blob: 3be803cf3ff0b3bd0b23b9a66814530bd903a78d [file] [log] [blame]
/*
* DMA helper functions
*
* Copyright (c) 2009, 2020 Red Hat
*
* This work is licensed under the terms of the GNU General Public License
* (GNU GPL), version 2 or later.
*/
#ifndef DMA_H
#define DMA_H
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "block/block.h"
#include "block/accounting.h"
typedef struct ScatterGatherEntry ScatterGatherEntry;
typedef enum {
DMA_DIRECTION_TO_DEVICE = 0,
DMA_DIRECTION_FROM_DEVICE = 1,
} DMADirection;
struct QEMUSGList {
ScatterGatherEntry *sg;
int nsg;
int nalloc;
size_t size;
DeviceState *dev;
AddressSpace *as;
};
#ifndef CONFIG_USER_ONLY
/*
* When an IOMMU is present, bus addresses become distinct from
* CPU/memory physical addresses and may be a different size. Because
* the IOVA size depends more on the bus than on the platform, we more
* or less have to treat these as 64-bit always to cover all (or at
* least most) cases.
*/
typedef uint64_t dma_addr_t;
#define DMA_ADDR_BITS 64
#define DMA_ADDR_FMT "%" PRIx64
static inline void dma_barrier(AddressSpace *as, DMADirection dir)
{
/*
* This is called before DMA read and write operations
* unless the _relaxed form is used and is responsible
* for providing some sane ordering of accesses vs
* concurrently running VCPUs.
*
* Users of map(), unmap() or lower level st/ld_*
* operations are responsible for providing their own
* ordering via barriers.
*
* This primitive implementation does a simple smp_mb()
* before each operation which provides pretty much full
* ordering.
*
* A smarter implementation can be devised if needed to
* use lighter barriers based on the direction of the
* transfer, the DMA context, etc...
*/
smp_mb();
}
/* Checks that the given range of addresses is valid for DMA. This is
* useful for certain cases, but usually you should just use
* dma_memory_{read,write}() and check for errors */
static inline bool dma_memory_valid(AddressSpace *as,
dma_addr_t addr, dma_addr_t len,
DMADirection dir, MemTxAttrs attrs)
{
return address_space_access_valid(as, addr, len,
dir == DMA_DIRECTION_FROM_DEVICE,
attrs);
}
static inline MemTxResult dma_memory_rw_relaxed(AddressSpace *as,
dma_addr_t addr,
void *buf, dma_addr_t len,
DMADirection dir,
MemTxAttrs attrs)
{
return address_space_rw(as, addr, attrs,
buf, len, dir == DMA_DIRECTION_FROM_DEVICE);
}
static inline MemTxResult dma_memory_read_relaxed(AddressSpace *as,
dma_addr_t addr,
void *buf, dma_addr_t len)
{
return dma_memory_rw_relaxed(as, addr, buf, len,
DMA_DIRECTION_TO_DEVICE,
MEMTXATTRS_UNSPECIFIED);
}
static inline MemTxResult dma_memory_write_relaxed(AddressSpace *as,
dma_addr_t addr,
const void *buf,
dma_addr_t len)
{
return dma_memory_rw_relaxed(as, addr, (void *)buf, len,
DMA_DIRECTION_FROM_DEVICE,
MEMTXATTRS_UNSPECIFIED);
}
/**
* dma_memory_rw: Read from or write to an address space from DMA controller.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
* @len: the number of bytes to read or write
* @dir: indicates the transfer direction
*/
static inline MemTxResult dma_memory_rw(AddressSpace *as, dma_addr_t addr,
void *buf, dma_addr_t len,
DMADirection dir)
{
dma_barrier(as, dir);
return dma_memory_rw_relaxed(as, addr, buf, len, dir,
MEMTXATTRS_UNSPECIFIED);
}
/**
* dma_memory_read: Read from an address space from DMA controller.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault). Called within RCU critical section.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
* @len: length of the data transferred
*/
static inline MemTxResult dma_memory_read(AddressSpace *as, dma_addr_t addr,
void *buf, dma_addr_t len)
{
return dma_memory_rw(as, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
}
/**
* address_space_write: Write to address space from DMA controller.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
* @len: the number of bytes to write
*/
static inline MemTxResult dma_memory_write(AddressSpace *as, dma_addr_t addr,
const void *buf, dma_addr_t len)
{
return dma_memory_rw(as, addr, (void *)buf, len,
DMA_DIRECTION_FROM_DEVICE);
}
/**
* dma_memory_set: Fill memory with a constant byte from DMA controller.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @c: constant byte to fill the memory
* @len: the number of bytes to fill with the constant byte
* @attrs: memory transaction attributes
*/
MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr,
uint8_t c, dma_addr_t len, MemTxAttrs attrs);
/**
* address_space_map: Map a physical memory region into a host virtual address.
*
* May map a subset of the requested range, given by and returned in @plen.
* May return %NULL and set *@plen to zero(0), if resources needed to perform
* the mapping are exhausted.
* Use only for reads OR writes - not for read-modify-write operations.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @len: pointer to length of buffer; updated on return
* @dir: indicates the transfer direction
*/
static inline void *dma_memory_map(AddressSpace *as,
dma_addr_t addr, dma_addr_t *len,
DMADirection dir)
{
hwaddr xlen = *len;
void *p;
p = address_space_map(as, addr, &xlen, dir == DMA_DIRECTION_FROM_DEVICE,
MEMTXATTRS_UNSPECIFIED);
*len = xlen;
return p;
}
/**
* address_space_unmap: Unmaps a memory region previously mapped
* by dma_memory_map()
*
* Will also mark the memory as dirty if @dir == %DMA_DIRECTION_FROM_DEVICE.
* @access_len gives the amount of memory that was actually read or written
* by the caller.
*
* @as: #AddressSpace used
* @buffer: host pointer as returned by address_space_map()
* @len: buffer length as returned by address_space_map()
* @dir: indicates the transfer direction
* @access_len: amount of data actually transferred
*/
static inline void dma_memory_unmap(AddressSpace *as,
void *buffer, dma_addr_t len,
DMADirection dir, dma_addr_t access_len)
{
address_space_unmap(as, buffer, (hwaddr)len,
dir == DMA_DIRECTION_FROM_DEVICE, access_len);
}
#define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \
static inline uint##_bits##_t ld##_lname##_##_end##_dma(AddressSpace *as, \
dma_addr_t addr) \
{ \
uint##_bits##_t val; \
dma_memory_read(as, addr, &val, (_bits) / 8); \
return _end##_bits##_to_cpu(val); \
} \
static inline void st##_sname##_##_end##_dma(AddressSpace *as, \
dma_addr_t addr, \
uint##_bits##_t val) \
{ \
val = cpu_to_##_end##_bits(val); \
dma_memory_write(as, addr, &val, (_bits) / 8); \
}
static inline uint8_t ldub_dma(AddressSpace *as, dma_addr_t addr)
{
uint8_t val;
dma_memory_read(as, addr, &val, 1);
return val;
}
static inline void stb_dma(AddressSpace *as, dma_addr_t addr, uint8_t val)
{
dma_memory_write(as, addr, &val, 1);
}
DEFINE_LDST_DMA(uw, w, 16, le);
DEFINE_LDST_DMA(l, l, 32, le);
DEFINE_LDST_DMA(q, q, 64, le);
DEFINE_LDST_DMA(uw, w, 16, be);
DEFINE_LDST_DMA(l, l, 32, be);
DEFINE_LDST_DMA(q, q, 64, be);
#undef DEFINE_LDST_DMA
struct ScatterGatherEntry {
dma_addr_t base;
dma_addr_t len;
};
void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
AddressSpace *as);
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len);
void qemu_sglist_destroy(QEMUSGList *qsg);
#endif
typedef BlockAIOCB *DMAIOFunc(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque);
BlockAIOCB *dma_blk_io(AioContext *ctx,
QEMUSGList *sg, uint64_t offset, uint32_t align,
DMAIOFunc *io_func, void *io_func_opaque,
BlockCompletionFunc *cb, void *opaque, DMADirection dir);
BlockAIOCB *dma_blk_read(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
BlockCompletionFunc *cb, void *opaque);
BlockAIOCB *dma_blk_write(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
BlockCompletionFunc *cb, void *opaque);
uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg);
uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg);
void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
QEMUSGList *sg, enum BlockAcctType type);
/**
* dma_aligned_pow2_mask: Return the address bit mask of the largest
* power of 2 size less or equal than @end - @start + 1, aligned with @start,
* and bounded by 1 << @max_addr_bits bits.
*
* @start: range start address
* @end: range end address (greater than @start)
* @max_addr_bits: max address bits (<= 64)
*/
uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end,
int max_addr_bits);
#endif