT(...) do { \ | 
|  | fprintf(stderr,  ": %s: ", __func__); \ | 
|  | fprintf(stderr, ## __VA_ARGS__); \ | 
|  | } while (0) | 
|  | #else | 
|  | #define DB_PRINT(...) | 
|  | #endif | 
|  |  | 
|  | #define UART_SR_INTR_RTRIG     0x00000001 | 
|  | #define UART_SR_INTR_REMPTY    0x00000002 | 
|  | #define UART_SR_INTR_RFUL      0x00000004 | 
|  | #define UART_SR_INTR_TEMPTY    0x00000008 | 
|  | #define UART_SR_INTR_TFUL      0x00000010 | 
|  | /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */ | 
|  | #define UART_SR_TTRIG          0x00002000 | 
|  | #define UART_INTR_TTRIG        0x00000400 | 
|  | /* bits fields in CSR that correlate to CISR. If any of these bits are set in | 
|  | * SR, then the same bit in CISR is set high too */ | 
|  | #define UART_SR_TO_CISR_MASK   0x0000001F | 
|  |  | 
|  | #define UART_INTR_ROVR         0x00000020 | 
|  | #define UART_INTR_FRAME        0x00000040 | 
|  | #define UART_INTR_PARE         0x00000080 | 
|  | #define UART_INTR_TIMEOUT      0x00000100 | 
|  | #define UART_INTR_DMSI         0x00000200 | 
|  | #define UART_INTR_TOVR         0x00001000 | 
|  |  | 
|  | #define UART_SR_RACTIVE    0x00000400 | 
|  | #define UART_SR_TACTIVE    0x00000800 | 
|  | #define UART_SR_FDELT      0x00001000 | 
|  |  | 
|  | #define UART_CR_RXRST       0x00000001 | 
|  | #define UART_CR_TXRST       0x00000002 | 
|  | #define UART_CR_RX_EN       0x00000004 | 
|  | #define UART_CR_RX_DIS      0x00000008 | 
|  | #define UART_CR_TX_EN       0x00000010 | 
|  | #define UART_CR_TX_DIS      0x00000020 | 
|  | #define UART_CR_RST_TO      0x00000040 | 
|  | #define UART_CR_STARTBRK    0x00000080 | 
|  | #define UART_CR_STOPBRK     0x00000100 | 
|  |  | 
|  | #define UART_MR_CLKS            0x00000001 | 
|  | #define UART_MR_CHRL            0x00000006 | 
|  | #define UART_MR_CHRL_SH         1 | 
|  | #define UART_MR_PAR             0x00000038 | 
|  | #define UART_MR_PAR_SH          3 | 
|  | #define UART_MR_NBSTOP          0x000000C0 | 
|  | #define UART_MR_NBSTOP_SH       6 | 
|  | #define UART_MR_CHMODE          0x00000300 | 
|  | #define UART_MR_CHMODE_SH       8 | 
|  | #define UART_MR_UCLKEN          0x00000400 | 
|  | #define UART_MR_IRMODE          0x00000800 | 
|  |  | 
|  | #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH) | 
|  | #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH) | 
|  | #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH) | 
|  | #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH) | 
|  | #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH) | 
|  | #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH) | 
|  | #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH) | 
|  | #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH) | 
|  | #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH) | 
|  | #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH) | 
|  |  | 
|  | #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000) | 
|  |  | 
|  | #define R_CR       (0x00/4) | 
|  | #define R_MR       (0x04/4) | 
|  | #define R_IER      (0x08/4) | 
|  | #define R_IDR      (0x0C/4) | 
|  | #define R_IMR      (0x10/4) | 
|  | #define R_CISR     (0x14/4) | 
|  | #define R_BRGR     (0x18/4) | 
|  | #define R_RTOR     (0x1C/4) | 
|  | #define R_RTRIG    (0x20/4) | 
|  | #define R_MCR      (0x24/4) | 
|  | #define R_MSR      (0x28/4) | 
|  | #define R_SR       (0x2C/4) | 
|  | #define R_TX_RX    (0x30/4) | 
|  | #define R_BDIV     (0x34/4) | 
|  | #define R_FDEL     (0x38/4) | 
|  | #define R_PMIN     (0x3C/4) | 
|  | #define R_PWID     (0x40/4) | 
|  | #define R_TTRIG    (0x44/4) | 
|  |  | 
|  |  | 
|  | static void uart_update_status(CadenceUARTState *s) | 
|  | { | 
|  | s->r[R_SR] = 0; | 
|  |  | 
|  | s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL | 
|  | : 0; | 
|  | s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0; | 
|  | s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0; | 
|  |  | 
|  | s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL | 
|  | : 0; | 
|  | s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0; | 
|  | s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0; | 
|  |  | 
|  | s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK; | 
|  | s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0; | 
|  | qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR])); | 
|  | } | 
|  |  | 
|  | static void fifo_trigger_update(void *opaque) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  |  | 
|  | if (s->r[R_RTOR]) { | 
|  | s->r[R_CISR] |= UART_INTR_TIMEOUT; | 
|  | uart_update_status(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void uart_rx_reset(CadenceUARTState *s) | 
|  | { | 
|  | s->rx_wpos = 0; | 
|  | s->rx_count = 0; | 
|  | qemu_chr_fe_accept_input(&s->chr); | 
|  | } | 
|  |  | 
|  | static void uart_tx_reset(CadenceUARTState *s) | 
|  | { | 
|  | s->tx_count = 0; | 
|  | } | 
|  |  | 
|  | static void uart_send_breaks(CadenceUARTState *s) | 
|  | { | 
|  | int break_enabled = 1; | 
|  |  | 
|  | qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, | 
|  | &break_enabled); | 
|  | } | 
|  |  | 
|  | static void uart_parameters_setup(CadenceUARTState *s) | 
|  | { | 
|  | QEMUSerialSetParams ssp; | 
|  | unsigned int baud_rate, packet_size, input_clk; | 
|  | input_clk = clock_get_hz(s->refclk); | 
|  |  | 
|  | baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk; | 
|  | baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1)); | 
|  | trace_cadence_uart_baudrate(baud_rate); | 
|  |  | 
|  | ssp.speed = baud_rate; | 
|  |  | 
|  | packet_size = 1; | 
|  |  | 
|  | switch (s->r[R_MR] & UART_MR_PAR) { | 
|  | case UART_PARITY_EVEN: | 
|  | ssp.parity = 'E'; | 
|  | packet_size++; | 
|  | break; | 
|  | case UART_PARITY_ODD: | 
|  | ssp.parity = 'O'; | 
|  | packet_size++; | 
|  | break; | 
|  | default: | 
|  | ssp.parity = 'N'; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (s->r[R_MR] & UART_MR_CHRL) { | 
|  | case UART_DATA_BITS_6: | 
|  | ssp.data_bits = 6; | 
|  | break; | 
|  | case UART_DATA_BITS_7: | 
|  | ssp.data_bits = 7; | 
|  | break; | 
|  | default: | 
|  | ssp.data_bits = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (s->r[R_MR] & UART_MR_NBSTOP) { | 
|  | case UART_STOP_BITS_1: | 
|  | ssp.stop_bits = 1; | 
|  | break; | 
|  | default: | 
|  | ssp.stop_bits = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | packet_size += ssp.data_bits + ssp.stop_bits; | 
|  | if (ssp.speed == 0) { | 
|  | /* | 
|  | * Avoid division-by-zero below. | 
|  | * TODO: find something better | 
|  | */ | 
|  | ssp.speed = 1; | 
|  | } | 
|  | s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size; | 
|  | qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); | 
|  | } | 
|  |  | 
|  | static int uart_can_receive(void *opaque) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | int ret; | 
|  | uint32_t ch_mode; | 
|  |  | 
|  | /* ignore characters when unclocked or in reset */ | 
|  | if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE); | 
|  | ch_mode = s->r[R_MR] & UART_MR_CHMODE; | 
|  |  | 
|  | if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { | 
|  | ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count); | 
|  | } | 
|  | if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { | 
|  | ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void uart_ctrl_update(CadenceUARTState *s) | 
|  | { | 
|  | if (s->r[R_CR] & UART_CR_TXRST) { | 
|  | uart_tx_reset(s); | 
|  | } | 
|  |  | 
|  | if (s->r[R_CR] & UART_CR_RXRST) { | 
|  | uart_rx_reset(s); | 
|  | } | 
|  |  | 
|  | s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST); | 
|  |  | 
|  | if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) { | 
|  | uart_send_breaks(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | int i; | 
|  |  | 
|  | if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) { | 
|  | s->r[R_CISR] |= UART_INTR_ROVR; | 
|  | } else { | 
|  | for (i = 0; i < size; i++) { | 
|  | s->rx_fifo[s->rx_wpos] = buf[i]; | 
|  | s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE; | 
|  | s->rx_count++; | 
|  | } | 
|  | timer_mod(s->fifo_trigger_handle, new_rx_time + | 
|  | (s->char_tx_time * 4)); | 
|  | } | 
|  | uart_update_status(s); | 
|  | } | 
|  |  | 
|  | static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond, | 
|  | void *opaque) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | int ret; | 
|  |  | 
|  | /* instant drain the fifo when there's no back-end */ | 
|  | if (!qemu_chr_fe_backend_connected(&s->chr)) { | 
|  | s->tx_count = 0; | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | if (!s->tx_count) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count); | 
|  |  | 
|  | if (ret >= 0) { | 
|  | s->tx_count -= ret; | 
|  | memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count); | 
|  | } | 
|  |  | 
|  | if (s->tx_count) { | 
|  | guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, | 
|  | cadence_uart_xmit, s); | 
|  | if (!r) { | 
|  | s->tx_count = 0; | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | uart_update_status(s); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf, | 
|  | int size) | 
|  | { | 
|  | if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) { | 
|  | size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count; | 
|  | /* | 
|  | * This can only be a guest error via a bad tx fifo register push, | 
|  | * as can_receive() should stop remote loop and echo modes ever getting | 
|  | * us to here. | 
|  | */ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow"); | 
|  | s->r[R_CISR] |= UART_INTR_ROVR; | 
|  | } | 
|  |  | 
|  | memcpy(s->tx_fifo + s->tx_count, buf, size); | 
|  | s->tx_count += size; | 
|  |  | 
|  | cadence_uart_xmit(NULL, G_IO_OUT, s); | 
|  | } | 
|  |  | 
|  | static void uart_receive(void *opaque, const uint8_t *buf, int size) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE; | 
|  |  | 
|  | if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { | 
|  | uart_write_rx_fifo(opaque, buf, size); | 
|  | } | 
|  | if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { | 
|  | uart_write_tx_fifo(s, buf, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void uart_event(void *opaque, QEMUChrEvent event) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | uint8_t buf = '\0'; | 
|  |  | 
|  | /* ignore characters when unclocked or in reset */ | 
|  | if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", | 
|  | __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (event == CHR_EVENT_BREAK) { | 
|  | uart_write_rx_fifo(opaque, &buf, 1); | 
|  | } | 
|  |  | 
|  | uart_update_status(s); | 
|  | } | 
|  |  | 
|  | static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c) | 
|  | { | 
|  | if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->rx_count) { | 
|  | uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos - | 
|  | s->rx_count) % CADENCE_UART_RX_FIFO_SIZE; | 
|  | *c = s->rx_fifo[rx_rpos]; | 
|  | s->rx_count--; | 
|  |  | 
|  | qemu_chr_fe_accept_input(&s->chr); | 
|  | } else { | 
|  | *c = 0; | 
|  | } | 
|  |  | 
|  | uart_update_status(s); | 
|  | } | 
|  |  | 
|  | static MemTxResult uart_write(void *opaque, hwaddr offset, | 
|  | uint64_t value, unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  |  | 
|  | /* ignore access when unclocked or in reset */ | 
|  | if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", | 
|  | __func__); | 
|  | return MEMTX_ERROR; | 
|  | } | 
|  |  | 
|  | DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value); | 
|  | offset >>= 2; | 
|  | if (offset >= CADENCE_UART_R_MAX) { | 
|  | return MEMTX_DECODE_ERROR; | 
|  | } | 
|  | switch (offset) { | 
|  | case R_IER: /* ier (wts imr) */ | 
|  | s->r[R_IMR] |= value; | 
|  | break; | 
|  | case R_IDR: /* idr (wtc imr) */ | 
|  | s->r[R_IMR] &= ~value; | 
|  | break; | 
|  | case R_IMR: /* imr (read only) */ | 
|  | break; | 
|  | case R_CISR: /* cisr (wtc) */ | 
|  | s->r[R_CISR] &= ~value; | 
|  | break; | 
|  | case R_TX_RX: /* UARTDR */ | 
|  | switch (s->r[R_MR] & UART_MR_CHMODE) { | 
|  | case NORMAL_MODE: | 
|  | uart_write_tx_fifo(s, (uint8_t *) &value, 1); | 
|  | break; | 
|  | case LOCAL_LOOPBACK: | 
|  | uart_write_rx_fifo(opaque, (uint8_t *) &value, 1); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case R_BRGR: /* Baud rate generator */ | 
|  | value &= 0xffff; | 
|  | if (value >= 0x01) { | 
|  | s->r[offset] = value; | 
|  | } | 
|  | break; | 
|  | case R_BDIV:    /* Baud rate divider */ | 
|  | value &= 0xff; | 
|  | if (value >= 0x04) { | 
|  | s->r[offset] = value; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | s->r[offset] = value; | 
|  | } | 
|  |  | 
|  | switch (offset) { | 
|  | case R_CR: | 
|  | uart_ctrl_update(s); | 
|  | break; | 
|  | case R_MR: | 
|  | uart_parameters_setup(s); | 
|  | break; | 
|  | } | 
|  | uart_update_status(s); | 
|  |  | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | static MemTxResult uart_read(void *opaque, hwaddr offset, | 
|  | uint64_t *value, unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  | uint32_t c = 0; | 
|  |  | 
|  | /* ignore access when unclocked or in reset */ | 
|  | if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", | 
|  | __func__); | 
|  | return MEMTX_ERROR; | 
|  | } | 
|  |  | 
|  | offset >>= 2; | 
|  | if (offset >= CADENCE_UART_R_MAX) { | 
|  | return MEMTX_DECODE_ERROR; | 
|  | } | 
|  | if (offset == R_TX_RX) { | 
|  | uart_read_rx_fifo(s, &c); | 
|  | } else { | 
|  | c = s->r[offset]; | 
|  | } | 
|  |  | 
|  | DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c); | 
|  | *value = c; | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps uart_ops = { | 
|  | .read_with_attrs = uart_read, | 
|  | .write_with_attrs = uart_write, | 
|  | .endianness = DEVICE_NATIVE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void cadence_uart_reset_init(Object *obj, ResetType type) | 
|  | { | 
|  | CadenceUARTState *s = CADENCE_UART(obj); | 
|  |  | 
|  | s->r[R_CR] = 0x00000128; | 
|  | s->r[R_IMR] = 0; | 
|  | s->r[R_CISR] = 0; | 
|  | s->r[R_RTRIG] = 0x00000020; | 
|  | s->r[R_BRGR] = 0x0000028B; | 
|  | s->r[R_BDIV] = 0x0000000F; | 
|  | s->r[R_TTRIG] = 0x00000020; | 
|  | } | 
|  |  | 
|  | static void cadence_uart_reset_hold(Object *obj) | 
|  | { | 
|  | CadenceUARTState *s = CADENCE_UART(obj); | 
|  |  | 
|  | uart_rx_reset(s); | 
|  | uart_tx_reset(s); | 
|  |  | 
|  | uart_update_status(s); | 
|  | } | 
|  |  | 
|  | static void cadence_uart_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | CadenceUARTState *s = CADENCE_UART(dev); | 
|  |  | 
|  | s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
|  | fifo_trigger_update, s); | 
|  |  | 
|  | qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, | 
|  | uart_event, NULL, s, NULL, true); | 
|  | } | 
|  |  | 
|  | static void cadence_uart_refclk_update(void *opaque, ClockEvent event) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  |  | 
|  | /* recompute uart's speed on clock change */ | 
|  | uart_parameters_setup(s); | 
|  | } | 
|  |  | 
|  | static void cadence_uart_init(Object *obj) | 
|  | { | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | 
|  | CadenceUARTState *s = CADENCE_UART(obj); | 
|  |  | 
|  | memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000); | 
|  | sysbus_init_mmio(sbd, &s->iomem); | 
|  | sysbus_init_irq(sbd, &s->irq); | 
|  |  | 
|  | s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", | 
|  | cadence_uart_refclk_update, s, ClockUpdate); | 
|  | /* initialize the frequency in case the clock remains unconnected */ | 
|  | clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK); | 
|  |  | 
|  | s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10; | 
|  | } | 
|  |  | 
|  | static int cadence_uart_pre_load(void *opaque) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  |  | 
|  | /* the frequency will be overriden if the refclk field is present */ | 
|  | clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cadence_uart_post_load(void *opaque, int version_id) | 
|  | { | 
|  | CadenceUARTState *s = opaque; | 
|  |  | 
|  | /* Ensure these two aren't invalid numbers */ | 
|  | if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF || | 
|  | s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) { | 
|  | /* Value is invalid, abort */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uart_parameters_setup(s); | 
|  | uart_update_status(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_cadence_uart = { | 
|  | .name = "cadence_uart", | 
|  | .version_id = 3, | 
|  | .minimum_version_id = 2, | 
|  | .pre_load = cadence_uart_pre_load, | 
|  | .post_load = cadence_uart_post_load, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX), | 
|  | VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState, | 
|  | CADENCE_UART_RX_FIFO_SIZE), | 
|  | VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState, | 
|  | CADENCE_UART_TX_FIFO_SIZE), | 
|  | VMSTATE_UINT32(rx_count, CadenceUARTState), | 
|  | VMSTATE_UINT32(tx_count, CadenceUARTState), | 
|  | VMSTATE_UINT32(rx_wpos, CadenceUARTState), | 
|  | VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState), | 
|  | VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static Property cadence_uart_properties[] = { | 
|  | DEFINE_PROP_CHR("chardev", CadenceUARTState, chr), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static void cadence_uart_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | ResettableClass *rc = RESETTABLE_CLASS(klass); | 
|  |  | 
|  | dc->realize = cadence_uart_realize; | 
|  | dc->vmsd = &vmstate_cadence_uart; | 
|  | rc->phases.enter = cadence_uart_reset_init; | 
|  | rc->phases.hold  = cadence_uart_reset_hold; | 
|  | device_class_set_props(dc, cadence_uart_properties); | 
|  | } | 
|  |  | 
|  | static const TypeInfo cadence_uart_info = { | 
|  | .name          = TYPE_CADENCE_UART, | 
|  | .parent        = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size = sizeof(CadenceUARTState), | 
|  | .instance_init = cadence_uart_init, | 
|  | .class_init    = cadence_uart_class_init, | 
|  | }; | 
|  |  | 
|  | static void cadence_uart_register_types(void) | 
|  | { | 
|  | type_register_static(&cadence_uart_info); | 
|  | } | 
|  |  | 
|  | type_init(cadence_uart_register_types) |