|  | /* | 
|  | * ARM Nested Vectored Interrupt Controller | 
|  | * | 
|  | * Copyright (c) 2006-2007 CodeSourcery. | 
|  | * Written by Paul Brook | 
|  | * | 
|  | * This code is licensed under the GPL. | 
|  | * | 
|  | * The ARMv7M System controller is fairly tightly tied in with the | 
|  | * NVIC.  Much of that is also implemented here. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qapi/error.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "hw/intc/armv7m_nvic.h" | 
|  | #include "hw/irq.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "sysemu/tcg.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "target/arm/cpu.h" | 
|  | #include "target/arm/cpu-features.h" | 
|  | #include "exec/exec-all.h" | 
|  | #include "exec/memop.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/module.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | /* IRQ number counting: | 
|  | * | 
|  | * the num-irq property counts the number of external IRQ lines | 
|  | * | 
|  | * NVICState::num_irq counts the total number of exceptions | 
|  | * (external IRQs, the 15 internal exceptions including reset, | 
|  | * and one for the unused exception number 0). | 
|  | * | 
|  | * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. | 
|  | * | 
|  | * NVIC_MAX_VECTORS is the highest permitted number of exceptions. | 
|  | * | 
|  | * Iterating through all exceptions should typically be done with | 
|  | * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. | 
|  | * | 
|  | * The external qemu_irq lines are the NVIC's external IRQ lines, | 
|  | * so line 0 is exception 16. | 
|  | * | 
|  | * In the terminology of the architecture manual, "interrupts" are | 
|  | * a subcategory of exception referring to the external interrupts | 
|  | * (which are exception numbers NVIC_FIRST_IRQ and upward). | 
|  | * For historical reasons QEMU tends to use "interrupt" and | 
|  | * "exception" more or less interchangeably. | 
|  | */ | 
|  | #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS | 
|  | #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) | 
|  |  | 
|  | /* Effective running priority of the CPU when no exception is active | 
|  | * (higher than the highest possible priority value) | 
|  | */ | 
|  | #define NVIC_NOEXC_PRIO 0x100 | 
|  | /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ | 
|  | #define NVIC_NS_PRIO_LIMIT 0x80 | 
|  |  | 
|  | static const uint8_t nvic_id[] = { | 
|  | 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 | 
|  | }; | 
|  |  | 
|  | static void signal_sysresetreq(NVICState *s) | 
|  | { | 
|  | if (qemu_irq_is_connected(s->sysresetreq)) { | 
|  | qemu_irq_pulse(s->sysresetreq); | 
|  | } else { | 
|  | /* | 
|  | * Default behaviour if the SoC doesn't need to wire up | 
|  | * SYSRESETREQ (eg to a system reset controller of some kind): | 
|  | * perform a system reset via the usual QEMU API. | 
|  | */ | 
|  | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nvic_pending_prio(NVICState *s) | 
|  | { | 
|  | /* return the group priority of the current pending interrupt, | 
|  | * or NVIC_NOEXC_PRIO if no interrupt is pending | 
|  | */ | 
|  | return s->vectpending_prio; | 
|  | } | 
|  |  | 
|  | /* Return the value of the ISCR RETTOBASE bit: | 
|  | * 1 if there is exactly one active exception | 
|  | * 0 if there is more than one active exception | 
|  | * UNKNOWN if there are no active exceptions (we choose 1, | 
|  | * which matches the choice Cortex-M3 is documented as making). | 
|  | * | 
|  | * NB: some versions of the documentation talk about this | 
|  | * counting "active exceptions other than the one shown by IPSR"; | 
|  | * this is only different in the obscure corner case where guest | 
|  | * code has manually deactivated an exception and is about | 
|  | * to fail an exception-return integrity check. The definition | 
|  | * above is the one from the v8M ARM ARM and is also in line | 
|  | * with the behaviour documented for the Cortex-M3. | 
|  | */ | 
|  | static bool nvic_rettobase(NVICState *s) | 
|  | { | 
|  | int irq, nhand = 0; | 
|  | bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); | 
|  |  | 
|  | for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { | 
|  | if (s->vectors[irq].active || | 
|  | (check_sec && irq < NVIC_INTERNAL_VECTORS && | 
|  | s->sec_vectors[irq].active)) { | 
|  | nhand++; | 
|  | if (nhand == 2) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Return the value of the ISCR ISRPENDING bit: | 
|  | * 1 if an external interrupt is pending | 
|  | * 0 if no external interrupt is pending | 
|  | */ | 
|  | static bool nvic_isrpending(NVICState *s) | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | /* | 
|  | * We can shortcut if the highest priority pending interrupt | 
|  | * happens to be external; if not we need to check the whole | 
|  | * vectors[] array. | 
|  | */ | 
|  | if (s->vectpending > NVIC_FIRST_IRQ) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { | 
|  | if (s->vectors[irq].pending) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool exc_is_banked(int exc) | 
|  | { | 
|  | /* Return true if this is one of the limited set of exceptions which | 
|  | * are banked (and thus have state in sec_vectors[]) | 
|  | */ | 
|  | return exc == ARMV7M_EXCP_HARD || | 
|  | exc == ARMV7M_EXCP_MEM || | 
|  | exc == ARMV7M_EXCP_USAGE || | 
|  | exc == ARMV7M_EXCP_SVC || | 
|  | exc == ARMV7M_EXCP_PENDSV || | 
|  | exc == ARMV7M_EXCP_SYSTICK; | 
|  | } | 
|  |  | 
|  | /* Return a mask word which clears the subpriority bits from | 
|  | * a priority value for an M-profile exception, leaving only | 
|  | * the group priority. | 
|  | */ | 
|  | static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) | 
|  | { | 
|  | return ~0U << (s->prigroup[secure] + 1); | 
|  | } | 
|  |  | 
|  | static bool exc_targets_secure(NVICState *s, int exc) | 
|  | { | 
|  | /* Return true if this non-banked exception targets Secure state. */ | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (exc >= NVIC_FIRST_IRQ) { | 
|  | return !s->itns[exc]; | 
|  | } | 
|  |  | 
|  | /* Function shouldn't be called for banked exceptions. */ | 
|  | assert(!exc_is_banked(exc)); | 
|  |  | 
|  | switch (exc) { | 
|  | case ARMV7M_EXCP_NMI: | 
|  | case ARMV7M_EXCP_BUS: | 
|  | return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); | 
|  | case ARMV7M_EXCP_SECURE: | 
|  | return true; | 
|  | case ARMV7M_EXCP_DEBUG: | 
|  | /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ | 
|  | return false; | 
|  | default: | 
|  | /* reset, and reserved (unused) low exception numbers. | 
|  | * We'll get called by code that loops through all the exception | 
|  | * numbers, but it doesn't matter what we return here as these | 
|  | * non-existent exceptions will never be pended or active. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) | 
|  | { | 
|  | /* Return the group priority for this exception, given its raw | 
|  | * (group-and-subgroup) priority value and whether it is targeting | 
|  | * secure state or not. | 
|  | */ | 
|  | if (rawprio < 0) { | 
|  | return rawprio; | 
|  | } | 
|  | rawprio &= nvic_gprio_mask(s, targets_secure); | 
|  | /* AIRCR.PRIS causes us to squash all NS priorities into the | 
|  | * lower half of the total range | 
|  | */ | 
|  | if (!targets_secure && | 
|  | (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { | 
|  | rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; | 
|  | } | 
|  | return rawprio; | 
|  | } | 
|  |  | 
|  | /* Recompute vectpending and exception_prio for a CPU which implements | 
|  | * the Security extension | 
|  | */ | 
|  | static void nvic_recompute_state_secure(NVICState *s) | 
|  | { | 
|  | int i, bank; | 
|  | int pend_prio = NVIC_NOEXC_PRIO; | 
|  | int active_prio = NVIC_NOEXC_PRIO; | 
|  | int pend_irq = 0; | 
|  | bool pending_is_s_banked = false; | 
|  | int pend_subprio = 0; | 
|  |  | 
|  | /* R_CQRV: precedence is by: | 
|  | *  - lowest group priority; if both the same then | 
|  | *  - lowest subpriority; if both the same then | 
|  | *  - lowest exception number; if both the same (ie banked) then | 
|  | *  - secure exception takes precedence | 
|  | * Compare pseudocode RawExecutionPriority. | 
|  | * Annoyingly, now we have two prigroup values (for S and NS) | 
|  | * we can't do the loop comparison on raw priority values. | 
|  | */ | 
|  | for (i = 1; i < s->num_irq; i++) { | 
|  | for (bank = M_REG_S; bank >= M_REG_NS; bank--) { | 
|  | VecInfo *vec; | 
|  | int prio, subprio; | 
|  | bool targets_secure; | 
|  |  | 
|  | if (bank == M_REG_S) { | 
|  | if (!exc_is_banked(i)) { | 
|  | continue; | 
|  | } | 
|  | vec = &s->sec_vectors[i]; | 
|  | targets_secure = true; | 
|  | } else { | 
|  | vec = &s->vectors[i]; | 
|  | targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); | 
|  | } | 
|  |  | 
|  | prio = exc_group_prio(s, vec->prio, targets_secure); | 
|  | subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); | 
|  | if (vec->enabled && vec->pending && | 
|  | ((prio < pend_prio) || | 
|  | (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { | 
|  | pend_prio = prio; | 
|  | pend_subprio = subprio; | 
|  | pend_irq = i; | 
|  | pending_is_s_banked = (bank == M_REG_S); | 
|  | } | 
|  | if (vec->active && prio < active_prio) { | 
|  | active_prio = prio; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | s->vectpending_is_s_banked = pending_is_s_banked; | 
|  | s->vectpending = pend_irq; | 
|  | s->vectpending_prio = pend_prio; | 
|  | s->exception_prio = active_prio; | 
|  |  | 
|  | trace_nvic_recompute_state_secure(s->vectpending, | 
|  | s->vectpending_is_s_banked, | 
|  | s->vectpending_prio, | 
|  | s->exception_prio); | 
|  | } | 
|  |  | 
|  | /* Recompute vectpending and exception_prio */ | 
|  | static void nvic_recompute_state(NVICState *s) | 
|  | { | 
|  | int i; | 
|  | int pend_prio = NVIC_NOEXC_PRIO; | 
|  | int active_prio = NVIC_NOEXC_PRIO; | 
|  | int pend_irq = 0; | 
|  |  | 
|  | /* In theory we could write one function that handled both | 
|  | * the "security extension present" and "not present"; however | 
|  | * the security related changes significantly complicate the | 
|  | * recomputation just by themselves and mixing both cases together | 
|  | * would be even worse, so we retain a separate non-secure-only | 
|  | * version for CPUs which don't implement the security extension. | 
|  | */ | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { | 
|  | nvic_recompute_state_secure(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < s->num_irq; i++) { | 
|  | VecInfo *vec = &s->vectors[i]; | 
|  |  | 
|  | if (vec->enabled && vec->pending && vec->prio < pend_prio) { | 
|  | pend_prio = vec->prio; | 
|  | pend_irq = i; | 
|  | } | 
|  | if (vec->active && vec->prio < active_prio) { | 
|  | active_prio = vec->prio; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (active_prio > 0) { | 
|  | active_prio &= nvic_gprio_mask(s, false); | 
|  | } | 
|  |  | 
|  | if (pend_prio > 0) { | 
|  | pend_prio &= nvic_gprio_mask(s, false); | 
|  | } | 
|  |  | 
|  | s->vectpending = pend_irq; | 
|  | s->vectpending_prio = pend_prio; | 
|  | s->exception_prio = active_prio; | 
|  |  | 
|  | trace_nvic_recompute_state(s->vectpending, | 
|  | s->vectpending_prio, | 
|  | s->exception_prio); | 
|  | } | 
|  |  | 
|  | /* Return the current execution priority of the CPU | 
|  | * (equivalent to the pseudocode ExecutionPriority function). | 
|  | * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. | 
|  | */ | 
|  | static inline int nvic_exec_prio(NVICState *s) | 
|  | { | 
|  | CPUARMState *env = &s->cpu->env; | 
|  | int running = NVIC_NOEXC_PRIO; | 
|  |  | 
|  | if (env->v7m.basepri[M_REG_NS] > 0) { | 
|  | running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); | 
|  | } | 
|  |  | 
|  | if (env->v7m.basepri[M_REG_S] > 0) { | 
|  | int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); | 
|  | if (running > basepri) { | 
|  | running = basepri; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->v7m.primask[M_REG_NS]) { | 
|  | if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { | 
|  | if (running > NVIC_NS_PRIO_LIMIT) { | 
|  | running = NVIC_NS_PRIO_LIMIT; | 
|  | } | 
|  | } else { | 
|  | running = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->v7m.primask[M_REG_S]) { | 
|  | running = 0; | 
|  | } | 
|  |  | 
|  | if (env->v7m.faultmask[M_REG_NS]) { | 
|  | if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { | 
|  | running = -1; | 
|  | } else { | 
|  | if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { | 
|  | if (running > NVIC_NS_PRIO_LIMIT) { | 
|  | running = NVIC_NS_PRIO_LIMIT; | 
|  | } | 
|  | } else { | 
|  | running = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->v7m.faultmask[M_REG_S]) { | 
|  | running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; | 
|  | } | 
|  |  | 
|  | /* consider priority of active handler */ | 
|  | return MIN(running, s->exception_prio); | 
|  | } | 
|  |  | 
|  | bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure) | 
|  | { | 
|  | /* Return true if the requested execution priority is negative | 
|  | * for the specified security state, ie that security state | 
|  | * has an active NMI or HardFault or has set its FAULTMASK. | 
|  | * Note that this is not the same as whether the execution | 
|  | * priority is actually negative (for instance AIRCR.PRIS may | 
|  | * mean we don't allow FAULTMASK_NS to actually make the execution | 
|  | * priority negative). Compare pseudocode IsReqExcPriNeg(). | 
|  | */ | 
|  | if (s->cpu->env.v7m.faultmask[secure]) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : | 
|  | s->vectors[ARMV7M_EXCP_HARD].active) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (s->vectors[ARMV7M_EXCP_NMI].active && | 
|  | exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool armv7m_nvic_can_take_pending_exception(NVICState *s) | 
|  | { | 
|  | return nvic_exec_prio(s) > nvic_pending_prio(s); | 
|  | } | 
|  |  | 
|  | int armv7m_nvic_raw_execution_priority(NVICState *s) | 
|  | { | 
|  | return s->exception_prio; | 
|  | } | 
|  |  | 
|  | /* caller must call nvic_irq_update() after this. | 
|  | * secure indicates the bank to use for banked exceptions (we assert if | 
|  | * we are passed secure=true for a non-banked exception). | 
|  | */ | 
|  | static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) | 
|  | { | 
|  | assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ | 
|  | assert(irq < s->num_irq); | 
|  |  | 
|  | prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); | 
|  |  | 
|  | if (secure) { | 
|  | assert(exc_is_banked(irq)); | 
|  | s->sec_vectors[irq].prio = prio; | 
|  | } else { | 
|  | s->vectors[irq].prio = prio; | 
|  | } | 
|  |  | 
|  | trace_nvic_set_prio(irq, secure, prio); | 
|  | } | 
|  |  | 
|  | /* Return the current raw priority register value. | 
|  | * secure indicates the bank to use for banked exceptions (we assert if | 
|  | * we are passed secure=true for a non-banked exception). | 
|  | */ | 
|  | static int get_prio(NVICState *s, unsigned irq, bool secure) | 
|  | { | 
|  | assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ | 
|  | assert(irq < s->num_irq); | 
|  |  | 
|  | if (secure) { | 
|  | assert(exc_is_banked(irq)); | 
|  | return s->sec_vectors[irq].prio; | 
|  | } else { | 
|  | return s->vectors[irq].prio; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Recompute state and assert irq line accordingly. | 
|  | * Must be called after changes to: | 
|  | *  vec->active, vec->enabled, vec->pending or vec->prio for any vector | 
|  | *  prigroup | 
|  | */ | 
|  | static void nvic_irq_update(NVICState *s) | 
|  | { | 
|  | int lvl; | 
|  | int pend_prio; | 
|  |  | 
|  | nvic_recompute_state(s); | 
|  | pend_prio = nvic_pending_prio(s); | 
|  |  | 
|  | /* Raise NVIC output if this IRQ would be taken, except that we | 
|  | * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which | 
|  | * will be checked for in arm_v7m_cpu_exec_interrupt()); changes | 
|  | * to those CPU registers don't cause us to recalculate the NVIC | 
|  | * pending info. | 
|  | */ | 
|  | lvl = (pend_prio < s->exception_prio); | 
|  | trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); | 
|  | qemu_set_irq(s->excpout, lvl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * armv7m_nvic_clear_pending: mark the specified exception as not pending | 
|  | * @opaque: the NVIC | 
|  | * @irq: the exception number to mark as not pending | 
|  | * @secure: false for non-banked exceptions or for the nonsecure | 
|  | * version of a banked exception, true for the secure version of a banked | 
|  | * exception. | 
|  | * | 
|  | * Marks the specified exception as not pending. Note that we will assert() | 
|  | * if @secure is true and @irq does not specify one of the fixed set | 
|  | * of architecturally banked exceptions. | 
|  | */ | 
|  | static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | VecInfo *vec; | 
|  |  | 
|  | assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); | 
|  |  | 
|  | if (secure) { | 
|  | assert(exc_is_banked(irq)); | 
|  | vec = &s->sec_vectors[irq]; | 
|  | } else { | 
|  | vec = &s->vectors[irq]; | 
|  | } | 
|  | trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); | 
|  | if (vec->pending) { | 
|  | vec->pending = 0; | 
|  | nvic_irq_update(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, | 
|  | bool derived) | 
|  | { | 
|  | /* Pend an exception, including possibly escalating it to HardFault. | 
|  | * | 
|  | * This function handles both "normal" pending of interrupts and | 
|  | * exceptions, and also derived exceptions (ones which occur as | 
|  | * a result of trying to take some other exception). | 
|  | * | 
|  | * If derived == true, the caller guarantees that we are part way through | 
|  | * trying to take an exception (but have not yet called | 
|  | * armv7m_nvic_acknowledge_irq() to make it active), and so: | 
|  | *  - s->vectpending is the "original exception" we were trying to take | 
|  | *  - irq is the "derived exception" | 
|  | *  - nvic_exec_prio(s) gives the priority before exception entry | 
|  | * Here we handle the prioritization logic which the pseudocode puts | 
|  | * in the DerivedLateArrival() function. | 
|  | */ | 
|  |  | 
|  | NVICState *s = (NVICState *)opaque; | 
|  | bool banked = exc_is_banked(irq); | 
|  | VecInfo *vec; | 
|  | bool targets_secure; | 
|  |  | 
|  | assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); | 
|  | assert(!secure || banked); | 
|  |  | 
|  | vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; | 
|  |  | 
|  | targets_secure = banked ? secure : exc_targets_secure(s, irq); | 
|  |  | 
|  | trace_nvic_set_pending(irq, secure, targets_secure, | 
|  | derived, vec->enabled, vec->prio); | 
|  |  | 
|  | if (derived) { | 
|  | /* Derived exceptions are always synchronous. */ | 
|  | assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); | 
|  |  | 
|  | if (irq == ARMV7M_EXCP_DEBUG && | 
|  | exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { | 
|  | /* DebugMonitorFault, but its priority is lower than the | 
|  | * preempted exception priority: just ignore it. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { | 
|  | /* If this is a terminal exception (one which means we cannot | 
|  | * take the original exception, like a failure to read its | 
|  | * vector table entry), then we must take the derived exception. | 
|  | * If the derived exception can't take priority over the | 
|  | * original exception, then we go into Lockup. | 
|  | * | 
|  | * For QEMU, we rely on the fact that a derived exception is | 
|  | * terminal if and only if it's reported to us as HardFault, | 
|  | * which saves having to have an extra argument is_terminal | 
|  | * that we'd only use in one place. | 
|  | */ | 
|  | cpu_abort(CPU(s->cpu), | 
|  | "Lockup: can't take terminal derived exception " | 
|  | "(original exception priority %d)\n", | 
|  | s->vectpending_prio); | 
|  | } | 
|  | /* We now continue with the same code as for a normal pending | 
|  | * exception, which will cause us to pend the derived exception. | 
|  | * We'll then take either the original or the derived exception | 
|  | * based on which is higher priority by the usual mechanism | 
|  | * for selecting the highest priority pending interrupt. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { | 
|  | /* If a synchronous exception is pending then it may be | 
|  | * escalated to HardFault if: | 
|  | *  * it is equal or lower priority to current execution | 
|  | *  * it is disabled | 
|  | * (ie we need to take it immediately but we can't do so). | 
|  | * Asynchronous exceptions (and interrupts) simply remain pending. | 
|  | * | 
|  | * For QEMU, we don't have any imprecise (asynchronous) faults, | 
|  | * so we can assume that PREFETCH_ABORT and DATA_ABORT are always | 
|  | * synchronous. | 
|  | * Debug exceptions are awkward because only Debug exceptions | 
|  | * resulting from the BKPT instruction should be escalated, | 
|  | * but we don't currently implement any Debug exceptions other | 
|  | * than those that result from BKPT, so we treat all debug exceptions | 
|  | * as needing escalation. | 
|  | * | 
|  | * This all means we can identify whether to escalate based only on | 
|  | * the exception number and don't (yet) need the caller to explicitly | 
|  | * tell us whether this exception is synchronous or not. | 
|  | */ | 
|  | int running = nvic_exec_prio(s); | 
|  | bool escalate = false; | 
|  |  | 
|  | if (exc_group_prio(s, vec->prio, secure) >= running) { | 
|  | trace_nvic_escalate_prio(irq, vec->prio, running); | 
|  | escalate = true; | 
|  | } else if (!vec->enabled) { | 
|  | trace_nvic_escalate_disabled(irq); | 
|  | escalate = true; | 
|  | } | 
|  |  | 
|  | if (escalate) { | 
|  |  | 
|  | /* We need to escalate this exception to a synchronous HardFault. | 
|  | * If BFHFNMINS is set then we escalate to the banked HF for | 
|  | * the target security state of the original exception; otherwise | 
|  | * we take a Secure HardFault. | 
|  | */ | 
|  | irq = ARMV7M_EXCP_HARD; | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && | 
|  | (targets_secure || | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { | 
|  | vec = &s->sec_vectors[irq]; | 
|  | } else { | 
|  | vec = &s->vectors[irq]; | 
|  | } | 
|  | if (running <= vec->prio) { | 
|  | /* We want to escalate to HardFault but we can't take the | 
|  | * synchronous HardFault at this point either. This is a | 
|  | * Lockup condition due to a guest bug. We don't model | 
|  | * Lockup, so report via cpu_abort() instead. | 
|  | */ | 
|  | cpu_abort(CPU(s->cpu), | 
|  | "Lockup: can't escalate %d to HardFault " | 
|  | "(current priority %d)\n", irq, running); | 
|  | } | 
|  |  | 
|  | /* HF may be banked but there is only one shared HFSR */ | 
|  | s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!vec->pending) { | 
|  | vec->pending = 1; | 
|  | nvic_irq_update(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | do_armv7m_nvic_set_pending(s, irq, secure, false); | 
|  | } | 
|  |  | 
|  | void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | do_armv7m_nvic_set_pending(s, irq, secure, true); | 
|  | } | 
|  |  | 
|  | void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | /* | 
|  | * Pend an exception during lazy FP stacking. This differs | 
|  | * from the usual exception pending because the logic for | 
|  | * whether we should escalate depends on the saved context | 
|  | * in the FPCCR register, not on the current state of the CPU/NVIC. | 
|  | */ | 
|  | bool banked = exc_is_banked(irq); | 
|  | VecInfo *vec; | 
|  | bool targets_secure; | 
|  | bool escalate = false; | 
|  | /* | 
|  | * We will only look at bits in fpccr if this is a banked exception | 
|  | * (in which case 'secure' tells us whether it is the S or NS version). | 
|  | * All the bits for the non-banked exceptions are in fpccr_s. | 
|  | */ | 
|  | uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; | 
|  | uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; | 
|  |  | 
|  | assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); | 
|  | assert(!secure || banked); | 
|  |  | 
|  | vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; | 
|  |  | 
|  | targets_secure = banked ? secure : exc_targets_secure(s, irq); | 
|  |  | 
|  | switch (irq) { | 
|  | case ARMV7M_EXCP_DEBUG: | 
|  | if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { | 
|  | /* Ignore DebugMonitor exception */ | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ARMV7M_EXCP_MEM: | 
|  | escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); | 
|  | break; | 
|  | case ARMV7M_EXCP_USAGE: | 
|  | escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); | 
|  | break; | 
|  | case ARMV7M_EXCP_BUS: | 
|  | escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); | 
|  | break; | 
|  | case ARMV7M_EXCP_SECURE: | 
|  | escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | if (escalate) { | 
|  | /* | 
|  | * Escalate to HardFault: faults that initially targeted Secure | 
|  | * continue to do so, even if HF normally targets NonSecure. | 
|  | */ | 
|  | irq = ARMV7M_EXCP_HARD; | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && | 
|  | (targets_secure || | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { | 
|  | vec = &s->sec_vectors[irq]; | 
|  | } else { | 
|  | vec = &s->vectors[irq]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!vec->enabled || | 
|  | nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { | 
|  | if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { | 
|  | /* | 
|  | * We want to escalate to HardFault but the context the | 
|  | * FP state belongs to prevents the exception pre-empting. | 
|  | */ | 
|  | cpu_abort(CPU(s->cpu), | 
|  | "Lockup: can't escalate to HardFault during " | 
|  | "lazy FP register stacking\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (escalate) { | 
|  | s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; | 
|  | } | 
|  | if (!vec->pending) { | 
|  | vec->pending = 1; | 
|  | /* | 
|  | * We do not call nvic_irq_update(), because we know our caller | 
|  | * is going to handle causing us to take the exception by | 
|  | * raising EXCP_LAZYFP, so raising the IRQ line would be | 
|  | * pointless extra work. We just need to recompute the | 
|  | * priorities so that armv7m_nvic_can_take_pending_exception() | 
|  | * returns the right answer. | 
|  | */ | 
|  | nvic_recompute_state(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make pending IRQ active.  */ | 
|  | void armv7m_nvic_acknowledge_irq(NVICState *s) | 
|  | { | 
|  | CPUARMState *env = &s->cpu->env; | 
|  | const int pending = s->vectpending; | 
|  | const int running = nvic_exec_prio(s); | 
|  | VecInfo *vec; | 
|  |  | 
|  | assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); | 
|  |  | 
|  | if (s->vectpending_is_s_banked) { | 
|  | vec = &s->sec_vectors[pending]; | 
|  | } else { | 
|  | vec = &s->vectors[pending]; | 
|  | } | 
|  |  | 
|  | assert(vec->enabled); | 
|  | assert(vec->pending); | 
|  |  | 
|  | assert(s->vectpending_prio < running); | 
|  |  | 
|  | trace_nvic_acknowledge_irq(pending, s->vectpending_prio); | 
|  |  | 
|  | vec->active = 1; | 
|  | vec->pending = 0; | 
|  |  | 
|  | write_v7m_exception(env, s->vectpending); | 
|  |  | 
|  | nvic_irq_update(s); | 
|  | } | 
|  |  | 
|  | static bool vectpending_targets_secure(NVICState *s) | 
|  | { | 
|  | /* Return true if s->vectpending targets Secure state */ | 
|  | if (s->vectpending_is_s_banked) { | 
|  | return true; | 
|  | } | 
|  | return !exc_is_banked(s->vectpending) && | 
|  | exc_targets_secure(s, s->vectpending); | 
|  | } | 
|  |  | 
|  | void armv7m_nvic_get_pending_irq_info(NVICState *s, | 
|  | int *pirq, bool *ptargets_secure) | 
|  | { | 
|  | const int pending = s->vectpending; | 
|  | bool targets_secure; | 
|  |  | 
|  | assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); | 
|  |  | 
|  | targets_secure = vectpending_targets_secure(s); | 
|  |  | 
|  | trace_nvic_get_pending_irq_info(pending, targets_secure); | 
|  |  | 
|  | *ptargets_secure = targets_secure; | 
|  | *pirq = pending; | 
|  | } | 
|  |  | 
|  | int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | VecInfo *vec = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); | 
|  |  | 
|  | trace_nvic_complete_irq(irq, secure); | 
|  |  | 
|  | if (secure && exc_is_banked(irq)) { | 
|  | vec = &s->sec_vectors[irq]; | 
|  | } else { | 
|  | vec = &s->vectors[irq]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify illegal exception return cases. We can't immediately | 
|  | * return at this point because we still need to deactivate | 
|  | * (either this exception or NMI/HardFault) first. | 
|  | */ | 
|  | if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { | 
|  | /* | 
|  | * Return from a configurable exception targeting the opposite | 
|  | * security state from the one we're trying to complete it for. | 
|  | * Clear vec because it's not really the VecInfo for this | 
|  | * (irq, secstate) so we mustn't deactivate it. | 
|  | */ | 
|  | ret = -1; | 
|  | vec = NULL; | 
|  | } else if (!vec->active) { | 
|  | /* Return from an inactive interrupt */ | 
|  | ret = -1; | 
|  | } else { | 
|  | /* Legal return, we will return the RETTOBASE bit value to the caller */ | 
|  | ret = nvic_rettobase(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For negative priorities, v8M will forcibly deactivate the appropriate | 
|  | * NMI or HardFault regardless of what interrupt we're being asked to | 
|  | * deactivate (compare the DeActivate() pseudocode). This is a guard | 
|  | * against software returning from NMI or HardFault with a corrupted | 
|  | * IPSR and leaving the CPU in a negative-priority state. | 
|  | * v7M does not do this, but simply deactivates the requested interrupt. | 
|  | */ | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { | 
|  | switch (armv7m_nvic_raw_execution_priority(s)) { | 
|  | case -1: | 
|  | if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { | 
|  | vec = &s->vectors[ARMV7M_EXCP_HARD]; | 
|  | } else { | 
|  | vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; | 
|  | } | 
|  | break; | 
|  | case -2: | 
|  | vec = &s->vectors[ARMV7M_EXCP_NMI]; | 
|  | break; | 
|  | case -3: | 
|  | vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!vec) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | vec->active = 0; | 
|  | if (vec->level) { | 
|  | /* Re-pend the exception if it's still held high; only | 
|  | * happens for external IRQs | 
|  | */ | 
|  | assert(irq >= NVIC_FIRST_IRQ); | 
|  | vec->pending = 1; | 
|  | } | 
|  |  | 
|  | nvic_irq_update(s); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure) | 
|  | { | 
|  | /* | 
|  | * Return whether an exception is "ready", i.e. it is enabled and is | 
|  | * configured at a priority which would allow it to interrupt the | 
|  | * current execution priority. | 
|  | * | 
|  | * irq and secure have the same semantics as for armv7m_nvic_set_pending(): | 
|  | * for non-banked exceptions secure is always false; for banked exceptions | 
|  | * it indicates which of the exceptions is required. | 
|  | */ | 
|  | bool banked = exc_is_banked(irq); | 
|  | VecInfo *vec; | 
|  | int running = nvic_exec_prio(s); | 
|  |  | 
|  | assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); | 
|  | assert(!secure || banked); | 
|  |  | 
|  | /* | 
|  | * HardFault is an odd special case: we always check against -1, | 
|  | * even if we're secure and HardFault has priority -3; we never | 
|  | * need to check for enabled state. | 
|  | */ | 
|  | if (irq == ARMV7M_EXCP_HARD) { | 
|  | return running > -1; | 
|  | } | 
|  |  | 
|  | vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; | 
|  |  | 
|  | return vec->enabled && | 
|  | exc_group_prio(s, vec->prio, secure) < running; | 
|  | } | 
|  |  | 
|  | /* callback when external interrupt line is changed */ | 
|  | static void set_irq_level(void *opaque, int n, int level) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  | VecInfo *vec; | 
|  |  | 
|  | n += NVIC_FIRST_IRQ; | 
|  |  | 
|  | assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); | 
|  |  | 
|  | trace_nvic_set_irq_level(n, level); | 
|  |  | 
|  | /* The pending status of an external interrupt is | 
|  | * latched on rising edge and exception handler return. | 
|  | * | 
|  | * Pulsing the IRQ will always run the handler | 
|  | * once, and the handler will re-run until the | 
|  | * level is low when the handler completes. | 
|  | */ | 
|  | vec = &s->vectors[n]; | 
|  | if (level != vec->level) { | 
|  | vec->level = level; | 
|  | if (level) { | 
|  | armv7m_nvic_set_pending(s, n, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* callback when external NMI line is changed */ | 
|  | static void nvic_nmi_trigger(void *opaque, int n, int level) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  |  | 
|  | trace_nvic_set_nmi_level(level); | 
|  |  | 
|  | /* | 
|  | * The architecture doesn't specify whether NMI should share | 
|  | * the normal-interrupt behaviour of being resampled on | 
|  | * exception handler return. We choose not to, so just | 
|  | * set NMI pending here and don't track the current level. | 
|  | */ | 
|  | if (level) { | 
|  | armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) | 
|  | { | 
|  | ARMCPU *cpu = s->cpu; | 
|  | uint32_t val; | 
|  |  | 
|  | switch (offset) { | 
|  | case 4: /* Interrupt Control Type.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; | 
|  | case 0xc: /* CPPWR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* We make the IMPDEF choice that nothing can ever go into a | 
|  | * non-retentive power state, which allows us to RAZ/WI this. | 
|  | */ | 
|  | return 0; | 
|  | case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ | 
|  | { | 
|  | int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; | 
|  | int i; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | val = 0; | 
|  | for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { | 
|  | if (s->itns[startvec + i]) { | 
|  | val |= (1 << i); | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  | case 0xcfc: | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->revidr; | 
|  | case 0xd00: /* CPUID Base.  */ | 
|  | return cpu->midr; | 
|  | case 0xd04: /* Interrupt Control State (ICSR) */ | 
|  | /* VECTACTIVE */ | 
|  | val = cpu->env.v7m.exception; | 
|  | /* VECTPENDING */ | 
|  | if (s->vectpending) { | 
|  | /* | 
|  | * From v8.1M VECTPENDING must read as 1 if accessed as | 
|  | * NonSecure and the highest priority pending and enabled | 
|  | * exception targets Secure. | 
|  | */ | 
|  | int vp = s->vectpending; | 
|  | if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && | 
|  | vectpending_targets_secure(s)) { | 
|  | vp = 1; | 
|  | } | 
|  | val |= (vp & 0x1ff) << 12; | 
|  | } | 
|  | /* ISRPENDING - set if any external IRQ is pending */ | 
|  | if (nvic_isrpending(s)) { | 
|  | val |= (1 << 22); | 
|  | } | 
|  | /* RETTOBASE - set if only one handler is active */ | 
|  | if (nvic_rettobase(s)) { | 
|  | val |= (1 << 11); | 
|  | } | 
|  | if (attrs.secure) { | 
|  | /* PENDSTSET */ | 
|  | if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { | 
|  | val |= (1 << 26); | 
|  | } | 
|  | /* PENDSVSET */ | 
|  | if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { | 
|  | val |= (1 << 28); | 
|  | } | 
|  | } else { | 
|  | /* PENDSTSET */ | 
|  | if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { | 
|  | val |= (1 << 26); | 
|  | } | 
|  | /* PENDSVSET */ | 
|  | if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { | 
|  | val |= (1 << 28); | 
|  | } | 
|  | } | 
|  | /* NMIPENDSET */ | 
|  | if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) | 
|  | && s->vectors[ARMV7M_EXCP_NMI].pending) { | 
|  | val |= (1 << 31); | 
|  | } | 
|  | /* ISRPREEMPT: RES0 when halting debug not implemented */ | 
|  | /* STTNS: RES0 for the Main Extension */ | 
|  | return val; | 
|  | case 0xd08: /* Vector Table Offset.  */ | 
|  | return cpu->env.v7m.vecbase[attrs.secure]; | 
|  | case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ | 
|  | val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); | 
|  | if (attrs.secure) { | 
|  | /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ | 
|  | val |= cpu->env.v7m.aircr; | 
|  | } else { | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If | 
|  | * security isn't supported then BFHFNMINS is RAO (and | 
|  | * the bit in env.v7m.aircr is always set). | 
|  | */ | 
|  | val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | case 0xd10: /* System Control.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->env.v7m.scr[attrs.secure]; | 
|  | case 0xd14: /* Configuration Control.  */ | 
|  | /* | 
|  | * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) | 
|  | * and TRD (stored in the S copy of the register) | 
|  | */ | 
|  | val = cpu->env.v7m.ccr[attrs.secure]; | 
|  | val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; | 
|  | /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ | 
|  | if (!attrs.secure) { | 
|  | if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | val &= ~R_V7M_CCR_BFHFNMIGN_MASK; | 
|  | } | 
|  | } | 
|  | return val; | 
|  | case 0xd24: /* System Handler Control and State (SHCSR) */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | val = 0; | 
|  | if (attrs.secure) { | 
|  | if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { | 
|  | val |= (1 << 0); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { | 
|  | val |= (1 << 2); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { | 
|  | val |= (1 << 3); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { | 
|  | val |= (1 << 7); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { | 
|  | val |= (1 << 10); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { | 
|  | val |= (1 << 11); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { | 
|  | val |= (1 << 12); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { | 
|  | val |= (1 << 13); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { | 
|  | val |= (1 << 15); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { | 
|  | val |= (1 << 16); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { | 
|  | val |= (1 << 18); | 
|  | } | 
|  | if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { | 
|  | val |= (1 << 21); | 
|  | } | 
|  | /* SecureFault is not banked but is always RAZ/WI to NS */ | 
|  | if (s->vectors[ARMV7M_EXCP_SECURE].active) { | 
|  | val |= (1 << 4); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { | 
|  | val |= (1 << 19); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_SECURE].pending) { | 
|  | val |= (1 << 20); | 
|  | } | 
|  | } else { | 
|  | if (s->vectors[ARMV7M_EXCP_MEM].active) { | 
|  | val |= (1 << 0); | 
|  | } | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ | 
|  | if (s->vectors[ARMV7M_EXCP_HARD].active) { | 
|  | val |= (1 << 2); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_HARD].pending) { | 
|  | val |= (1 << 21); | 
|  | } | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_USAGE].active) { | 
|  | val |= (1 << 3); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_SVC].active) { | 
|  | val |= (1 << 7); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_PENDSV].active) { | 
|  | val |= (1 << 10); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { | 
|  | val |= (1 << 11); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_USAGE].pending) { | 
|  | val |= (1 << 12); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_MEM].pending) { | 
|  | val |= (1 << 13); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_SVC].pending) { | 
|  | val |= (1 << 15); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_MEM].enabled) { | 
|  | val |= (1 << 16); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { | 
|  | val |= (1 << 18); | 
|  | } | 
|  | } | 
|  | if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | if (s->vectors[ARMV7M_EXCP_BUS].active) { | 
|  | val |= (1 << 1); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_BUS].pending) { | 
|  | val |= (1 << 14); | 
|  | } | 
|  | if (s->vectors[ARMV7M_EXCP_BUS].enabled) { | 
|  | val |= (1 << 17); | 
|  | } | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8) && | 
|  | s->vectors[ARMV7M_EXCP_NMI].active) { | 
|  | /* NMIACT is not present in v7M */ | 
|  | val |= (1 << 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ | 
|  | if (s->vectors[ARMV7M_EXCP_DEBUG].active) { | 
|  | val |= (1 << 8); | 
|  | } | 
|  | return val; | 
|  | case 0xd2c: /* Hard Fault Status.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->env.v7m.hfsr; | 
|  | case 0xd30: /* Debug Fault Status.  */ | 
|  | return cpu->env.v7m.dfsr; | 
|  | case 0xd34: /* MMFAR MemManage Fault Address */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->env.v7m.mmfar[attrs.secure]; | 
|  | case 0xd38: /* Bus Fault Address.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure && | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.bfar; | 
|  | case 0xd3c: /* Aux Fault Status.  */ | 
|  | /* TODO: Implement fault status registers.  */ | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "Aux Fault status registers unimplemented\n"); | 
|  | return 0; | 
|  | case 0xd40: /* PFR0.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_pfr0; | 
|  | case 0xd44: /* PFR1.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_pfr1; | 
|  | case 0xd48: /* DFR0.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_dfr0; | 
|  | case 0xd4c: /* AFR0.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->id_afr0; | 
|  | case 0xd50: /* MMFR0.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_mmfr0; | 
|  | case 0xd54: /* MMFR1.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_mmfr1; | 
|  | case 0xd58: /* MMFR2.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_mmfr2; | 
|  | case 0xd5c: /* MMFR3.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_mmfr3; | 
|  | case 0xd60: /* ISAR0.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar0; | 
|  | case 0xd64: /* ISAR1.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar1; | 
|  | case 0xd68: /* ISAR2.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar2; | 
|  | case 0xd6c: /* ISAR3.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar3; | 
|  | case 0xd70: /* ISAR4.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar4; | 
|  | case 0xd74: /* ISAR5.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->isar.id_isar5; | 
|  | case 0xd78: /* CLIDR */ | 
|  | return cpu->clidr; | 
|  | case 0xd7c: /* CTR */ | 
|  | return cpu->ctr; | 
|  | case 0xd80: /* CSSIDR */ | 
|  | { | 
|  | int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; | 
|  | return cpu->ccsidr[idx]; | 
|  | } | 
|  | case 0xd84: /* CSSELR */ | 
|  | return cpu->env.v7m.csselr[attrs.secure]; | 
|  | case 0xd88: /* CPACR */ | 
|  | if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.cpacr[attrs.secure]; | 
|  | case 0xd8c: /* NSACR */ | 
|  | if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.nsacr; | 
|  | /* TODO: Implement debug registers.  */ | 
|  | case 0xd90: /* MPU_TYPE */ | 
|  | /* Unified MPU; if the MPU is not present this value is zero */ | 
|  | return cpu->pmsav7_dregion << 8; | 
|  | case 0xd94: /* MPU_CTRL */ | 
|  | return cpu->env.v7m.mpu_ctrl[attrs.secure]; | 
|  | case 0xd98: /* MPU_RNR */ | 
|  | return cpu->env.pmsav7.rnr[attrs.secure]; | 
|  | case 0xd9c: /* MPU_RBAR */ | 
|  | case 0xda4: /* MPU_RBAR_A1 */ | 
|  | case 0xdac: /* MPU_RBAR_A2 */ | 
|  | case 0xdb4: /* MPU_RBAR_A3 */ | 
|  | { | 
|  | int region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* PMSAv8M handling of the aliases is different from v7M: | 
|  | * aliases A1, A2, A3 override the low two bits of the region | 
|  | * number in MPU_RNR, and there is no 'region' field in the | 
|  | * RBAR register. | 
|  | */ | 
|  | int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ | 
|  | if (aliasno) { | 
|  | region = deposit32(region, 0, 2, aliasno); | 
|  | } | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.pmsav8.rbar[attrs.secure][region]; | 
|  | } | 
|  |  | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return 0; | 
|  | } | 
|  | return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); | 
|  | } | 
|  | case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ | 
|  | case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ | 
|  | case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ | 
|  | case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ | 
|  | { | 
|  | int region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* PMSAv8M handling of the aliases is different from v7M: | 
|  | * aliases A1, A2, A3 override the low two bits of the region | 
|  | * number in MPU_RNR. | 
|  | */ | 
|  | int aliasno = (offset - 0xda0) / 8; /* 0..3 */ | 
|  | if (aliasno) { | 
|  | region = deposit32(region, 0, 2, aliasno); | 
|  | } | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.pmsav8.rlar[attrs.secure][region]; | 
|  | } | 
|  |  | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return 0; | 
|  | } | 
|  | return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | | 
|  | (cpu->env.pmsav7.drsr[region] & 0xffff); | 
|  | } | 
|  | case 0xdc0: /* MPU_MAIR0 */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->env.pmsav8.mair0[attrs.secure]; | 
|  | case 0xdc4: /* MPU_MAIR1 */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | return cpu->env.pmsav8.mair1[attrs.secure]; | 
|  | case 0xdd0: /* SAU_CTRL */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.sau.ctrl; | 
|  | case 0xdd4: /* SAU_TYPE */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->sau_sregion; | 
|  | case 0xdd8: /* SAU_RNR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.sau.rnr; | 
|  | case 0xddc: /* SAU_RBAR */ | 
|  | { | 
|  | int region = cpu->env.sau.rnr; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | if (region >= cpu->sau_sregion) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.sau.rbar[region]; | 
|  | } | 
|  | case 0xde0: /* SAU_RLAR */ | 
|  | { | 
|  | int region = cpu->env.sau.rnr; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | if (region >= cpu->sau_sregion) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.sau.rlar[region]; | 
|  | } | 
|  | case 0xde4: /* SFSR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.sfsr; | 
|  | case 0xde8: /* SFAR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.sfar; | 
|  | case 0xf04: /* RFSR */ | 
|  | if (!cpu_isar_feature(aa32_ras, cpu)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* We provide minimal-RAS only: RFSR is RAZ/WI */ | 
|  | return 0; | 
|  | case 0xf34: /* FPCCR */ | 
|  | if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | return 0; | 
|  | } | 
|  | if (attrs.secure) { | 
|  | return cpu->env.v7m.fpccr[M_REG_S]; | 
|  | } else { | 
|  | /* | 
|  | * NS can read LSPEN, CLRONRET and MONRDY. It can read | 
|  | * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; | 
|  | * other non-banked bits RAZ. | 
|  | * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. | 
|  | */ | 
|  | uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; | 
|  | uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | | 
|  | R_V7M_FPCCR_CLRONRET_MASK | | 
|  | R_V7M_FPCCR_MONRDY_MASK; | 
|  |  | 
|  | if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { | 
|  | mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; | 
|  | } | 
|  |  | 
|  | value &= mask; | 
|  |  | 
|  | value |= cpu->env.v7m.fpccr[M_REG_NS]; | 
|  | return value; | 
|  | } | 
|  | case 0xf38: /* FPCAR */ | 
|  | if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.fpcar[attrs.secure]; | 
|  | case 0xf3c: /* FPDSCR */ | 
|  | if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | return 0; | 
|  | } | 
|  | return cpu->env.v7m.fpdscr[attrs.secure]; | 
|  | case 0xf40: /* MVFR0 */ | 
|  | return cpu->isar.mvfr0; | 
|  | case 0xf44: /* MVFR1 */ | 
|  | return cpu->isar.mvfr1; | 
|  | case 0xf48: /* MVFR2 */ | 
|  | return cpu->isar.mvfr2; | 
|  | default: | 
|  | bad_offset: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | ARMCPU *cpu = s->cpu; | 
|  |  | 
|  | switch (offset) { | 
|  | case 0xc: /* CPPWR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* Make the IMPDEF choice to RAZ/WI this. */ | 
|  | break; | 
|  | case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ | 
|  | { | 
|  | int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; | 
|  | int i; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | break; | 
|  | } | 
|  | for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { | 
|  | s->itns[startvec + i] = (value >> i) & 1; | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | break; | 
|  | } | 
|  | case 0xd04: /* Interrupt Control State (ICSR) */ | 
|  | if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { | 
|  | if (value & (1 << 31)) { | 
|  | armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); | 
|  | } else if (value & (1 << 30) && | 
|  | arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* PENDNMICLR didn't exist in v7M */ | 
|  | armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); | 
|  | } | 
|  | } | 
|  | if (value & (1 << 28)) { | 
|  | armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); | 
|  | } else if (value & (1 << 27)) { | 
|  | armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); | 
|  | } | 
|  | if (value & (1 << 26)) { | 
|  | armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); | 
|  | } else if (value & (1 << 25)) { | 
|  | armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); | 
|  | } | 
|  | break; | 
|  | case 0xd08: /* Vector Table Offset.  */ | 
|  | cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; | 
|  | break; | 
|  | case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ | 
|  | if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { | 
|  | if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { | 
|  | if (attrs.secure || | 
|  | !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { | 
|  | signal_sysresetreq(s); | 
|  | } | 
|  | } | 
|  | if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Setting VECTCLRACTIVE when not in DEBUG mode " | 
|  | "is UNPREDICTABLE\n"); | 
|  | } | 
|  | if (value & R_V7M_AIRCR_VECTRESET_MASK) { | 
|  | /* NB: this bit is RES0 in v8M */ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Setting VECTRESET when not in DEBUG mode " | 
|  | "is UNPREDICTABLE\n"); | 
|  | } | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | s->prigroup[attrs.secure] = | 
|  | extract32(value, | 
|  | R_V7M_AIRCR_PRIGROUP_SHIFT, | 
|  | R_V7M_AIRCR_PRIGROUP_LENGTH); | 
|  | } | 
|  | /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ | 
|  | if (attrs.secure) { | 
|  | /* These bits are only writable by secure */ | 
|  | cpu->env.v7m.aircr = value & | 
|  | (R_V7M_AIRCR_SYSRESETREQS_MASK | | 
|  | R_V7M_AIRCR_BFHFNMINS_MASK | | 
|  | R_V7M_AIRCR_PRIS_MASK); | 
|  | /* BFHFNMINS changes the priority of Secure HardFault, and | 
|  | * allows a pending Non-secure HardFault to preempt (which | 
|  | * we implement by marking it enabled). | 
|  | */ | 
|  | if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { | 
|  | s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; | 
|  | s->vectors[ARMV7M_EXCP_HARD].enabled = 1; | 
|  | } else { | 
|  | s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; | 
|  | s->vectors[ARMV7M_EXCP_HARD].enabled = 0; | 
|  | } | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | } | 
|  | break; | 
|  | case 0xd10: /* System Control.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* We don't implement deep-sleep so these bits are RAZ/WI. | 
|  | * The other bits in the register are banked. | 
|  | * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which | 
|  | * is architecturally permitted. | 
|  | */ | 
|  | value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); | 
|  | cpu->env.v7m.scr[attrs.secure] = value; | 
|  | break; | 
|  | case 0xd14: /* Configuration Control.  */ | 
|  | { | 
|  | uint32_t mask; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  |  | 
|  | /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ | 
|  | mask = R_V7M_CCR_STKALIGN_MASK | | 
|  | R_V7M_CCR_BFHFNMIGN_MASK | | 
|  | R_V7M_CCR_DIV_0_TRP_MASK | | 
|  | R_V7M_CCR_UNALIGN_TRP_MASK | | 
|  | R_V7M_CCR_USERSETMPEND_MASK | | 
|  | R_V7M_CCR_NONBASETHRDENA_MASK; | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { | 
|  | /* TRD is always RAZ/WI from NS */ | 
|  | mask |= R_V7M_CCR_TRD_MASK; | 
|  | } | 
|  | value &= mask; | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ | 
|  | value |= R_V7M_CCR_NONBASETHRDENA_MASK | 
|  | | R_V7M_CCR_STKALIGN_MASK; | 
|  | } | 
|  | if (attrs.secure) { | 
|  | /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ | 
|  | cpu->env.v7m.ccr[M_REG_NS] = | 
|  | (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) | 
|  | | (value & R_V7M_CCR_BFHFNMIGN_MASK); | 
|  | value &= ~R_V7M_CCR_BFHFNMIGN_MASK; | 
|  | } else { | 
|  | /* | 
|  | * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so | 
|  | * preserve the state currently in the NS element of the array | 
|  | */ | 
|  | if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | value &= ~R_V7M_CCR_BFHFNMIGN_MASK; | 
|  | value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpu->env.v7m.ccr[attrs.secure] = value; | 
|  | break; | 
|  | } | 
|  | case 0xd24: /* System Handler Control and State (SHCSR) */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (attrs.secure) { | 
|  | s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; | 
|  | /* Secure HardFault active bit cannot be written */ | 
|  | s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_PENDSV].active = | 
|  | (value & (1 << 10)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = | 
|  | (value & (1 << 11)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_USAGE].pending = | 
|  | (value & (1 << 12)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = | 
|  | (value & (1 << 18)) != 0; | 
|  | s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; | 
|  | /* SecureFault not banked, but RAZ/WI to NS */ | 
|  | s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; | 
|  | } else { | 
|  | s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* HARDFAULTPENDED is not present in v7M */ | 
|  | s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; | 
|  | } | 
|  | s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; | 
|  | } | 
|  | if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; | 
|  | s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; | 
|  | } | 
|  | /* NMIACT can only be written if the write is of a zero, with | 
|  | * BFHFNMINS 1, and by the CPU in secure state via the NS alias. | 
|  | */ | 
|  | if (!attrs.secure && cpu->env.v7m.secure && | 
|  | (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && | 
|  | (value & (1 << 5)) == 0) { | 
|  | s->vectors[ARMV7M_EXCP_NMI].active = 0; | 
|  | } | 
|  | /* HARDFAULTACT can only be written if the write is of a zero | 
|  | * to the non-secure HardFault state by the CPU in secure state. | 
|  | * The only case where we can be targeting the non-secure HF state | 
|  | * when in secure state is if this is a write via the NS alias | 
|  | * and BFHFNMINS is 1. | 
|  | */ | 
|  | if (!attrs.secure && cpu->env.v7m.secure && | 
|  | (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && | 
|  | (value & (1 << 2)) == 0) { | 
|  | s->vectors[ARMV7M_EXCP_HARD].active = 0; | 
|  | } | 
|  |  | 
|  | /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ | 
|  | s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; | 
|  | nvic_irq_update(s); | 
|  | break; | 
|  | case 0xd2c: /* Hard Fault Status.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | cpu->env.v7m.hfsr &= ~value; /* W1C */ | 
|  | break; | 
|  | case 0xd30: /* Debug Fault Status.  */ | 
|  | cpu->env.v7m.dfsr &= ~value; /* W1C */ | 
|  | break; | 
|  | case 0xd34: /* Mem Manage Address.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | cpu->env.v7m.mmfar[attrs.secure] = value; | 
|  | return; | 
|  | case 0xd38: /* Bus Fault Address.  */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure && | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | return; | 
|  | } | 
|  | cpu->env.v7m.bfar = value; | 
|  | return; | 
|  | case 0xd3c: /* Aux Fault Status.  */ | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "NVIC: Aux fault status registers unimplemented\n"); | 
|  | break; | 
|  | case 0xd84: /* CSSELR */ | 
|  | if (!arm_v7m_csselr_razwi(cpu)) { | 
|  | cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; | 
|  | } | 
|  | break; | 
|  | case 0xd88: /* CPACR */ | 
|  | if (cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | /* We implement only the Floating Point extension's CP10/CP11 */ | 
|  | cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); | 
|  | } | 
|  | break; | 
|  | case 0xd8c: /* NSACR */ | 
|  | if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | /* We implement only the Floating Point extension's CP10/CP11 */ | 
|  | cpu->env.v7m.nsacr = value & (3 << 10); | 
|  | } | 
|  | break; | 
|  | case 0xd90: /* MPU_TYPE */ | 
|  | return; /* RO */ | 
|  | case 0xd94: /* MPU_CTRL */ | 
|  | if ((value & | 
|  | (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) | 
|  | == R_V7M_MPU_CTRL_HFNMIENA_MASK) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " | 
|  | "UNPREDICTABLE\n"); | 
|  | } | 
|  | cpu->env.v7m.mpu_ctrl[attrs.secure] | 
|  | = value & (R_V7M_MPU_CTRL_ENABLE_MASK | | 
|  | R_V7M_MPU_CTRL_HFNMIENA_MASK | | 
|  | R_V7M_MPU_CTRL_PRIVDEFENA_MASK); | 
|  | tlb_flush(CPU(cpu)); | 
|  | break; | 
|  | case 0xd98: /* MPU_RNR */ | 
|  | if (value >= cpu->pmsav7_dregion) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" | 
|  | PRIu32 "/%" PRIu32 "\n", | 
|  | value, cpu->pmsav7_dregion); | 
|  | } else { | 
|  | cpu->env.pmsav7.rnr[attrs.secure] = value; | 
|  | } | 
|  | break; | 
|  | case 0xd9c: /* MPU_RBAR */ | 
|  | case 0xda4: /* MPU_RBAR_A1 */ | 
|  | case 0xdac: /* MPU_RBAR_A2 */ | 
|  | case 0xdb4: /* MPU_RBAR_A3 */ | 
|  | { | 
|  | int region; | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* PMSAv8M handling of the aliases is different from v7M: | 
|  | * aliases A1, A2, A3 override the low two bits of the region | 
|  | * number in MPU_RNR, and there is no 'region' field in the | 
|  | * RBAR register. | 
|  | */ | 
|  | int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ | 
|  |  | 
|  | region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  | if (aliasno) { | 
|  | region = deposit32(region, 0, 2, aliasno); | 
|  | } | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return; | 
|  | } | 
|  | cpu->env.pmsav8.rbar[attrs.secure][region] = value; | 
|  | tlb_flush(CPU(cpu)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value & (1 << 4)) { | 
|  | /* VALID bit means use the region number specified in this | 
|  | * value and also update MPU_RNR.REGION with that value. | 
|  | */ | 
|  | region = extract32(value, 0, 4); | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "MPU region out of range %u/%" PRIu32 "\n", | 
|  | region, cpu->pmsav7_dregion); | 
|  | return; | 
|  | } | 
|  | cpu->env.pmsav7.rnr[attrs.secure] = region; | 
|  | } else { | 
|  | region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  | } | 
|  |  | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu->env.pmsav7.drbar[region] = value & ~0x1f; | 
|  | tlb_flush(CPU(cpu)); | 
|  | break; | 
|  | } | 
|  | case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ | 
|  | case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ | 
|  | case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ | 
|  | case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ | 
|  | { | 
|  | int region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  |  | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* PMSAv8M handling of the aliases is different from v7M: | 
|  | * aliases A1, A2, A3 override the low two bits of the region | 
|  | * number in MPU_RNR. | 
|  | */ | 
|  | int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ | 
|  |  | 
|  | region = cpu->env.pmsav7.rnr[attrs.secure]; | 
|  | if (aliasno) { | 
|  | region = deposit32(region, 0, 2, aliasno); | 
|  | } | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return; | 
|  | } | 
|  | cpu->env.pmsav8.rlar[attrs.secure][region] = value; | 
|  | tlb_flush(CPU(cpu)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (region >= cpu->pmsav7_dregion) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu->env.pmsav7.drsr[region] = value & 0xff3f; | 
|  | cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; | 
|  | tlb_flush(CPU(cpu)); | 
|  | break; | 
|  | } | 
|  | case 0xdc0: /* MPU_MAIR0 */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (cpu->pmsav7_dregion) { | 
|  | /* Register is RES0 if no MPU regions are implemented */ | 
|  | cpu->env.pmsav8.mair0[attrs.secure] = value; | 
|  | } | 
|  | /* We don't need to do anything else because memory attributes | 
|  | * only affect cacheability, and we don't implement caching. | 
|  | */ | 
|  | break; | 
|  | case 0xdc4: /* MPU_MAIR1 */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (cpu->pmsav7_dregion) { | 
|  | /* Register is RES0 if no MPU regions are implemented */ | 
|  | cpu->env.pmsav8.mair1[attrs.secure] = value; | 
|  | } | 
|  | /* We don't need to do anything else because memory attributes | 
|  | * only affect cacheability, and we don't implement caching. | 
|  | */ | 
|  | break; | 
|  | case 0xdd0: /* SAU_CTRL */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | cpu->env.sau.ctrl = value & 3; | 
|  | break; | 
|  | case 0xdd4: /* SAU_TYPE */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | break; | 
|  | case 0xdd8: /* SAU_RNR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | if (value >= cpu->sau_sregion) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" | 
|  | PRIu32 "/%" PRIu32 "\n", | 
|  | value, cpu->sau_sregion); | 
|  | } else { | 
|  | cpu->env.sau.rnr = value; | 
|  | } | 
|  | break; | 
|  | case 0xddc: /* SAU_RBAR */ | 
|  | { | 
|  | int region = cpu->env.sau.rnr; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | if (region >= cpu->sau_sregion) { | 
|  | return; | 
|  | } | 
|  | cpu->env.sau.rbar[region] = value & ~0x1f; | 
|  | tlb_flush(CPU(cpu)); | 
|  | break; | 
|  | } | 
|  | case 0xde0: /* SAU_RLAR */ | 
|  | { | 
|  | int region = cpu->env.sau.rnr; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | if (region >= cpu->sau_sregion) { | 
|  | return; | 
|  | } | 
|  | cpu->env.sau.rlar[region] = value & ~0x1c; | 
|  | tlb_flush(CPU(cpu)); | 
|  | break; | 
|  | } | 
|  | case 0xde4: /* SFSR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | cpu->env.v7m.sfsr &= ~value; /* W1C */ | 
|  | break; | 
|  | case 0xde8: /* SFAR */ | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | if (!attrs.secure) { | 
|  | return; | 
|  | } | 
|  | cpu->env.v7m.sfsr = value; | 
|  | break; | 
|  | case 0xf00: /* Software Triggered Interrupt Register */ | 
|  | { | 
|  | int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto bad_offset; | 
|  | } | 
|  |  | 
|  | if (excnum < s->num_irq) { | 
|  | armv7m_nvic_set_pending(s, excnum, false); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0xf04: /* RFSR */ | 
|  | if (!cpu_isar_feature(aa32_ras, cpu)) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* We provide minimal-RAS only: RFSR is RAZ/WI */ | 
|  | break; | 
|  | case 0xf34: /* FPCCR */ | 
|  | if (cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | /* Not all bits here are banked. */ | 
|  | uint32_t fpccr_s; | 
|  |  | 
|  | if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { | 
|  | /* Don't allow setting of bits not present in v7M */ | 
|  | value &= (R_V7M_FPCCR_LSPACT_MASK | | 
|  | R_V7M_FPCCR_USER_MASK | | 
|  | R_V7M_FPCCR_THREAD_MASK | | 
|  | R_V7M_FPCCR_HFRDY_MASK | | 
|  | R_V7M_FPCCR_MMRDY_MASK | | 
|  | R_V7M_FPCCR_BFRDY_MASK | | 
|  | R_V7M_FPCCR_MONRDY_MASK | | 
|  | R_V7M_FPCCR_LSPEN_MASK | | 
|  | R_V7M_FPCCR_ASPEN_MASK); | 
|  | } | 
|  | value &= ~R_V7M_FPCCR_RES0_MASK; | 
|  |  | 
|  | if (!attrs.secure) { | 
|  | /* Some non-banked bits are configurably writable by NS */ | 
|  | fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; | 
|  | if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { | 
|  | uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); | 
|  | fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); | 
|  | } | 
|  | if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { | 
|  | uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); | 
|  | fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); | 
|  | } | 
|  | if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); | 
|  | uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); | 
|  | fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); | 
|  | fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); | 
|  | } | 
|  | /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ | 
|  | { | 
|  | uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); | 
|  | fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All other non-banked bits are RAZ/WI from NS; write | 
|  | * just the banked bits to fpccr[M_REG_NS]. | 
|  | */ | 
|  | value &= R_V7M_FPCCR_BANKED_MASK; | 
|  | cpu->env.v7m.fpccr[M_REG_NS] = value; | 
|  | } else { | 
|  | fpccr_s = value; | 
|  | } | 
|  | cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; | 
|  | } | 
|  | break; | 
|  | case 0xf38: /* FPCAR */ | 
|  | if (cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | value &= ~7; | 
|  | cpu->env.v7m.fpcar[attrs.secure] = value; | 
|  | } | 
|  | break; | 
|  | case 0xf3c: /* FPDSCR */ | 
|  | if (cpu_isar_feature(aa32_vfp_simd, cpu)) { | 
|  | uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; | 
|  | if (cpu_isar_feature(any_fp16, cpu)) { | 
|  | mask |= FPCR_FZ16; | 
|  | } | 
|  | value &= mask; | 
|  | if (cpu_isar_feature(aa32_lob, cpu)) { | 
|  | value |= 4 << FPCR_LTPSIZE_SHIFT; | 
|  | } | 
|  | cpu->env.v7m.fpdscr[attrs.secure] = value; | 
|  | } | 
|  | break; | 
|  | case 0xf50: /* ICIALLU */ | 
|  | case 0xf58: /* ICIMVAU */ | 
|  | case 0xf5c: /* DCIMVAC */ | 
|  | case 0xf60: /* DCISW */ | 
|  | case 0xf64: /* DCCMVAU */ | 
|  | case 0xf68: /* DCCMVAC */ | 
|  | case 0xf6c: /* DCCSW */ | 
|  | case 0xf70: /* DCCIMVAC */ | 
|  | case 0xf74: /* DCCISW */ | 
|  | case 0xf78: /* BPIALL */ | 
|  | /* Cache and branch predictor maintenance: for QEMU these always NOP */ | 
|  | break; | 
|  | default: | 
|  | bad_offset: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "NVIC: Bad write offset 0x%x\n", offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) | 
|  | { | 
|  | /* Return true if unprivileged access to this register is permitted. */ | 
|  | switch (offset) { | 
|  | case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ | 
|  | /* For access via STIR_NS it is the NS CCR.USERSETMPEND that | 
|  | * controls access even though the CPU is in Secure state (I_QDKX). | 
|  | */ | 
|  | return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; | 
|  | default: | 
|  | /* All other user accesses cause a BusFault unconditionally */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) | 
|  | { | 
|  | /* Behaviour for the SHPR register field for this exception: | 
|  | * return M_REG_NS to use the nonsecure vector (including for | 
|  | * non-banked exceptions), M_REG_S for the secure version of | 
|  | * a banked exception, and -1 if this field should RAZ/WI. | 
|  | */ | 
|  | switch (exc) { | 
|  | case ARMV7M_EXCP_MEM: | 
|  | case ARMV7M_EXCP_USAGE: | 
|  | case ARMV7M_EXCP_SVC: | 
|  | case ARMV7M_EXCP_PENDSV: | 
|  | case ARMV7M_EXCP_SYSTICK: | 
|  | /* Banked exceptions */ | 
|  | return attrs.secure; | 
|  | case ARMV7M_EXCP_BUS: | 
|  | /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ | 
|  | if (!attrs.secure && | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | return -1; | 
|  | } | 
|  | return M_REG_NS; | 
|  | case ARMV7M_EXCP_SECURE: | 
|  | /* Not banked, RAZ/WI from nonsecure */ | 
|  | if (!attrs.secure) { | 
|  | return -1; | 
|  | } | 
|  | return M_REG_NS; | 
|  | case ARMV7M_EXCP_DEBUG: | 
|  | /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ | 
|  | return M_REG_NS; | 
|  | case 8 ... 10: | 
|  | case 13: | 
|  | /* RES0 */ | 
|  | return -1; | 
|  | default: | 
|  | /* Not reachable due to decode of SHPR register addresses */ | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, | 
|  | uint64_t *data, unsigned size, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | NVICState *s = (NVICState *)opaque; | 
|  | uint32_t offset = addr; | 
|  | unsigned i, startvec, end; | 
|  | uint32_t val; | 
|  |  | 
|  | if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { | 
|  | /* Generate BusFault for unprivileged accesses */ | 
|  | return MEMTX_ERROR; | 
|  | } | 
|  |  | 
|  | switch (offset) { | 
|  | /* reads of set and clear both return the status */ | 
|  | case 0x100 ... 0x13f: /* NVIC Set enable */ | 
|  | offset += 0x80; | 
|  | /* fall through */ | 
|  | case 0x180 ... 0x1bf: /* NVIC Clear enable */ | 
|  | val = 0; | 
|  | startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ | 
|  |  | 
|  | for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { | 
|  | if (s->vectors[startvec + i].enabled && | 
|  | (attrs.secure || s->itns[startvec + i])) { | 
|  | val |= (1 << i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x200 ... 0x23f: /* NVIC Set pend */ | 
|  | offset += 0x80; | 
|  | /* fall through */ | 
|  | case 0x280 ... 0x2bf: /* NVIC Clear pend */ | 
|  | val = 0; | 
|  | startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ | 
|  | for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { | 
|  | if (s->vectors[startvec + i].pending && | 
|  | (attrs.secure || s->itns[startvec + i])) { | 
|  | val |= (1 << i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x300 ... 0x33f: /* NVIC Active */ | 
|  | val = 0; | 
|  |  | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ | 
|  |  | 
|  | for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { | 
|  | if (s->vectors[startvec + i].active && | 
|  | (attrs.secure || s->itns[startvec + i])) { | 
|  | val |= (1 << i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0x400 ... 0x5ef: /* NVIC Priority */ | 
|  | val = 0; | 
|  | startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ | 
|  |  | 
|  | for (i = 0; i < size && startvec + i < s->num_irq; i++) { | 
|  | if (attrs.secure || s->itns[startvec + i]) { | 
|  | val |= s->vectors[startvec + i].prio << (8 * i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | val = 0; | 
|  | break; | 
|  | } | 
|  | /* fall through */ | 
|  | case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ | 
|  | val = 0; | 
|  | for (i = 0; i < size; i++) { | 
|  | unsigned hdlidx = (offset - 0xd14) + i; | 
|  | int sbank = shpr_bank(s, hdlidx, attrs); | 
|  |  | 
|  | if (sbank < 0) { | 
|  | continue; | 
|  | } | 
|  | val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); | 
|  | } | 
|  | break; | 
|  | case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | val = 0; | 
|  | break; | 
|  | }; | 
|  | /* | 
|  | * The BFSR bits [15:8] are shared between security states | 
|  | * and we store them in the NS copy. They are RAZ/WI for | 
|  | * NS code if AIRCR.BFHFNMINS is 0. | 
|  | */ | 
|  | val = s->cpu->env.v7m.cfsr[attrs.secure]; | 
|  | if (!attrs.secure && | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | val &= ~R_V7M_CFSR_BFSR_MASK; | 
|  | } else { | 
|  | val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; | 
|  | } | 
|  | val = extract32(val, (offset - 0xd28) * 8, size * 8); | 
|  | break; | 
|  | case 0xfe0 ... 0xfff: /* ID.  */ | 
|  | if (offset & 3) { | 
|  | val = 0; | 
|  | } else { | 
|  | val = nvic_id[(offset - 0xfe0) >> 2]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (size == 4) { | 
|  | val = nvic_readl(s, offset, attrs); | 
|  | } else { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "NVIC: Bad read of size %d at offset 0x%x\n", | 
|  | size, offset); | 
|  | val = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_nvic_sysreg_read(addr, val, size); | 
|  | *data = val; | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, | 
|  | uint64_t value, unsigned size, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | NVICState *s = (NVICState *)opaque; | 
|  | uint32_t offset = addr; | 
|  | unsigned i, startvec, end; | 
|  | unsigned setval = 0; | 
|  |  | 
|  | trace_nvic_sysreg_write(addr, value, size); | 
|  |  | 
|  | if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { | 
|  | /* Generate BusFault for unprivileged accesses */ | 
|  | return MEMTX_ERROR; | 
|  | } | 
|  |  | 
|  | switch (offset) { | 
|  | case 0x100 ... 0x13f: /* NVIC Set enable */ | 
|  | offset += 0x80; | 
|  | setval = 1; | 
|  | /* fall through */ | 
|  | case 0x180 ... 0x1bf: /* NVIC Clear enable */ | 
|  | startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; | 
|  |  | 
|  | for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { | 
|  | if (value & (1 << i) && | 
|  | (attrs.secure || s->itns[startvec + i])) { | 
|  | s->vectors[startvec + i].enabled = setval; | 
|  | } | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | goto exit_ok; | 
|  | case 0x200 ... 0x23f: /* NVIC Set pend */ | 
|  | /* the special logic in armv7m_nvic_set_pending() | 
|  | * is not needed since IRQs are never escalated | 
|  | */ | 
|  | offset += 0x80; | 
|  | setval = 1; | 
|  | /* fall through */ | 
|  | case 0x280 ... 0x2bf: /* NVIC Clear pend */ | 
|  | startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ | 
|  |  | 
|  | for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { | 
|  | /* | 
|  | * Note that if the input line is still held high and the interrupt | 
|  | * is not active then rule R_CVJS requires that the Pending state | 
|  | * remains set; in that case we mustn't let it be cleared. | 
|  | */ | 
|  | if (value & (1 << i) && | 
|  | (attrs.secure || s->itns[startvec + i]) && | 
|  | !(setval == 0 && s->vectors[startvec + i].level && | 
|  | !s->vectors[startvec + i].active)) { | 
|  | s->vectors[startvec + i].pending = setval; | 
|  | } | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | goto exit_ok; | 
|  | case 0x300 ... 0x33f: /* NVIC Active */ | 
|  | goto exit_ok; /* R/O */ | 
|  | case 0x400 ... 0x5ef: /* NVIC Priority */ | 
|  | startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ | 
|  |  | 
|  | for (i = 0; i < size && startvec + i < s->num_irq; i++) { | 
|  | if (attrs.secure || s->itns[startvec + i]) { | 
|  | set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); | 
|  | } | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | goto exit_ok; | 
|  | case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto exit_ok; | 
|  | } | 
|  | /* fall through */ | 
|  | case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ | 
|  | for (i = 0; i < size; i++) { | 
|  | unsigned hdlidx = (offset - 0xd14) + i; | 
|  | int newprio = extract32(value, i * 8, 8); | 
|  | int sbank = shpr_bank(s, hdlidx, attrs); | 
|  |  | 
|  | if (sbank < 0) { | 
|  | continue; | 
|  | } | 
|  | set_prio(s, hdlidx, sbank, newprio); | 
|  | } | 
|  | nvic_irq_update(s); | 
|  | goto exit_ok; | 
|  | case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ | 
|  | if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { | 
|  | goto exit_ok; | 
|  | } | 
|  | /* All bits are W1C, so construct 32 bit value with 0s in | 
|  | * the parts not written by the access size | 
|  | */ | 
|  | value <<= ((offset - 0xd28) * 8); | 
|  |  | 
|  | if (!attrs.secure && | 
|  | !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { | 
|  | /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ | 
|  | value &= ~R_V7M_CFSR_BFSR_MASK; | 
|  | } | 
|  |  | 
|  | s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; | 
|  | if (attrs.secure) { | 
|  | /* The BFSR bits [15:8] are shared between security states | 
|  | * and we store them in the NS copy. | 
|  | */ | 
|  | s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); | 
|  | } | 
|  | goto exit_ok; | 
|  | } | 
|  | if (size == 4) { | 
|  | nvic_writel(s, offset, value, attrs); | 
|  | goto exit_ok; | 
|  | } | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); | 
|  | /* This is UNPREDICTABLE; treat as RAZ/WI */ | 
|  |  | 
|  | exit_ok: | 
|  | if (tcg_enabled()) { | 
|  | /* Ensure any changes made are reflected in the cached hflags. */ | 
|  | arm_rebuild_hflags(&s->cpu->env); | 
|  | } | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps nvic_sysreg_ops = { | 
|  | .read_with_attrs = nvic_sysreg_read, | 
|  | .write_with_attrs = nvic_sysreg_write, | 
|  | .endianness = DEVICE_NATIVE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static int nvic_post_load(void *opaque, int version_id) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  | unsigned i; | 
|  | int resetprio; | 
|  |  | 
|  | /* Check for out of range priority settings */ | 
|  | resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; | 
|  |  | 
|  | if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || | 
|  | s->vectors[ARMV7M_EXCP_NMI].prio != -2 || | 
|  | s->vectors[ARMV7M_EXCP_HARD].prio != -1) { | 
|  | return 1; | 
|  | } | 
|  | for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { | 
|  | if (s->vectors[i].prio & ~0xff) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | nvic_recompute_state(s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_VecInfo = { | 
|  | .name = "armv7m_nvic_info", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_INT16(prio, VecInfo), | 
|  | VMSTATE_UINT8(enabled, VecInfo), | 
|  | VMSTATE_UINT8(pending, VecInfo), | 
|  | VMSTATE_UINT8(active, VecInfo), | 
|  | VMSTATE_UINT8(level, VecInfo), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool nvic_security_needed(void *opaque) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  |  | 
|  | return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); | 
|  | } | 
|  |  | 
|  | static int nvic_security_post_load(void *opaque, int version_id) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  | int i; | 
|  |  | 
|  | /* Check for out of range priority settings */ | 
|  | if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 | 
|  | && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { | 
|  | /* We can't cross-check against AIRCR.BFHFNMINS as we don't know | 
|  | * if the CPU state has been migrated yet; a mismatch won't | 
|  | * cause the emulation to blow up, though. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { | 
|  | if (s->sec_vectors[i].prio & ~0xff) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_nvic_security = { | 
|  | .name = "armv7m_nvic/m-security", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = nvic_security_needed, | 
|  | .post_load = &nvic_security_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, | 
|  | vmstate_VecInfo, VecInfo), | 
|  | VMSTATE_UINT32(prigroup[M_REG_S], NVICState), | 
|  | VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_nvic = { | 
|  | .name = "armv7m_nvic", | 
|  | .version_id = 4, | 
|  | .minimum_version_id = 4, | 
|  | .post_load = &nvic_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, | 
|  | vmstate_VecInfo, VecInfo), | 
|  | VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_nvic_security, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const Property props_nvic[] = { | 
|  | /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ | 
|  | DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), | 
|  | /* | 
|  | * Number of the maximum priority bits that can be used. 0 means | 
|  | * to use a reasonable default. | 
|  | */ | 
|  | DEFINE_PROP_UINT8("num-prio-bits", NVICState, num_prio_bits, 0), | 
|  | DEFINE_PROP_END_OF_LIST() | 
|  | }; | 
|  |  | 
|  | static void armv7m_nvic_reset(DeviceState *dev) | 
|  | { | 
|  | int resetprio; | 
|  | NVICState *s = NVIC(dev); | 
|  |  | 
|  | memset(s->vectors, 0, sizeof(s->vectors)); | 
|  | memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); | 
|  | s->prigroup[M_REG_NS] = 0; | 
|  | s->prigroup[M_REG_S] = 0; | 
|  |  | 
|  | s->vectors[ARMV7M_EXCP_NMI].enabled = 1; | 
|  | /* MEM, BUS, and USAGE are enabled through | 
|  | * the System Handler Control register | 
|  | */ | 
|  | s->vectors[ARMV7M_EXCP_SVC].enabled = 1; | 
|  | s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; | 
|  | s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; | 
|  |  | 
|  | /* DebugMonitor is enabled via DEMCR.MON_EN */ | 
|  | s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; | 
|  |  | 
|  | resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; | 
|  | s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; | 
|  | s->vectors[ARMV7M_EXCP_NMI].prio = -2; | 
|  | s->vectors[ARMV7M_EXCP_HARD].prio = -1; | 
|  |  | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { | 
|  | s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; | 
|  | s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; | 
|  | s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; | 
|  | s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; | 
|  |  | 
|  | /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ | 
|  | s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; | 
|  | /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ | 
|  | s->vectors[ARMV7M_EXCP_HARD].enabled = 0; | 
|  | } else { | 
|  | s->vectors[ARMV7M_EXCP_HARD].enabled = 1; | 
|  | } | 
|  |  | 
|  | /* Strictly speaking the reset handler should be enabled. | 
|  | * However, we don't simulate soft resets through the NVIC, | 
|  | * and the reset vector should never be pended. | 
|  | * So we leave it disabled to catch logic errors. | 
|  | */ | 
|  |  | 
|  | s->exception_prio = NVIC_NOEXC_PRIO; | 
|  | s->vectpending = 0; | 
|  | s->vectpending_is_s_banked = false; | 
|  | s->vectpending_prio = NVIC_NOEXC_PRIO; | 
|  |  | 
|  | if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { | 
|  | memset(s->itns, 0, sizeof(s->itns)); | 
|  | } else { | 
|  | /* This state is constant and not guest accessible in a non-security | 
|  | * NVIC; we set the bits to true to avoid having to do a feature | 
|  | * bit check in the NVIC enable/pend/etc register accessors. | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { | 
|  | s->itns[i] = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tcg_enabled()) { | 
|  | /* | 
|  | * We updated state that affects the CPU's MMUidx and thus its | 
|  | * hflags; and we can't guarantee that we run before the CPU | 
|  | * reset function. | 
|  | */ | 
|  | arm_rebuild_hflags(&s->cpu->env); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvic_systick_trigger(void *opaque, int n, int level) | 
|  | { | 
|  | NVICState *s = opaque; | 
|  |  | 
|  | if (level) { | 
|  | /* SysTick just asked us to pend its exception. | 
|  | * (This is different from an external interrupt line's | 
|  | * behaviour.) | 
|  | * n == 0 : NonSecure systick | 
|  | * n == 1 : Secure systick | 
|  | */ | 
|  | armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void armv7m_nvic_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | NVICState *s = NVIC(dev); | 
|  |  | 
|  | /* The armv7m container object will have set our CPU pointer */ | 
|  | if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { | 
|  | error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->num_irq > NVIC_MAX_IRQ) { | 
|  | error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | qdev_init_gpio_in(dev, set_irq_level, s->num_irq); | 
|  |  | 
|  | /* include space for internal exception vectors */ | 
|  | s->num_irq += NVIC_FIRST_IRQ; | 
|  |  | 
|  | if (s->num_prio_bits == 0) { | 
|  | /* | 
|  | * If left unspecified, use 2 bits by default on Cortex-M0/M0+/M1 | 
|  | * and 8 bits otherwise. | 
|  | */ | 
|  | s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; | 
|  | } else { | 
|  | uint8_t min_prio_bits = | 
|  | arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 3 : 2; | 
|  | if (s->num_prio_bits < min_prio_bits || s->num_prio_bits > 8) { | 
|  | error_setg(errp, | 
|  | "num-prio-bits %d is outside " | 
|  | "NVIC acceptable range [%d-8]", | 
|  | s->num_prio_bits, min_prio_bits); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This device provides a single memory region which covers the | 
|  | * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the | 
|  | * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF. | 
|  | */ | 
|  | memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, | 
|  | "nvic_sysregs", 0x1000); | 
|  | sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem); | 
|  | } | 
|  |  | 
|  | static void armv7m_nvic_instance_init(Object *obj) | 
|  | { | 
|  | DeviceState *dev = DEVICE(obj); | 
|  | NVICState *nvic = NVIC(obj); | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | 
|  |  | 
|  | sysbus_init_irq(sbd, &nvic->excpout); | 
|  | qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); | 
|  | qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", | 
|  | M_REG_NUM_BANKS); | 
|  | qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); | 
|  | } | 
|  |  | 
|  | static void armv7m_nvic_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  |  | 
|  | dc->vmsd  = &vmstate_nvic; | 
|  | device_class_set_props(dc, props_nvic); | 
|  | device_class_set_legacy_reset(dc, armv7m_nvic_reset); | 
|  | dc->realize = armv7m_nvic_realize; | 
|  | } | 
|  |  | 
|  | static const TypeInfo armv7m_nvic_info = { | 
|  | .name          = TYPE_NVIC, | 
|  | .parent        = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_init = armv7m_nvic_instance_init, | 
|  | .instance_size = sizeof(NVICState), | 
|  | .class_init    = armv7m_nvic_class_init, | 
|  | .class_size    = sizeof(SysBusDeviceClass), | 
|  | }; | 
|  |  | 
|  | static void armv7m_nvic_register_types(void) | 
|  | { | 
|  | type_register_static(&armv7m_nvic_info); | 
|  | } | 
|  |  | 
|  | type_init(armv7m_nvic_register_types) |