| /* |
| * QEMU PowerPC sPAPR XIVE interrupt controller model |
| * |
| * Copyright (c) 2017-2018, IBM Corporation. |
| * |
| * This code is licensed under the GPL version 2 or later. See the |
| * COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "target/ppc/cpu.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/reset.h" |
| #include "migration/vmstate.h" |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_cpu_core.h" |
| #include "hw/ppc/spapr_xive.h" |
| #include "hw/ppc/xive.h" |
| #include "hw/ppc/xive_regs.h" |
| #include "hw/qdev-properties.h" |
| #include "trace.h" |
| |
| /* |
| * XIVE Virtualization Controller BAR and Thread Management BAR that we |
| * use for the ESB pages and the TIMA pages |
| */ |
| #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull |
| #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull |
| |
| /* |
| * The allocation of VP blocks is a complex operation in OPAL and the |
| * VP identifiers have a relation with the number of HW chips, the |
| * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE |
| * controller model does not have the same constraints and can use a |
| * simple mapping scheme of the CPU vcpu_id |
| * |
| * These identifiers are never returned to the OS. |
| */ |
| |
| #define SPAPR_XIVE_NVT_BASE 0x400 |
| |
| /* |
| * sPAPR NVT and END indexing helpers |
| */ |
| static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx) |
| { |
| return nvt_idx - SPAPR_XIVE_NVT_BASE; |
| } |
| |
| static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu, |
| uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) |
| { |
| assert(cpu); |
| |
| if (out_nvt_blk) { |
| *out_nvt_blk = SPAPR_XIVE_BLOCK_ID; |
| } |
| |
| if (out_nvt_blk) { |
| *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id; |
| } |
| } |
| |
| static int spapr_xive_target_to_nvt(uint32_t target, |
| uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) |
| { |
| PowerPCCPU *cpu = spapr_find_cpu(target); |
| |
| if (!cpu) { |
| return -1; |
| } |
| |
| spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx); |
| return 0; |
| } |
| |
| /* |
| * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8 |
| * priorities per CPU |
| */ |
| int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx, |
| uint32_t *out_server, uint8_t *out_prio) |
| { |
| |
| assert(end_blk == SPAPR_XIVE_BLOCK_ID); |
| |
| if (out_server) { |
| *out_server = end_idx >> 3; |
| } |
| |
| if (out_prio) { |
| *out_prio = end_idx & 0x7; |
| } |
| return 0; |
| } |
| |
| static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio, |
| uint8_t *out_end_blk, uint32_t *out_end_idx) |
| { |
| assert(cpu); |
| |
| if (out_end_blk) { |
| *out_end_blk = SPAPR_XIVE_BLOCK_ID; |
| } |
| |
| if (out_end_idx) { |
| *out_end_idx = (cpu->vcpu_id << 3) + prio; |
| } |
| } |
| |
| static int spapr_xive_target_to_end(uint32_t target, uint8_t prio, |
| uint8_t *out_end_blk, uint32_t *out_end_idx) |
| { |
| PowerPCCPU *cpu = spapr_find_cpu(target); |
| |
| if (!cpu) { |
| return -1; |
| } |
| |
| spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx); |
| return 0; |
| } |
| |
| /* |
| * On sPAPR machines, use a simplified output for the XIVE END |
| * structure dumping only the information related to the OS EQ. |
| */ |
| static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end, |
| GString *buf) |
| { |
| uint64_t qaddr_base = xive_end_qaddr(end); |
| uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); |
| uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); |
| uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); |
| uint32_t qentries = 1 << (qsize + 10); |
| uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); |
| uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); |
| |
| g_string_append_printf(buf, "%3d/%d % 6d/%5d @%"PRIx64" ^%d", |
| spapr_xive_nvt_to_target(0, nvt), |
| priority, qindex, qentries, qaddr_base, qgen); |
| |
| xive_end_queue_pic_print_info(end, 6, buf); |
| } |
| |
| /* |
| * kvm_irqchip_in_kernel() will cause the compiler to turn this |
| * info a nop if CONFIG_KVM isn't defined. |
| */ |
| #define spapr_xive_in_kernel(xive) \ |
| (kvm_irqchip_in_kernel() && (xive)->fd != -1) |
| |
| static void spapr_xive_pic_print_info(SpaprXive *xive, GString *buf) |
| { |
| XiveSource *xsrc = &xive->source; |
| int i; |
| |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_synchronize_state(xive, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return; |
| } |
| } |
| |
| g_string_append_printf(buf, " LISN PQ EISN CPU/PRIO EQ\n"); |
| |
| for (i = 0; i < xive->nr_irqs; i++) { |
| uint8_t pq = xive_source_esb_get(xsrc, i); |
| XiveEAS *eas = &xive->eat[i]; |
| |
| if (!xive_eas_is_valid(eas)) { |
| continue; |
| } |
| |
| g_string_append_printf(buf, " %08x %s %c%c%c %s %08x ", i, |
| xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", |
| pq & XIVE_ESB_VAL_P ? 'P' : '-', |
| pq & XIVE_ESB_VAL_Q ? 'Q' : '-', |
| xive_source_is_asserted(xsrc, i) ? 'A' : ' ', |
| xive_eas_is_masked(eas) ? "M" : " ", |
| (int) xive_get_field64(EAS_END_DATA, eas->w)); |
| |
| if (!xive_eas_is_masked(eas)) { |
| uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); |
| XiveEND *end; |
| |
| assert(end_idx < xive->nr_ends); |
| end = &xive->endt[end_idx]; |
| |
| if (xive_end_is_valid(end)) { |
| spapr_xive_end_pic_print_info(xive, end, buf); |
| } |
| |
| } |
| g_string_append_c(buf, '\n'); |
| } |
| } |
| |
| void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable) |
| { |
| memory_region_set_enabled(&xive->source.esb_mmio, enable); |
| memory_region_set_enabled(&xive->tm_mmio, enable); |
| |
| /* Disable the END ESBs until a guest OS makes use of them */ |
| memory_region_set_enabled(&xive->end_source.esb_mmio, false); |
| } |
| |
| static void spapr_xive_tm_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; |
| |
| xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size); |
| } |
| |
| static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; |
| |
| return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size); |
| } |
| |
| const MemoryRegionOps spapr_xive_tm_ops = { |
| .read = spapr_xive_tm_read, |
| .write = spapr_xive_tm_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void spapr_xive_end_reset(XiveEND *end) |
| { |
| memset(end, 0, sizeof(*end)); |
| |
| /* switch off the escalation and notification ESBs */ |
| end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q); |
| } |
| |
| static void spapr_xive_reset(void *dev) |
| { |
| SpaprXive *xive = SPAPR_XIVE(dev); |
| int i; |
| |
| /* |
| * The XiveSource has its own reset handler, which mask off all |
| * IRQs (!P|Q) |
| */ |
| |
| /* Mask all valid EASs in the IRQ number space. */ |
| for (i = 0; i < xive->nr_irqs; i++) { |
| XiveEAS *eas = &xive->eat[i]; |
| if (xive_eas_is_valid(eas)) { |
| eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED); |
| } else { |
| eas->w = 0; |
| } |
| } |
| |
| /* Clear all ENDs */ |
| for (i = 0; i < xive->nr_ends; i++) { |
| spapr_xive_end_reset(&xive->endt[i]); |
| } |
| } |
| |
| static void spapr_xive_instance_init(Object *obj) |
| { |
| SpaprXive *xive = SPAPR_XIVE(obj); |
| |
| object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE); |
| |
| object_initialize_child(obj, "end_source", &xive->end_source, |
| TYPE_XIVE_END_SOURCE); |
| |
| /* Not connected to the KVM XIVE device */ |
| xive->fd = -1; |
| } |
| |
| static void spapr_xive_realize(DeviceState *dev, Error **errp) |
| { |
| SpaprXive *xive = SPAPR_XIVE(dev); |
| SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive); |
| XiveSource *xsrc = &xive->source; |
| XiveENDSource *end_xsrc = &xive->end_source; |
| Error *local_err = NULL; |
| |
| /* Set by spapr_irq_init() */ |
| g_assert(xive->nr_irqs); |
| g_assert(xive->nr_ends); |
| |
| sxc->parent_realize(dev, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* |
| * Initialize the internal sources, for IPIs and virtual devices. |
| */ |
| object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs, |
| &error_fatal); |
| object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort); |
| if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { |
| return; |
| } |
| |
| /* |
| * Initialize the END ESB source |
| */ |
| object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs, |
| &error_fatal); |
| object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), |
| &error_abort); |
| if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) { |
| return; |
| } |
| |
| /* Set the mapping address of the END ESB pages after the source ESBs */ |
| xive->end_base = xive->vc_base + xive_source_esb_len(xsrc); |
| |
| /* |
| * Allocate the routing tables |
| */ |
| xive->eat = g_new0(XiveEAS, xive->nr_irqs); |
| xive->endt = g_new0(XiveEND, xive->nr_ends); |
| |
| xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64, |
| xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT)); |
| |
| qemu_register_reset(spapr_xive_reset, dev); |
| |
| /* TIMA initialization */ |
| memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops, |
| xive, "xive.tima", 4ull << TM_SHIFT); |
| |
| /* |
| * Map all regions. These will be enabled or disabled at reset and |
| * can also be overridden by KVM memory regions if active |
| */ |
| memory_region_add_subregion(get_system_memory(), xive->vc_base, |
| &xsrc->esb_mmio); |
| memory_region_add_subregion(get_system_memory(), xive->end_base, |
| &end_xsrc->esb_mmio); |
| memory_region_add_subregion(get_system_memory(), xive->tm_base, |
| &xive->tm_mmio); |
| } |
| |
| static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk, |
| uint32_t eas_idx, XiveEAS *eas) |
| { |
| SpaprXive *xive = SPAPR_XIVE(xrtr); |
| |
| if (eas_idx >= xive->nr_irqs) { |
| return -1; |
| } |
| |
| *eas = xive->eat[eas_idx]; |
| return 0; |
| } |
| |
| static int spapr_xive_get_end(XiveRouter *xrtr, |
| uint8_t end_blk, uint32_t end_idx, XiveEND *end) |
| { |
| SpaprXive *xive = SPAPR_XIVE(xrtr); |
| |
| if (end_idx >= xive->nr_ends) { |
| return -1; |
| } |
| |
| memcpy(end, &xive->endt[end_idx], sizeof(XiveEND)); |
| return 0; |
| } |
| |
| static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk, |
| uint32_t end_idx, XiveEND *end, |
| uint8_t word_number) |
| { |
| SpaprXive *xive = SPAPR_XIVE(xrtr); |
| |
| if (end_idx >= xive->nr_ends) { |
| return -1; |
| } |
| |
| memcpy(&xive->endt[end_idx], end, sizeof(XiveEND)); |
| return 0; |
| } |
| |
| static int spapr_xive_get_nvt(XiveRouter *xrtr, |
| uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) |
| { |
| uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); |
| PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); |
| |
| if (!cpu) { |
| /* TODO: should we assert() if we can find a NVT ? */ |
| return -1; |
| } |
| |
| /* |
| * sPAPR does not maintain a NVT table. Return that the NVT is |
| * valid if we have found a matching CPU |
| */ |
| nvt->w0 = cpu_to_be32(NVT_W0_VALID); |
| return 0; |
| } |
| |
| static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, |
| uint32_t nvt_idx, XiveNVT *nvt, |
| uint8_t word_number) |
| { |
| /* |
| * We don't need to write back to the NVTs because the sPAPR |
| * machine should never hit a non-scheduled NVT. It should never |
| * get called. |
| */ |
| g_assert_not_reached(); |
| } |
| |
| static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format, |
| uint8_t nvt_blk, uint32_t nvt_idx, |
| bool cam_ignore, uint8_t priority, |
| uint32_t logic_serv, XiveTCTXMatch *match) |
| { |
| CPUState *cs; |
| int count = 0; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; |
| int ring; |
| |
| /* |
| * Skip partially initialized vCPUs. This can happen when |
| * vCPUs are hotplugged. |
| */ |
| if (!tctx) { |
| continue; |
| } |
| |
| /* |
| * Check the thread context CAM lines and record matches. |
| */ |
| ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, |
| cam_ignore, logic_serv); |
| /* |
| * Save the matching thread interrupt context and follow on to |
| * check for duplicates which are invalid. |
| */ |
| if (ring != -1) { |
| if (match->tctx) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " |
| "context NVT %x/%x\n", nvt_blk, nvt_idx); |
| return -1; |
| } |
| |
| match->ring = ring; |
| match->tctx = tctx; |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr) |
| { |
| uint32_t cfg = 0; |
| |
| /* |
| * Let's claim GEN1 TIMA format. If running with KVM on P10, the |
| * correct answer is deep in the hardware and not accessible to |
| * us. But it shouldn't matter as it only affects the presenter |
| * as seen by a guest OS. |
| */ |
| cfg |= XIVE_PRESENTER_GEN1_TIMA_OS; |
| |
| return cfg; |
| } |
| |
| static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr) |
| { |
| return SPAPR_XIVE_BLOCK_ID; |
| } |
| |
| static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| SpaprXive *xive = SPAPR_XIVE(xrtr); |
| |
| assert(SPAPR_XIVE_BLOCK_ID == blk); |
| |
| *pq = xive_source_esb_get(&xive->source, idx); |
| return 0; |
| } |
| |
| static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| SpaprXive *xive = SPAPR_XIVE(xrtr); |
| |
| assert(SPAPR_XIVE_BLOCK_ID == blk); |
| |
| *pq = xive_source_esb_set(&xive->source, idx, *pq); |
| return 0; |
| } |
| |
| |
| static const VMStateDescription vmstate_spapr_xive_end = { |
| .name = TYPE_SPAPR_XIVE "/end", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField []) { |
| VMSTATE_UINT32(w0, XiveEND), |
| VMSTATE_UINT32(w1, XiveEND), |
| VMSTATE_UINT32(w2, XiveEND), |
| VMSTATE_UINT32(w3, XiveEND), |
| VMSTATE_UINT32(w4, XiveEND), |
| VMSTATE_UINT32(w5, XiveEND), |
| VMSTATE_UINT32(w6, XiveEND), |
| VMSTATE_UINT32(w7, XiveEND), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_spapr_xive_eas = { |
| .name = TYPE_SPAPR_XIVE "/eas", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField []) { |
| VMSTATE_UINT64(w, XiveEAS), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static int vmstate_spapr_xive_pre_save(void *opaque) |
| { |
| SpaprXive *xive = SPAPR_XIVE(opaque); |
| |
| if (spapr_xive_in_kernel(xive)) { |
| return kvmppc_xive_pre_save(xive); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Called by the sPAPR IRQ backend 'post_load' method at the machine |
| * level. |
| */ |
| static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| |
| if (spapr_xive_in_kernel(xive)) { |
| return kvmppc_xive_post_load(xive, version_id); |
| } |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_spapr_xive = { |
| .name = TYPE_SPAPR_XIVE, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = vmstate_spapr_xive_pre_save, |
| .post_load = NULL, /* handled at the machine level */ |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL), |
| VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs, |
| vmstate_spapr_xive_eas, XiveEAS), |
| VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends, |
| vmstate_spapr_xive_end, XiveEND), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn, |
| bool lsi, Error **errp) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| XiveSource *xsrc = &xive->source; |
| |
| assert(lisn < xive->nr_irqs); |
| |
| trace_spapr_xive_claim_irq(lisn, lsi); |
| |
| if (xive_eas_is_valid(&xive->eat[lisn])) { |
| error_setg(errp, "IRQ %d is not free", lisn); |
| return -EBUSY; |
| } |
| |
| /* |
| * Set default values when allocating an IRQ number |
| */ |
| xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED); |
| if (lsi) { |
| xive_source_irq_set_lsi(xsrc, lisn); |
| } |
| |
| if (spapr_xive_in_kernel(xive)) { |
| return kvmppc_xive_source_reset_one(xsrc, lisn, errp); |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| assert(lisn < xive->nr_irqs); |
| |
| trace_spapr_xive_free_irq(lisn); |
| |
| xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID); |
| } |
| |
| static Property spapr_xive_properties[] = { |
| DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0), |
| DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0), |
| DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE), |
| DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE), |
| DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc, |
| PowerPCCPU *cpu, Error **errp) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| Object *obj; |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp); |
| if (!obj) { |
| return -1; |
| } |
| |
| spapr_cpu->tctx = XIVE_TCTX(obj); |
| return 0; |
| } |
| |
| static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam) |
| { |
| uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam); |
| memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); |
| } |
| |
| static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc, |
| PowerPCCPU *cpu) |
| { |
| XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; |
| uint8_t nvt_blk; |
| uint32_t nvt_idx; |
| |
| xive_tctx_reset(tctx); |
| |
| /* |
| * When a Virtual Processor is scheduled to run on a HW thread, |
| * the hypervisor pushes its identifier in the OS CAM line. |
| * Emulate the same behavior under QEMU. |
| */ |
| spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx); |
| |
| xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx)); |
| } |
| |
| static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc, |
| PowerPCCPU *cpu) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| xive_tctx_destroy(spapr_cpu->tctx); |
| spapr_cpu->tctx = NULL; |
| } |
| |
| static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| |
| trace_spapr_xive_set_irq(irq, val); |
| |
| if (spapr_xive_in_kernel(xive)) { |
| kvmppc_xive_source_set_irq(&xive->source, irq, val); |
| } else { |
| xive_source_set_irq(&xive->source, irq, val); |
| } |
| } |
| |
| static void spapr_xive_print_info(SpaprInterruptController *intc, GString *buf) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| |
| xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, buf); |
| } |
| spapr_xive_pic_print_info(xive, buf); |
| } |
| |
| static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers, |
| void *fdt, uint32_t phandle) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| int node; |
| uint64_t timas[2 * 2]; |
| /* Interrupt number ranges for the IPIs */ |
| uint32_t lisn_ranges[] = { |
| cpu_to_be32(SPAPR_IRQ_IPI), |
| cpu_to_be32(SPAPR_IRQ_IPI + nr_servers), |
| }; |
| /* |
| * EQ size - the sizes of pages supported by the system 4K, 64K, |
| * 2M, 16M. We only advertise 64K for the moment. |
| */ |
| uint32_t eq_sizes[] = { |
| cpu_to_be32(16), /* 64K */ |
| }; |
| /* |
| * QEMU/KVM only needs to define a single range to reserve the |
| * escalation priority. A priority bitmask would have been more |
| * appropriate. |
| */ |
| uint32_t plat_res_int_priorities[] = { |
| cpu_to_be32(xive->hv_prio), /* start */ |
| cpu_to_be32(0xff - xive->hv_prio), /* count */ |
| }; |
| |
| /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */ |
| timas[0] = cpu_to_be64(xive->tm_base + |
| XIVE_TM_USER_PAGE * (1ull << TM_SHIFT)); |
| timas[1] = cpu_to_be64(1ull << TM_SHIFT); |
| timas[2] = cpu_to_be64(xive->tm_base + |
| XIVE_TM_OS_PAGE * (1ull << TM_SHIFT)); |
| timas[3] = cpu_to_be64(1ull << TM_SHIFT); |
| |
| _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename)); |
| |
| _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe")); |
| _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas))); |
| |
| _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe")); |
| _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes, |
| sizeof(eq_sizes))); |
| _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges, |
| sizeof(lisn_ranges))); |
| |
| /* For Linux to link the LSIs to the interrupt controller. */ |
| _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0)); |
| _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2)); |
| |
| /* For SLOF */ |
| _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle)); |
| _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle)); |
| |
| /* |
| * The "ibm,plat-res-int-priorities" property defines the priority |
| * ranges reserved by the hypervisor |
| */ |
| _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities", |
| plat_res_int_priorities, sizeof(plat_res_int_priorities))); |
| } |
| |
| static int spapr_xive_activate(SpaprInterruptController *intc, |
| uint32_t nr_servers, Error **errp) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| |
| if (kvm_enabled()) { |
| int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers, |
| errp); |
| if (rc < 0) { |
| return rc; |
| } |
| } |
| |
| /* Activate the XIVE MMIOs */ |
| spapr_xive_mmio_set_enabled(xive, true); |
| |
| return 0; |
| } |
| |
| static void spapr_xive_deactivate(SpaprInterruptController *intc) |
| { |
| SpaprXive *xive = SPAPR_XIVE(intc); |
| |
| spapr_xive_mmio_set_enabled(xive, false); |
| |
| if (spapr_xive_in_kernel(xive)) { |
| kvmppc_xive_disconnect(intc); |
| } |
| } |
| |
| static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr) |
| { |
| return spapr_xive_in_kernel(SPAPR_XIVE(xptr)); |
| } |
| |
| static void spapr_xive_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); |
| SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass); |
| XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); |
| SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass); |
| |
| dc->desc = "sPAPR XIVE Interrupt Controller"; |
| device_class_set_props(dc, spapr_xive_properties); |
| device_class_set_parent_realize(dc, spapr_xive_realize, |
| &sxc->parent_realize); |
| dc->vmsd = &vmstate_spapr_xive; |
| |
| xrc->get_eas = spapr_xive_get_eas; |
| xrc->get_pq = spapr_xive_get_pq; |
| xrc->set_pq = spapr_xive_set_pq; |
| xrc->get_end = spapr_xive_get_end; |
| xrc->write_end = spapr_xive_write_end; |
| xrc->get_nvt = spapr_xive_get_nvt; |
| xrc->write_nvt = spapr_xive_write_nvt; |
| xrc->get_block_id = spapr_xive_get_block_id; |
| |
| sicc->activate = spapr_xive_activate; |
| sicc->deactivate = spapr_xive_deactivate; |
| sicc->cpu_intc_create = spapr_xive_cpu_intc_create; |
| sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset; |
| sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy; |
| sicc->claim_irq = spapr_xive_claim_irq; |
| sicc->free_irq = spapr_xive_free_irq; |
| sicc->set_irq = spapr_xive_set_irq; |
| sicc->print_info = spapr_xive_print_info; |
| sicc->dt = spapr_xive_dt; |
| sicc->post_load = spapr_xive_post_load; |
| |
| xpc->match_nvt = spapr_xive_match_nvt; |
| xpc->get_config = spapr_xive_presenter_get_config; |
| xpc->in_kernel = spapr_xive_in_kernel_xptr; |
| } |
| |
| static const TypeInfo spapr_xive_info = { |
| .name = TYPE_SPAPR_XIVE, |
| .parent = TYPE_XIVE_ROUTER, |
| .instance_init = spapr_xive_instance_init, |
| .instance_size = sizeof(SpaprXive), |
| .class_init = spapr_xive_class_init, |
| .class_size = sizeof(SpaprXiveClass), |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_SPAPR_INTC }, |
| { } |
| }, |
| }; |
| |
| static void spapr_xive_register_types(void) |
| { |
| type_register_static(&spapr_xive_info); |
| } |
| |
| type_init(spapr_xive_register_types) |
| |
| /* |
| * XIVE hcalls |
| * |
| * The terminology used by the XIVE hcalls is the following : |
| * |
| * TARGET vCPU number |
| * EQ Event Queue assigned by OS to receive event data |
| * ESB page for source interrupt management |
| * LISN Logical Interrupt Source Number identifying a source in the |
| * machine |
| * EISN Effective Interrupt Source Number used by guest OS to |
| * identify source in the guest |
| * |
| * The EAS, END, NVT structures are not exposed. |
| */ |
| |
| /* |
| * On POWER9, the KVM XIVE device uses priority 7 for the escalation |
| * interrupts. So we only allow the guest to use priorities [0..6]. |
| */ |
| static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority) |
| { |
| return priority >= xive->hv_prio; |
| } |
| |
| /* |
| * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical |
| * real address of the MMIO page through which the Event State Buffer |
| * entry associated with the value of the "lisn" parameter is managed. |
| * |
| * Parameters: |
| * Input |
| * - R4: "flags" |
| * Bits 0-63 reserved |
| * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| * "ibm,xive-lisn-ranges" properties, or as returned by the |
| * ibm,query-interrupt-source-number RTAS call, or as returned |
| * by the H_ALLOCATE_VAS_WINDOW hcall |
| * |
| * Output |
| * - R4: "flags" |
| * Bits 0-59: Reserved |
| * Bit 60: H_INT_ESB must be used for Event State Buffer |
| * management |
| * Bit 61: 1 == LSI 0 == MSI |
| * Bit 62: the full function page supports trigger |
| * Bit 63: Store EOI Supported |
| * - R5: Logical Real address of full function Event State Buffer |
| * management page, -1 if H_INT_ESB hcall flag is set to 1. |
| * - R6: Logical Real Address of trigger only Event State Buffer |
| * management page or -1. |
| * - R7: Power of 2 page size for the ESB management pages returned in |
| * R5 and R6. |
| */ |
| |
| #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */ |
| #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */ |
| #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management |
| on same page */ |
| #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */ |
| |
| static target_ulong h_int_get_source_info(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| XiveSource *xsrc = &xive->source; |
| target_ulong flags = args[0]; |
| target_ulong lisn = args[1]; |
| |
| trace_spapr_xive_get_source_info(flags, lisn); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags) { |
| return H_PARAMETER; |
| } |
| |
| if (lisn >= xive->nr_irqs) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| if (!xive_eas_is_valid(&xive->eat[lisn])) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| /* |
| * All sources are emulated under the main XIVE object and share |
| * the same characteristics. |
| */ |
| args[0] = 0; |
| if (!xive_source_esb_has_2page(xsrc)) { |
| args[0] |= SPAPR_XIVE_SRC_TRIGGER; |
| } |
| if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) { |
| args[0] |= SPAPR_XIVE_SRC_STORE_EOI; |
| } |
| |
| /* |
| * Force the use of the H_INT_ESB hcall in case of an LSI |
| * interrupt. This is necessary under KVM to re-trigger the |
| * interrupt if the level is still asserted |
| */ |
| if (xive_source_irq_is_lsi(xsrc, lisn)) { |
| args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI; |
| } |
| |
| if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { |
| args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn); |
| } else { |
| args[1] = -1; |
| } |
| |
| if (xive_source_esb_has_2page(xsrc) && |
| !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { |
| args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn); |
| } else { |
| args[2] = -1; |
| } |
| |
| if (xive_source_esb_has_2page(xsrc)) { |
| args[3] = xsrc->esb_shift - 1; |
| } else { |
| args[3] = xsrc->esb_shift; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical |
| * Interrupt Source to a target. The Logical Interrupt Source is |
| * designated with the "lisn" parameter and the target is designated |
| * with the "target" and "priority" parameters. Upon return from the |
| * hcall(), no additional interrupts will be directed to the old EQ. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-61: Reserved |
| * Bit 62: set the "eisn" in the EAS |
| * Bit 63: masks the interrupt source in the hardware interrupt |
| * control structure. An interrupt masked by this mechanism will |
| * be dropped, but it's source state bits will still be |
| * set. There is no race-free way of unmasking and restoring the |
| * source. Thus this should only be used in interrupts that are |
| * also masked at the source, and only in cases where the |
| * interrupt is not meant to be used for a large amount of time |
| * because no valid target exists for it for example |
| * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| * "ibm,xive-lisn-ranges" properties, or as returned by the |
| * ibm,query-interrupt-source-number RTAS call, or as returned by |
| * the H_ALLOCATE_VAS_WINDOW hcall |
| * - R6: "target" is per "ibm,ppc-interrupt-server#s" or |
| * "ibm,ppc-interrupt-gserver#s" |
| * - R7: "priority" is a valid priority not in |
| * "ibm,plat-res-int-priorities" |
| * - R8: "eisn" is the guest EISN associated with the "lisn" |
| * |
| * Output: |
| * - None |
| */ |
| |
| #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62) |
| #define SPAPR_XIVE_SRC_MASK PPC_BIT(63) |
| |
| static target_ulong h_int_set_source_config(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| XiveEAS eas, new_eas; |
| target_ulong flags = args[0]; |
| target_ulong lisn = args[1]; |
| target_ulong target = args[2]; |
| target_ulong priority = args[3]; |
| target_ulong eisn = args[4]; |
| uint8_t end_blk; |
| uint32_t end_idx; |
| |
| trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) { |
| return H_PARAMETER; |
| } |
| |
| if (lisn >= xive->nr_irqs) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| eas = xive->eat[lisn]; |
| if (!xive_eas_is_valid(&eas)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| /* priority 0xff is used to reset the EAS */ |
| if (priority == 0xff) { |
| new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED); |
| goto out; |
| } |
| |
| if (flags & SPAPR_XIVE_SRC_MASK) { |
| new_eas.w = eas.w | cpu_to_be64(EAS_MASKED); |
| } else { |
| new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED); |
| } |
| |
| if (spapr_xive_priority_is_reserved(xive, priority)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| " is reserved\n", priority); |
| return H_P4; |
| } |
| |
| /* |
| * Validate that "target" is part of the list of threads allocated |
| * to the partition. For that, find the END corresponding to the |
| * target. |
| */ |
| if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| return H_P3; |
| } |
| |
| new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); |
| new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); |
| |
| if (flags & SPAPR_XIVE_SRC_SET_EISN) { |
| new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn); |
| } |
| |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| |
| out: |
| xive->eat[lisn] = new_eas; |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which |
| * target/priority pair is assigned to the specified Logical Interrupt |
| * Source. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63 Reserved |
| * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| * "ibm,xive-lisn-ranges" properties, or as returned by the |
| * ibm,query-interrupt-source-number RTAS call, or as |
| * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| * |
| * Output: |
| * - R4: Target to which the specified Logical Interrupt Source is |
| * assigned |
| * - R5: Priority to which the specified Logical Interrupt Source is |
| * assigned |
| * - R6: EISN for the specified Logical Interrupt Source (this will be |
| * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG) |
| */ |
| static target_ulong h_int_get_source_config(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| target_ulong flags = args[0]; |
| target_ulong lisn = args[1]; |
| XiveEAS eas; |
| XiveEND *end; |
| uint8_t nvt_blk; |
| uint32_t end_idx, nvt_idx; |
| |
| trace_spapr_xive_get_source_config(flags, lisn); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags) { |
| return H_PARAMETER; |
| } |
| |
| if (lisn >= xive->nr_irqs) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| eas = xive->eat[lisn]; |
| if (!xive_eas_is_valid(&eas)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| /* EAS_END_BLOCK is unused on sPAPR */ |
| end_idx = xive_get_field64(EAS_END_INDEX, eas.w); |
| |
| assert(end_idx < xive->nr_ends); |
| end = &xive->endt[end_idx]; |
| |
| nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); |
| nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); |
| args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); |
| |
| if (xive_eas_is_masked(&eas)) { |
| args[1] = 0xff; |
| } else { |
| args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7); |
| } |
| |
| args[2] = xive_get_field64(EAS_END_DATA, eas.w); |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real |
| * address of the notification management page associated with the |
| * specified target and priority. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63 Reserved |
| * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| * "ibm,ppc-interrupt-gserver#s" |
| * - R6: "priority" is a valid priority not in |
| * "ibm,plat-res-int-priorities" |
| * |
| * Output: |
| * - R4: Logical real address of notification page |
| * - R5: Power of 2 page size of the notification page |
| */ |
| static target_ulong h_int_get_queue_info(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| XiveENDSource *end_xsrc = &xive->end_source; |
| target_ulong flags = args[0]; |
| target_ulong target = args[1]; |
| target_ulong priority = args[2]; |
| XiveEND *end; |
| uint8_t end_blk; |
| uint32_t end_idx; |
| |
| trace_spapr_xive_get_queue_info(flags, target, priority); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags) { |
| return H_PARAMETER; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| if (spapr_xive_priority_is_reserved(xive, priority)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| " is reserved\n", priority); |
| return H_P3; |
| } |
| |
| /* |
| * Validate that "target" is part of the list of threads allocated |
| * to the partition. For that, find the END corresponding to the |
| * target. |
| */ |
| if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| return H_P2; |
| } |
| |
| assert(end_idx < xive->nr_ends); |
| end = &xive->endt[end_idx]; |
| |
| args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx; |
| if (xive_end_is_enqueue(end)) { |
| args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; |
| } else { |
| args[1] = 0; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for |
| * a given "target" and "priority". It is also used to set the |
| * notification config associated with the EQ. An EQ size of 0 is |
| * used to reset the EQ config for a given target and priority. If |
| * resetting the EQ config, the END associated with the given "target" |
| * and "priority" will be changed to disable queueing. |
| * |
| * Upon return from the hcall(), no additional interrupts will be |
| * directed to the old EQ (if one was set). The old EQ (if one was |
| * set) should be investigated for interrupts that occurred prior to |
| * or during the hcall(). |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-62: Reserved |
| * Bit 63: Unconditional Notify (n) per the XIVE spec |
| * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| * "ibm,ppc-interrupt-gserver#s" |
| * - R6: "priority" is a valid priority not in |
| * "ibm,plat-res-int-priorities" |
| * - R7: "eventQueue": The logical real address of the start of the EQ |
| * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes" |
| * |
| * Output: |
| * - None |
| */ |
| |
| #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63) |
| |
| static target_ulong h_int_set_queue_config(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| target_ulong flags = args[0]; |
| target_ulong target = args[1]; |
| target_ulong priority = args[2]; |
| target_ulong qpage = args[3]; |
| target_ulong qsize = args[4]; |
| XiveEND end; |
| uint8_t end_blk, nvt_blk; |
| uint32_t end_idx, nvt_idx; |
| |
| trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) { |
| return H_PARAMETER; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| if (spapr_xive_priority_is_reserved(xive, priority)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| " is reserved\n", priority); |
| return H_P3; |
| } |
| |
| /* |
| * Validate that "target" is part of the list of threads allocated |
| * to the partition. For that, find the END corresponding to the |
| * target. |
| */ |
| |
| if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| return H_P2; |
| } |
| |
| assert(end_idx < xive->nr_ends); |
| memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND)); |
| |
| switch (qsize) { |
| case 12: |
| case 16: |
| case 21: |
| case 24: |
| if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx |
| " is not naturally aligned with %" HWADDR_PRIx "\n", |
| qpage, (hwaddr)1 << qsize); |
| return H_P4; |
| } |
| end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff); |
| end.w3 = cpu_to_be32(qpage & 0xffffffff); |
| end.w0 |= cpu_to_be32(END_W0_ENQUEUE); |
| end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12); |
| break; |
| case 0: |
| /* reset queue and disable queueing */ |
| spapr_xive_end_reset(&end); |
| goto out; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n", |
| qsize); |
| return H_P5; |
| } |
| |
| if (qsize) { |
| hwaddr plen = 1 << qsize; |
| void *eq; |
| |
| /* |
| * Validate the guest EQ. We should also check that the queue |
| * has been zeroed by the OS. |
| */ |
| eq = address_space_map(CPU(cpu)->as, qpage, &plen, true, |
| MEMTXATTRS_UNSPECIFIED); |
| if (plen != 1 << qsize) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%" |
| HWADDR_PRIx "\n", qpage); |
| return H_P4; |
| } |
| address_space_unmap(CPU(cpu)->as, eq, plen, true, plen); |
| } |
| |
| /* "target" should have been validated above */ |
| if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) { |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Ensure the priority and target are correctly set (they will not |
| * be right after allocation) |
| */ |
| end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) | |
| xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx); |
| end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority); |
| |
| if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) { |
| end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY); |
| } else { |
| end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY); |
| } |
| |
| /* |
| * The generation bit for the END starts at 1 and The END page |
| * offset counter starts at 0. |
| */ |
| end.w1 = cpu_to_be32(END_W1_GENERATION) | |
| xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul); |
| end.w0 |= cpu_to_be32(END_W0_VALID); |
| |
| /* |
| * TODO: issue syncs required to ensure all in-flight interrupts |
| * are complete on the old END |
| */ |
| |
| out: |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| |
| /* Update END */ |
| memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND)); |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given |
| * target and priority. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-62: Reserved |
| * Bit 63: Debug: Return debug data |
| * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| * "ibm,ppc-interrupt-gserver#s" |
| * - R6: "priority" is a valid priority not in |
| * "ibm,plat-res-int-priorities" |
| * |
| * Output: |
| * - R4: "flags": |
| * Bits 0-61: Reserved |
| * Bit 62: The value of Event Queue Generation Number (g) per |
| * the XIVE spec if "Debug" = 1 |
| * Bit 63: The value of Unconditional Notify (n) per the XIVE spec |
| * - R5: The logical real address of the start of the EQ |
| * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes" |
| * - R7: The value of Event Queue Offset Counter per XIVE spec |
| * if "Debug" = 1, else 0 |
| * |
| */ |
| |
| #define SPAPR_XIVE_END_DEBUG PPC_BIT(63) |
| |
| static target_ulong h_int_get_queue_config(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| target_ulong flags = args[0]; |
| target_ulong target = args[1]; |
| target_ulong priority = args[2]; |
| XiveEND *end; |
| uint8_t end_blk; |
| uint32_t end_idx; |
| |
| trace_spapr_xive_get_queue_config(flags, target, priority); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags & ~SPAPR_XIVE_END_DEBUG) { |
| return H_PARAMETER; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| if (spapr_xive_priority_is_reserved(xive, priority)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| " is reserved\n", priority); |
| return H_P3; |
| } |
| |
| /* |
| * Validate that "target" is part of the list of threads allocated |
| * to the partition. For that, find the END corresponding to the |
| * target. |
| */ |
| if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| return H_P2; |
| } |
| |
| assert(end_idx < xive->nr_ends); |
| end = &xive->endt[end_idx]; |
| |
| args[0] = 0; |
| if (xive_end_is_notify(end)) { |
| args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY; |
| } |
| |
| if (xive_end_is_enqueue(end)) { |
| args[1] = xive_end_qaddr(end); |
| args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; |
| } else { |
| args[1] = 0; |
| args[2] = 0; |
| } |
| |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| |
| /* TODO: do we need any locking on the END ? */ |
| if (flags & SPAPR_XIVE_END_DEBUG) { |
| /* Load the event queue generation number into the return flags */ |
| args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62; |
| |
| /* Load R7 with the event queue offset counter */ |
| args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1); |
| } else { |
| args[3] = 0; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the |
| * reporting cache line pair for the calling thread. The reporting |
| * cache lines will contain the OS interrupt context when the OS |
| * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS |
| * interrupt. The reporting cache lines can be reset by inputting -1 |
| * in "reportingLine". Issuing the CI store byte without reporting |
| * cache lines registered will result in the data not being accessible |
| * to the OS. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63: Reserved |
| * - R5: "reportingLine": The logical real address of the reporting cache |
| * line pair |
| * |
| * Output: |
| * - None |
| */ |
| static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| |
| trace_spapr_xive_set_os_reporting_line(flags); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| /* TODO: H_INT_SET_OS_REPORTING_LINE */ |
| return H_FUNCTION; |
| } |
| |
| /* |
| * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical |
| * real address of the reporting cache line pair set for the input |
| * "target". If no reporting cache line pair has been set, -1 is |
| * returned. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63: Reserved |
| * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| * "ibm,ppc-interrupt-gserver#s" |
| * - R6: "reportingLine": The logical real address of the reporting |
| * cache line pair |
| * |
| * Output: |
| * - R4: The logical real address of the reporting line if set, else -1 |
| */ |
| static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| |
| trace_spapr_xive_get_os_reporting_line(flags); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| /* TODO: H_INT_GET_OS_REPORTING_LINE */ |
| return H_FUNCTION; |
| } |
| |
| /* |
| * The H_INT_ESB hcall() is used to issue a load or store to the ESB |
| * page for the input "lisn". This hcall is only supported for LISNs |
| * that have the ESB hcall flag set to 1 when returned from hcall() |
| * H_INT_GET_SOURCE_INFO. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-62: Reserved |
| * bit 63: Store: Store=1, store operation, else load operation |
| * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| * "ibm,xive-lisn-ranges" properties, or as returned by the |
| * ibm,query-interrupt-source-number RTAS call, or as |
| * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| * - R6: "esbOffset" is the offset into the ESB page for the load or |
| * store operation |
| * - R7: "storeData" is the data to write for a store operation |
| * |
| * Output: |
| * - R4: The value of the load if load operation, else -1 |
| */ |
| |
| #define SPAPR_XIVE_ESB_STORE PPC_BIT(63) |
| |
| static target_ulong h_int_esb(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| XiveEAS eas; |
| target_ulong flags = args[0]; |
| target_ulong lisn = args[1]; |
| target_ulong offset = args[2]; |
| target_ulong data = args[3]; |
| hwaddr mmio_addr; |
| XiveSource *xsrc = &xive->source; |
| |
| trace_spapr_xive_esb(flags, lisn, offset, data); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags & ~SPAPR_XIVE_ESB_STORE) { |
| return H_PARAMETER; |
| } |
| |
| if (lisn >= xive->nr_irqs) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| eas = xive->eat[lisn]; |
| if (!xive_eas_is_valid(&eas)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| if (offset > (1ull << xsrc->esb_shift)) { |
| return H_P3; |
| } |
| |
| if (spapr_xive_in_kernel(xive)) { |
| args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data, |
| flags & SPAPR_XIVE_ESB_STORE); |
| } else { |
| mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset; |
| |
| if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8, |
| (flags & SPAPR_XIVE_ESB_STORE), |
| MEMTXATTRS_UNSPECIFIED)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%" |
| HWADDR_PRIx "\n", mmio_addr); |
| return H_HARDWARE; |
| } |
| args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data; |
| } |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_SYNC hcall() is used to issue hardware syncs that will |
| * ensure any in flight events for the input lisn are in the event |
| * queue. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63: Reserved |
| * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| * "ibm,xive-lisn-ranges" properties, or as returned by the |
| * ibm,query-interrupt-source-number RTAS call, or as |
| * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| * |
| * Output: |
| * - None |
| */ |
| static target_ulong h_int_sync(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| XiveEAS eas; |
| target_ulong flags = args[0]; |
| target_ulong lisn = args[1]; |
| |
| trace_spapr_xive_sync(flags, lisn); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags) { |
| return H_PARAMETER; |
| } |
| |
| if (lisn >= xive->nr_irqs) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| eas = xive->eat[lisn]; |
| if (!xive_eas_is_valid(&eas)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", |
| lisn); |
| return H_P2; |
| } |
| |
| /* |
| * H_STATE should be returned if a H_INT_RESET is in progress. |
| * This is not needed when running the emulation under QEMU |
| */ |
| |
| /* |
| * This is not real hardware. Nothing to be done unless when |
| * under KVM |
| */ |
| |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_sync_source(xive, lisn, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The H_INT_RESET hcall() is used to reset all of the partition's |
| * interrupt exploitation structures to their initial state. This |
| * means losing all previously set interrupt state set via |
| * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG. |
| * |
| * Parameters: |
| * Input: |
| * - R4: "flags" |
| * Bits 0-63: Reserved |
| * |
| * Output: |
| * - None |
| */ |
| static target_ulong h_int_reset(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprXive *xive = spapr->xive; |
| target_ulong flags = args[0]; |
| |
| trace_spapr_xive_reset(flags); |
| |
| if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| return H_FUNCTION; |
| } |
| |
| if (flags) { |
| return H_PARAMETER; |
| } |
| |
| device_cold_reset(DEVICE(xive)); |
| |
| if (spapr_xive_in_kernel(xive)) { |
| Error *local_err = NULL; |
| |
| kvmppc_xive_reset(xive, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| return H_SUCCESS; |
| } |
| |
| void spapr_xive_hcall_init(SpaprMachineState *spapr) |
| { |
| spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info); |
| spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config); |
| spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config); |
| spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info); |
| spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config); |
| spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config); |
| spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE, |
| h_int_set_os_reporting_line); |
| spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE, |
| h_int_get_os_reporting_line); |
| spapr_register_hypercall(H_INT_ESB, h_int_esb); |
| spapr_register_hypercall(H_INT_SYNC, h_int_sync); |
| spapr_register_hypercall(H_INT_RESET, h_int_reset); |
| } |