| #include "cpu.h" |
| #include "gdbstub.h" |
| #include "helper.h" |
| #include "host-utils.h" |
| #include "sysemu.h" |
| |
| #ifndef CONFIG_USER_ONLY |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size); |
| #endif |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| /* VFP data registers are always little-endian. */ |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[reg]); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; |
| case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| env->vfp.regs[reg] = ldfq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
| env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; |
| case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| } |
| return 0; |
| } |
| |
| static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| env->cp15.c3 = value; |
| tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
| return 0; |
| } |
| |
| static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (env->cp15.c13_fcse != value) { |
| /* Unlike real hardware the qemu TLB uses virtual addresses, |
| * not modified virtual addresses, so this causes a TLB flush. |
| */ |
| tlb_flush(env, 1); |
| env->cp15.c13_fcse = value; |
| } |
| return 0; |
| } |
| static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
| /* For VMSA (when not using the LPAE long descriptor page table |
| * format) this register includes the ASID, so do a TLB flush. |
| * For PMSA it is purely a process ID and no action is needed. |
| */ |
| tlb_flush(env, 1); |
| } |
| env->cp15.c13_context = value; |
| return 0; |
| } |
| |
| static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate all (TLBIALL) */ |
| tlb_flush(env, 1); |
| return 0; |
| } |
| |
| static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| tlb_flush_page(env, value & TARGET_PAGE_MASK); |
| return 0; |
| } |
| |
| static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by ASID (TLBIASID) */ |
| tlb_flush(env, value == 0); |
| return 0; |
| } |
| |
| static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| tlb_flush_page(env, value & TARGET_PAGE_MASK); |
| return 0; |
| } |
| |
| static const ARMCPRegInfo cp_reginfo[] = { |
| /* DBGDIDR: just RAZ. In particular this means the "debug architecture |
| * version" bits will read as a reserved value, which should cause |
| * Linux to not try to use the debug hardware. |
| */ |
| { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", .cp = 15, |
| .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), |
| .resetvalue = 0, .writefn = dacr_write }, |
| { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), |
| .resetvalue = 0, .writefn = fcse_write }, |
| { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), |
| .resetvalue = 0, .writefn = contextidr_write }, |
| /* ??? This covers not just the impdef TLB lockdown registers but also |
| * some v7VMSA registers relating to TEX remap, so it is overly broad. |
| */ |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| /* MMU TLB control. Note that the wildcarding means we cover not just |
| * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| */ |
| { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, }, |
| { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, }, |
| { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, }, |
| { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, }, |
| /* Cache maintenance ops; some of this space may be overridden later. */ |
| { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| * over-broad. |
| */ |
| { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| */ |
| { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| * OMAPCP will override this space. |
| */ |
| { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), |
| .resetvalue = 0 }, |
| { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), |
| .resetvalue = 0 }, |
| /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (env->cp15.c1_coproc != value) { |
| env->cp15.c1_coproc = value; |
| /* ??? Is this safe when called from within a TB? */ |
| tb_flush(env); |
| } |
| return 0; |
| } |
| |
| static const ARMCPRegInfo v6_cp_reginfo[] = { |
| /* prefetch by MVA in v6, NOP in v7 */ |
| { .name = "MVA_prefetch", |
| .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), |
| .resetvalue = 0, }, |
| /* Watchpoint Fault Address Register : should actually only be present |
| * for 1136, 1176, 11MPCore. |
| */ |
| { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, |
| { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
| .resetvalue = 0, .writefn = cpacr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| /* Generic performance monitor register read function for where |
| * user access may be allowed by PMUSERENR. |
| */ |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| *value = CPREG_FIELD32(env, ri); |
| return 0; |
| } |
| |
| static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| /* only the DP, X, D and E bits are writable */ |
| env->cp15.c9_pmcr &= ~0x39; |
| env->cp15.c9_pmcr |= (value & 0x39); |
| return 0; |
| } |
| |
| static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten |= value; |
| return 0; |
| } |
| |
| static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten &= ~value; |
| return 0; |
| } |
| |
| static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| env->cp15.c9_pmovsr &= ~value; |
| return 0; |
| } |
| |
| static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return EXCP_UDEF; |
| } |
| env->cp15.c9_pmxevtyper = value & 0xff; |
| return 0; |
| } |
| |
| static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmuserenr = value & 1; |
| return 0; |
| } |
| |
| static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* We have no event counters so only the C bit can be changed */ |
| value &= (1 << 31); |
| env->cp15.c9_pminten |= value; |
| return 0; |
| } |
| |
| static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pminten &= ~value; |
| return 0; |
| } |
| |
| static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| *value = cpu->ccsidr[env->cp15.c0_cssel]; |
| return 0; |
| } |
| |
| static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c0_cssel = value & 0xf; |
| return 0; |
| } |
| |
| static const ARMCPRegInfo v7_cp_reginfo[] = { |
| /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| * debug components |
| */ |
| { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DBGDRAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* Performance monitors are implementation defined in v7, |
| * but with an ARM recommended set of registers, which we |
| * follow (although we don't actually implement any counters) |
| * |
| * Performance registers fall into three categories: |
| * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| */ |
| { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .readfn = pmreg_read, .writefn = pmcntenset_write }, |
| { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .readfn = pmreg_read, .writefn = pmcntenclr_write }, |
| { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .readfn = pmreg_read, .writefn = pmovsr_write }, |
| /* Unimplemented so WI. Strictly speaking write accesses in PL0 should |
| * respect PMUSERENR. |
| */ |
| { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
| * We choose to RAZ/WI. XXX should respect PMUSERENR. |
| */ |
| { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
| { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), |
| .readfn = pmreg_read, .writefn = pmxevtyper_write }, |
| /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
| { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R | PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write }, |
| { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, |
| .writefn = pmintenset_write }, |
| { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, |
| .writefn = pmintenclr_write }, |
| { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), |
| .resetvalue = 0, }, |
| { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| .access = PL1_R, .readfn = ccsidr_read }, |
| { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
| .writefn = csselr_write, .resetvalue = 0 }, |
| /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| * just RAZ for all cores: |
| */ |
| { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| value &= 1; |
| env->teecr = value; |
| return 0; |
| } |
| |
| static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| /* This is a helper function because the user access rights |
| * depend on the value of the TEECR. |
| */ |
| if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
| return EXCP_UDEF; |
| } |
| *value = env->teehbr; |
| return 0; |
| } |
| |
| static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
| return EXCP_UDEF; |
| } |
| env->teehbr = value; |
| return 0; |
| } |
| |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), |
| .resetvalue = 0, |
| .writefn = teecr_write }, |
| { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), |
| .resetvalue = 0, |
| .readfn = teehbr_read, .writefn = teehbr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1), |
| .resetvalue = 0 }, |
| { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R|PL1_W, |
| .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2), |
| .resetvalue = 0 }, |
| { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3), |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| /* Dummy implementation: RAZ/WI the whole crn=14 space */ |
| { .name = "GENERIC_TIMER", .cp = 15, .crn = 14, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = value & 0xfffff6ff; |
| } else { |
| env->cp15.c7_par = value & 0xfffff1ff; |
| } |
| return 0; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* get_phys_addr() isn't present for user-mode-only targets */ |
| static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user = ri->opc2 & 2; |
| int access_type = ri->opc2 & 1; |
| |
| if (ri->opc2 & 4) { |
| /* Other states are only available with TrustZone */ |
| return EXCP_UDEF; |
| } |
| ret = get_phys_addr(env, value, access_type, is_user, |
| &phys_addr, &prot, &page_size); |
| if (ret == 0) { |
| /* We do not set any attribute bits in the PAR */ |
| if (page_size == (1 << 24) |
| && arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; |
| } else { |
| env->cp15.c7_par = phys_addr & 0xfffff000; |
| } |
| } else { |
| env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | |
| ((ret & (12 << 1)) >> 6) | |
| ((ret & 0xf) << 1) | 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c7_par), |
| .writefn = par_write }, |
| #ifndef CONFIG_USER_ONLY |
| { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_W, .writefn = ats_write }, |
| #endif |
| REGINFO_SENTINEL |
| }; |
| |
| /* Return basic MPU access permission bits. */ |
| static uint32_t simple_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val >> i) & mask; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| /* Pad basic MPU access permission bits to extended format. */ |
| static uint32_t extended_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val & mask) << i; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c5_data = extended_mpu_ap_bits(value); |
| return 0; |
| } |
| |
| static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| *value = simple_mpu_ap_bits(env->cp15.c5_data); |
| return 0; |
| } |
| |
| static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c5_insn = extended_mpu_ap_bits(value); |
| return 0; |
| } |
| |
| static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| *value = simple_mpu_ap_bits(env->cp15.c5_insn); |
| return 0; |
| } |
| |
| static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| if (ri->crm > 8) { |
| return EXCP_UDEF; |
| } |
| *value = env->cp15.c6_region[ri->crm]; |
| return 0; |
| } |
| |
| static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (ri->crm > 8) { |
| return EXCP_UDEF; |
| } |
| env->cp15.c6_region[ri->crm] = value; |
| return 0; |
| } |
| |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
| .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
| .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| /* Protection region base and size registers */ |
| { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, |
| .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 7; |
| env->cp15.c2_control = value; |
| env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value); |
| env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value); |
| return 0; |
| } |
| |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| env->cp15.c2_base_mask = 0xffffc000u; |
| env->cp15.c2_control = 0; |
| env->cp15.c2_mask = 0; |
| } |
| |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, |
| { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, |
| { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .writefn = vmsa_ttbcr_write, |
| .resetfn = vmsa_ttbcr_reset, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
| { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_ticonfig = value & 0xe7; |
| /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| return 0; |
| } |
| |
| static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_threadid = value & 0xffff; |
| return 0; |
| } |
| |
| static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Wait-for-interrupt (deprecated) */ |
| cpu_interrupt(env, CPU_INTERRUPT_HALT); |
| return 0; |
| } |
| |
| static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* On OMAP there are registers indicating the max/min index of dcache lines |
| * containing a dirty line; cache flush operations have to reset these. |
| */ |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| return 0; |
| } |
| |
| static const ARMCPRegInfo omap_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| .writefn = omap_ticonfig_write }, |
| { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0xff0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, |
| { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| .writefn = omap_threadid_write }, |
| { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
| .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| /* TODO: Peripheral port remap register: |
| * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| * when MMU is off. |
| */ |
| { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE, |
| .writefn = omap_cachemaint_write }, |
| { .name = "C9", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 0x3fff; |
| if (env->cp15.c15_cpar != value) { |
| /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
| tb_flush(env); |
| env->cp15.c15_cpar = value; |
| } |
| return 0; |
| } |
| |
| static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| { .name = "XSCALE_CPAR", |
| .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| .writefn = xscale_cpar_write, }, |
| { .name = "XSCALE_AUXCR", |
| .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| * implementation of this implementation-defined space. |
| * Ideally this should eventually disappear in favour of actually |
| * implementing the correct behaviour for all cores. |
| */ |
| { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| /* Cache status: RAZ because we have no cache so it's always clean */ |
| { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| /* We never have a a block transfer operation in progress */ |
| { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* The cache ops themselves: these all NOP for QEMU */ |
| { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| /* The cache test-and-clean instructions always return (1 << 30) |
| * to indicate that there are no dirty cache lines. |
| */ |
| { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, |
| { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| /* Ignore ReadBuffer accesses */ |
| { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t *value) |
| { |
| uint32_t mpidr = env->cpu_index; |
| /* We don't support setting cluster ID ([8..11]) |
| * so these bits always RAZ. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| mpidr |= (1 << 31); |
| /* Cores which are uniprocessor (non-coherent) |
| * but still implement the MP extensions set |
| * bit 30. (For instance, A9UP.) However we do |
| * not currently model any of those cores. |
| */ |
| } |
| *value = mpidr; |
| return 0; |
| } |
| |
| static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
| { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| .access = PL1_R, .readfn = mpidr_read }, |
| REGINFO_SENTINEL |
| }; |
| |
| static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| env->cp15.c1_sys = value; |
| /* ??? Lots of these bits are not implemented. */ |
| /* This may enable/disable the MMU, so do a TLB flush. */ |
| tlb_flush(env, 1); |
| return 0; |
| } |
| |
| void register_cp_regs_for_features(ARMCPU *cpu) |
| { |
| /* Register all the coprocessor registers based on feature bits */ |
| CPUARMState *env = &cpu->env; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile has no coprocessor registers */ |
| return; |
| } |
| |
| define_arm_cp_regs(cpu, cp_reginfo); |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* The ID registers all have impdef reset values */ |
| ARMCPRegInfo v6_idregs[] = { |
| { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr0 }, |
| { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr1 }, |
| { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_dfr0 }, |
| { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_afr0 }, |
| { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr0 }, |
| { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr1 }, |
| { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr2 }, |
| { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr3 }, |
| { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar0 }, |
| { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar1 }, |
| { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar2 }, |
| { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar3 }, |
| { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar4 }, |
| { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar5 }, |
| /* 6..7 are as yet unallocated and must RAZ */ |
| { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, v6_idregs); |
| define_arm_cp_regs(cpu, v6_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* v7 performance monitor control register: same implementor |
| * field as main ID register, and we implement no event counters. |
| */ |
| ARMCPRegInfo pmcr = { |
| .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
| .readfn = pmreg_read, .writefn = pmcr_write |
| }; |
| ARMCPRegInfo clidr = { |
| .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
| }; |
| define_one_arm_cp_reg(cpu, &pmcr); |
| define_one_arm_cp_reg(cpu, &clidr); |
| define_arm_cp_regs(cpu, v7_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| /* These are the MPU registers prior to PMSAv6. Any new |
| * PMSA core later than the ARM946 will require that we |
| * implement the PMSAv6 or PMSAv7 registers, which are |
| * completely different. |
| */ |
| assert(!arm_feature(env, ARM_FEATURE_V6)); |
| define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| define_arm_cp_regs(cpu, omap_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| } |
| /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| * be read-only (ie write causes UNDEF exception). |
| */ |
| { |
| ARMCPRegInfo id_cp_reginfo[] = { |
| /* Note that the MIDR isn't a simple constant register because |
| * of the TI925 behaviour where writes to another register can |
| * cause the MIDR value to change. |
| */ |
| { .name = "MIDR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_R, .resetvalue = cpu->midr, |
| .writefn = arm_cp_write_ignore, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) }, |
| { .name = "CTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| { .name = "TCMTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TLBTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo crn0_wi_reginfo = { |
| .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE |
| }; |
| if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| ARMCPRegInfo *r; |
| /* Register the blanket "writes ignored" value first to cover the |
| * whole space. Then define the specific ID registers, but update |
| * their access field to allow write access, so that they ignore |
| * writes rather than causing them to UNDEF. |
| */ |
| define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| define_one_arm_cp_reg(cpu, r); |
| } |
| } else { |
| /* Just register the standard ID registers (read-only, meaning |
| * that writes will UNDEF). |
| */ |
| define_arm_cp_regs(cpu, id_cp_reginfo); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| ARMCPRegInfo auxcr = { |
| .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = cpu->reset_auxcr |
| }; |
| define_one_arm_cp_reg(cpu, &auxcr); |
| } |
| |
| /* Generic registers whose values depend on the implementation */ |
| { |
| ARMCPRegInfo sctlr = { |
| .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
| .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr |
| }; |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| /* Normally we would always end the TB on an SCTLR write, but Linux |
| * arch/arm/mach-pxa/sleep.S expects two instructions following |
| * an MMU enable to execute from cache. Imitate this behaviour. |
| */ |
| sctlr.type |= ARM_CP_SUPPRESS_TB_END; |
| } |
| define_one_arm_cp_reg(cpu, &sctlr); |
| } |
| } |
| |
| ARMCPU *cpu_arm_init(const char *cpu_model) |
| { |
| ARMCPU *cpu; |
| CPUARMState *env; |
| static int inited = 0; |
| |
| if (!object_class_by_name(cpu_model)) { |
| return NULL; |
| } |
| cpu = ARM_CPU(object_new(cpu_model)); |
| env = &cpu->env; |
| env->cpu_model_str = cpu_model; |
| arm_cpu_realize(cpu); |
| |
| if (tcg_enabled() && !inited) { |
| inited = 1; |
| arm_translate_init(); |
| } |
| |
| cpu_reset(CPU(cpu)); |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 51, "arm-neon.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 35, "arm-vfp3.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 19, "arm-vfp.xml", 0); |
| } |
| qemu_init_vcpu(env); |
| return cpu; |
| } |
| |
| typedef struct ARMCPUListState { |
| fprintf_function cpu_fprintf; |
| FILE *file; |
| } ARMCPUListState; |
| |
| /* Sort alphabetically by type name, except for "any". */ |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any") == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any") == 0) { |
| return -1; |
| } else { |
| return strcmp(name_a, name_b); |
| } |
| } |
| |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| ARMCPUListState *s = user_data; |
| |
| (*s->cpu_fprintf)(s->file, " %s\n", |
| object_class_get_name(oc)); |
| } |
| |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| { |
| ARMCPUListState s = { |
| .file = f, |
| .cpu_fprintf = cpu_fprintf, |
| }; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| list = g_slist_sort(list, arm_cpu_list_compare); |
| (*cpu_fprintf)(f, "Available CPUs:\n"); |
| g_slist_foreach(list, arm_cpu_list_entry, &s); |
| g_slist_free(list); |
| } |
| |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *r, void *opaque) |
| { |
| /* Define implementations of coprocessor registers. |
| * We store these in a hashtable because typically |
| * there are less than 150 registers in a space which |
| * is 16*16*16*8*8 = 262144 in size. |
| * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| * If a register is defined twice then the second definition is |
| * used, so this can be used to define some generic registers and |
| * then override them with implementation specific variations. |
| * At least one of the original and the second definition should |
| * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| * against accidental use. |
| */ |
| int crm, opc1, opc2; |
| int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
| int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; |
| int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; |
| int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; |
| int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; |
| int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; |
| /* 64 bit registers have only CRm and Opc1 fields */ |
| assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); |
| /* Check that the register definition has enough info to handle |
| * reads and writes if they are permitted. |
| */ |
| if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { |
| if (r->access & PL3_R) { |
| assert(r->fieldoffset || r->readfn); |
| } |
| if (r->access & PL3_W) { |
| assert(r->fieldoffset || r->writefn); |
| } |
| } |
| /* Bad type field probably means missing sentinel at end of reg list */ |
| assert(cptype_valid(r->type)); |
| for (crm = crmmin; crm <= crmmax; crm++) { |
| for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| uint32_t *key = g_new(uint32_t, 1); |
| ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; |
| *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2); |
| r2->opaque = opaque; |
| /* Make sure reginfo passed to helpers for wildcarded regs |
| * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| */ |
| r2->crm = crm; |
| r2->opc1 = opc1; |
| r2->opc2 = opc2; |
| /* Overriding of an existing definition must be explicitly |
| * requested. |
| */ |
| if (!(r->type & ARM_CP_OVERRIDE)) { |
| ARMCPRegInfo *oldreg; |
| oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { |
| fprintf(stderr, "Register redefined: cp=%d %d bit " |
| "crn=%d crm=%d opc1=%d opc2=%d, " |
| "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
| r2->crn, r2->crm, r2->opc1, r2->opc2, |
| oldreg->name, r2->name); |
| assert(0); |
| } |
| } |
| g_hash_table_insert(cpu->cp_regs, key, r2); |
| } |
| } |
| } |
| } |
| |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque) |
| { |
| /* Define a whole list of registers */ |
| const ARMCPRegInfo *r; |
| for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| } |
| } |
| |
| const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp) |
| { |
| return g_hash_table_lookup(cpu->cp_regs, &encoded_cp); |
| } |
| |
| int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Helper coprocessor write function for write-ignore registers */ |
| return 0; |
| } |
| |
| int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
| { |
| /* Helper coprocessor write function for read-as-zero registers */ |
| *value = 0; |
| return 0; |
| } |
| |
| static int bad_mode_switch(CPUARMState *env, int mode) |
| { |
| /* Return true if it is not valid for us to switch to |
| * this CPU mode (ie all the UNPREDICTABLE cases in |
| * the ARM ARM CPSRWriteByInstr pseudocode). |
| */ |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_FIQ: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| uint32_t cpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16); |
| } |
| |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & CPSR_T) |
| env->thumb = ((val & CPSR_T) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & CPSR_GE) { |
| env->GE = (val >> 16) & 0xf; |
| } |
| |
| if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
| if (bad_mode_switch(env, val & CPSR_M)) { |
| /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. |
| * We choose to ignore the attempt and leave the CPSR M field |
| * untouched. |
| */ |
| mask &= ~CPSR_M; |
| } else { |
| switch_mode(env, val & CPSR_M); |
| } |
| } |
| mask &= ~CACHED_CPSR_BITS; |
| env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| } |
| |
| /* Sign/zero extend */ |
| uint32_t HELPER(sxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)x; |
| res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(uxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)x; |
| res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(clz)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| { |
| if (den == 0) |
| return 0; |
| if (num == INT_MIN && den == -1) |
| return INT_MIN; |
| return num / den; |
| } |
| |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| { |
| if (den == 0) |
| return 0; |
| return num / den; |
| } |
| |
| uint32_t HELPER(rbit)(uint32_t x) |
| { |
| x = ((x & 0xff000000) >> 24) |
| | ((x & 0x00ff0000) >> 8) |
| | ((x & 0x0000ff00) << 8) |
| | ((x & 0x000000ff) << 24); |
| x = ((x & 0xf0f0f0f0) >> 4) |
| | ((x & 0x0f0f0f0f) << 4); |
| x = ((x & 0x88888888) >> 3) |
| | ((x & 0x44444444) >> 1) |
| | ((x & 0x22222222) << 1) |
| | ((x & 0x11111111) << 3); |
| return x; |
| } |
| |
| uint32_t HELPER(abs)(uint32_t x) |
| { |
| return ((int32_t)x < 0) ? -x : x; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void do_interrupt (CPUARMState *env) |
| { |
| env->exception_index = -1; |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
| int mmu_idx) |
| { |
| if (rw == 2) { |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| env->cp15.c6_insn = address; |
| } else { |
| env->exception_index = EXCP_DATA_ABORT; |
| env->cp15.c6_data = address; |
| } |
| return 1; |
| } |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| return 0; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| if (mode != ARM_CPU_MODE_USR) |
| cpu_abort(env, "Tried to switch out of user mode\n"); |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| cpu_abort(env, "banked r13 write\n"); |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| cpu_abort(env, "banked r13 read\n"); |
| return 0; |
| } |
| |
| #else |
| |
| /* Map CPU modes onto saved register banks. */ |
| static inline int bank_number(CPUARMState *env, int mode) |
| { |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| return 0; |
| case ARM_CPU_MODE_SVC: |
| return 1; |
| case ARM_CPU_MODE_ABT: |
| return 2; |
| case ARM_CPU_MODE_UND: |
| return 3; |
| case ARM_CPU_MODE_IRQ: |
| return 4; |
| case ARM_CPU_MODE_FIQ: |
| return 5; |
| } |
| cpu_abort(env, "Bad mode %x\n", mode); |
| return -1; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| int old_mode; |
| int i; |
| |
| old_mode = env->uncached_cpsr & CPSR_M; |
| if (mode == old_mode) |
| return; |
| |
| if (old_mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } else if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } |
| |
| i = bank_number(env, old_mode); |
| env->banked_r13[i] = env->regs[13]; |
| env->banked_r14[i] = env->regs[14]; |
| env->banked_spsr[i] = env->spsr; |
| |
| i = bank_number(env, mode); |
| env->regs[13] = env->banked_r13[i]; |
| env->regs[14] = env->banked_r14[i]; |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| static void v7m_push(CPUARMState *env, uint32_t val) |
| { |
| env->regs[13] -= 4; |
| stl_phys(env->regs[13], val); |
| } |
| |
| static uint32_t v7m_pop(CPUARMState *env) |
| { |
| uint32_t val; |
| val = ldl_phys(env->regs[13]); |
| env->regs[13] += 4; |
| return val; |
| } |
| |
| /* Switch to V7M main or process stack pointer. */ |
| static void switch_v7m_sp(CPUARMState *env, int process) |
| { |
| uint32_t tmp; |
| if (env->v7m.current_sp != process) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| env->v7m.current_sp = process; |
| } |
| } |
| |
| static void do_v7m_exception_exit(CPUARMState *env) |
| { |
| uint32_t type; |
| uint32_t xpsr; |
| |
| type = env->regs[15]; |
| if (env->v7m.exception != 0) |
| armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
| |
| /* Switch to the target stack. */ |
| switch_v7m_sp(env, (type & 4) != 0); |
| /* Pop registers. */ |
| env->regs[0] = v7m_pop(env); |
| env->regs[1] = v7m_pop(env); |
| env->regs[2] = v7m_pop(env); |
| env->regs[3] = v7m_pop(env); |
| env->regs[12] = v7m_pop(env); |
| env->regs[14] = v7m_pop(env); |
| env->regs[15] = v7m_pop(env); |
| xpsr = v7m_pop(env); |
| xpsr_write(env, xpsr, 0xfffffdff); |
| /* Undo stack alignment. */ |
| if (xpsr & 0x200) |
| env->regs[13] |= 4; |
| /* ??? The exception return type specifies Thread/Handler mode. However |
| this is also implied by the xPSR value. Not sure what to do |
| if there is a mismatch. */ |
| /* ??? Likewise for mismatches between the CONTROL register and the stack |
| pointer. */ |
| } |
| |
| static void do_interrupt_v7m(CPUARMState *env) |
| { |
| uint32_t xpsr = xpsr_read(env); |
| uint32_t lr; |
| uint32_t addr; |
| |
| lr = 0xfffffff1; |
| if (env->v7m.current_sp) |
| lr |= 4; |
| if (env->v7m.exception == 0) |
| lr |= 8; |
| |
| /* For exceptions we just mark as pending on the NVIC, and let that |
| handle it. */ |
| /* TODO: Need to escalate if the current priority is higher than the |
| one we're raising. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
| return; |
| case EXCP_SWI: |
| env->regs[15] += 2; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
| return; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
| return; |
| case EXCP_BKPT: |
| if (semihosting_enabled) { |
| int nr; |
| nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff; |
| if (nr == 0xab) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
| return; |
| case EXCP_IRQ: |
| env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
| break; |
| case EXCP_EXCEPTION_EXIT: |
| do_v7m_exception_exit(env); |
| return; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| /* Align stack pointer. */ |
| /* ??? Should only do this if Configuration Control Register |
| STACKALIGN bit is set. */ |
| if (env->regs[13] & 4) { |
| env->regs[13] -= 4; |
| xpsr |= 0x200; |
| } |
| /* Switch to the handler mode. */ |
| v7m_push(env, xpsr); |
| v7m_push(env, env->regs[15]); |
| v7m_push(env, env->regs[14]); |
| v7m_push(env, env->regs[12]); |
| v7m_push(env, env->regs[3]); |
| v7m_push(env, env->regs[2]); |
| v7m_push(env, env->regs[1]); |
| v7m_push(env, env->regs[0]); |
| switch_v7m_sp(env, 0); |
| /* Clear IT bits */ |
| env->condexec_bits = 0; |
| env->regs[14] = lr; |
| addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); |
| env->regs[15] = addr & 0xfffffffe; |
| env->thumb = addr & 1; |
| } |
| |
| /* Handle a CPU exception. */ |
| void do_interrupt(CPUARMState *env) |
| { |
| uint32_t addr; |
| uint32_t mask; |
| int new_mode; |
| uint32_t offset; |
| |
| if (IS_M(env)) { |
| do_interrupt_v7m(env); |
| return; |
| } |
| /* TODO: Vectored interrupt controller. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| new_mode = ARM_CPU_MODE_UND; |
| addr = 0x04; |
| mask = CPSR_I; |
| if (env->thumb) |
| offset = 2; |
| else |
| offset = 4; |
| break; |
| case EXCP_SWI: |
| if (semihosting_enabled) { |
| /* Check for semihosting interrupt. */ |
| if (env->thumb) { |
| mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff; |
| } else { |
| mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code) |
| & 0xffffff; |
| } |
| /* Only intercept calls from privileged modes, to provide some |
| semblance of security. */ |
| if (((mask == 0x123456 && !env->thumb) |
| || (mask == 0xab && env->thumb)) |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| new_mode = ARM_CPU_MODE_SVC; |
| addr = 0x08; |
| mask = CPSR_I; |
| /* The PC already points to the next instruction. */ |
| offset = 0; |
| break; |
| case EXCP_BKPT: |
| /* See if this is a semihosting syscall. */ |
| if (env->thumb && semihosting_enabled) { |
| mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff; |
| if (mask == 0xab |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| env->cp15.c5_insn = 2; |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x0c; |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_DATA_ABORT: |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x10; |
| mask = CPSR_A | CPSR_I; |
| offset = 8; |
| break; |
| case EXCP_IRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_FIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 4; |
| break; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| /* High vectors. */ |
| if (env->cp15.c1_sys & (1 << 13)) { |
| addr += 0xffff0000; |
| } |
| switch_mode (env, new_mode); |
| env->spsr = cpsr_read(env); |
| /* Clear IT bits. */ |
| env->condexec_bits = 0; |
| /* Switch to the new mode, and to the correct instruction set. */ |
| env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| env->uncached_cpsr |= mask; |
| /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
| * and we should just guard the thumb mode on V4 */ |
| if (arm_feature(env, ARM_FEATURE_V4T)) { |
| env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; |
| } |
| env->regs[14] = env->regs[15] + offset; |
| env->regs[15] = addr; |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| |
| /* Check section/page access permissions. |
| Returns the page protection flags, or zero if the access is not |
| permitted. */ |
| static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
| int access_type, int is_user) |
| { |
| int prot_ro; |
| |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| if (access_type == 1) |
| prot_ro = 0; |
| else |
| prot_ro = PAGE_READ; |
| |
| switch (ap) { |
| case 0: |
| if (access_type == 1) |
| return 0; |
| switch ((env->cp15.c1_sys >> 8) & 3) { |
| case 1: |
| return is_user ? 0 : PAGE_READ; |
| case 2: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) |
| return prot_ro; |
| else |
| return PAGE_READ | PAGE_WRITE; |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : prot_ro; |
| case 6: |
| return prot_ro; |
| case 7: |
| if (!arm_feature (env, ARM_FEATURE_V6K)) |
| return 0; |
| return prot_ro; |
| default: |
| abort(); |
| } |
| } |
| |
| static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
| { |
| uint32_t table; |
| |
| if (address & env->cp15.c2_mask) |
| table = env->cp15.c2_base1 & 0xffffc000; |
| else |
| table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
| |
| table |= (address >> 18) & 0x3ffc; |
| return table; |
| } |
| |
| static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain; |
| int domain_prot; |
| uint32_t phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(table); |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| goto do_fault; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| code = 13; |
| *page_size = 1024 * 1024; |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| desc = ldl_phys(table); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x10000; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x1000; |
| break; |
| case 3: /* 1k page. */ |
| if (type == 1) { |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| } else { |
| /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| } |
| ap = (desc >> 4) & 3; |
| *page_size = 0x400; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| *prot |= PAGE_EXEC; |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| int type; |
| int ap; |
| int domain; |
| int domain_prot; |
| uint32_t phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(table); |
| type = (desc & 3); |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| domain = 0; |
| goto do_fault; |
| } else if (type == 2 && (desc & (1 << 18))) { |
| /* Supersection. */ |
| domain = 0; |
| } else { |
| /* Section or page. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| *page_size = 0x1000000; |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| *page_size = 0x100000; |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| code = 13; |
| } else { |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| desc = ldl_phys(table); |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| *page_size = 0x10000; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| *page_size = 0x1000; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| if (domain_prot == 3) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (xn && access_type == 2) |
| goto do_fault; |
| |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { |
| /* Access flag fault. */ |
| code = (code == 15) ? 6 : 3; |
| goto do_fault; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| if (!xn) { |
| *prot |= PAGE_EXEC; |
| } |
| } |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| |
| *phys_ptr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) |
| continue; |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) |
| break; |
| } |
| if (n < 0) |
| return 2; |
| |
| if (access_type == 2) { |
| mask = env->cp15.c5_insn; |
| } else { |
| mask = env->cp15.c5_data; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| return 1; |
| case 1: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| *prot = PAGE_READ; |
| if (!is_user) |
| *prot |= PAGE_WRITE; |
| break; |
| case 3: |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ; |
| break; |
| case 6: |
| *prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| return 1; |
| } |
| *prot |= PAGE_EXEC; |
| return 0; |
| } |
| |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| /* Fast Context Switch Extension. */ |
| if (address < 0x02000000) |
| address += env->cp15.c13_fcse; |
| |
| if ((env->cp15.c1_sys & 1) == 0) { |
| /* MMU/MPU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *page_size = TARGET_PAGE_SIZE; |
| return 0; |
| } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
| *page_size = TARGET_PAGE_SIZE; |
| return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
| prot); |
| } else if (env->cp15.c1_sys & (1 << 23)) { |
| return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } else { |
| return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
| int access_type, int mmu_idx) |
| { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user; |
| |
| is_user = mmu_idx == MMU_USER_IDX; |
| ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
| &page_size); |
| if (ret == 0) { |
| /* Map a single [sub]page. */ |
| phys_addr &= ~(uint32_t)0x3ff; |
| address &= ~(uint32_t)0x3ff; |
| tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
| return 0; |
| } |
| |
| if (access_type == 2) { |
| env->cp15.c5_insn = ret; |
| env->cp15.c6_insn = address; |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| } else { |
| env->cp15.c5_data = ret; |
| if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
| env->cp15.c5_data |= (1 << 11); |
| env->cp15.c6_data = address; |
| env->exception_index = EXCP_DATA_ABORT; |
| } |
| return 1; |
| } |
| |
| target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) |
| { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret; |
| |
| ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); |
| |
| if (ret != 0) |
| return -1; |
| |
| return phys_addr; |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| env->regs[13] = val; |
| } else { |
| env->banked_r13[bank_number(env, mode)] = val; |
| } |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| return env->regs[13]; |
| } else { |
| return env->banked_r13[bank_number(env, mode)]; |
| } |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| return xpsr_read(env) & 0xf8000000; |
| case 1: /* IAPSR */ |
| return xpsr_read(env) & 0xf80001ff; |
| case 2: /* EAPSR */ |
| return xpsr_read(env) & 0xff00fc00; |
| case 3: /* xPSR */ |
| return xpsr_read(env) & 0xff00fdff; |
| case 5: /* IPSR */ |
| return xpsr_read(env) & 0x000001ff; |
| case 6: /* EPSR */ |
| return xpsr_read(env) & 0x0700fc00; |
| case 7: /* IEPSR */ |
| return xpsr_read(env) & 0x0700edff; |
| case 8: /* MSP */ |
| return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
| case 9: /* PSP */ |
| return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
| case 16: /* PRIMASK */ |
| return (env->uncached_cpsr & CPSR_I) != 0; |
| case 17: /* BASEPRI */ |
| case 18: /* BASEPRI_MAX */ |
| return env->v7m.basepri; |
| case 19: /* FAULTMASK */ |
| return (env->uncached_cpsr & CPSR_F) != 0; |
| case 20: /* CONTROL */ |
| return env->v7m.control; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
| return 0; |
| } |
| } |
| |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 1: /* IAPSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 2: /* EAPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 3: /* xPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 5: /* IPSR */ |
| /* IPSR bits are readonly. */ |
| break; |
| case 6: /* EPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 7: /* IEPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 8: /* MSP */ |
| if (env->v7m.current_sp) |
| env->v7m.other_sp = val; |
| else |
| env->regs[13] = val; |
| break; |
| case 9: /* PSP */ |
| if (env->v7m.current_sp) |
| env->regs[13] = val; |
| else |
| env->v7m.other_sp = val; |
| break; |
| case 16: /* PRIMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_I; |
| else |
| env->uncached_cpsr &= ~CPSR_I; |
| break; |
| case 17: /* BASEPRI */ |
| env->v7m.basepri = val & 0xff; |
| break; |
| case 18: /* BASEPRI_MAX */ |
| val &= 0xff; |
| if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
| env->v7m.basepri = val; |
| break; |
| case 19: /* FAULTMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_F; |
| else |
| env->uncached_cpsr &= ~CPSR_F; |
| break; |
| case 20: /* CONTROL */ |
| env->v7m.control = val & 3; |
| switch_v7m_sp(env, (val & 2) != 0); |
| break; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
| return; |
| } |
| } |
| |
| #endif |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed saturating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed saturating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 1) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 1) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| { |
| uint32_t sum; |
| sum = do_usad(a, b); |
| sum += do_usad(a >> 8, b >> 8); |
| sum += do_usad(a >> 16, b >>16); |
| sum += do_usad(a >> 24, b >> 24); |
| return sum; |
| } |
| |
| /* For ARMv6 SEL instruction. */ |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| return (a & mask) | (b & ~mask); |
| } |
| |
| uint32_t HELPER(logicq_cc)(uint64_t val) |
| { |
| return (val >> 32) | (val != 0); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instrunctions: |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| /* Convert host exception flags to vfp form. */ |
| static inline int vfp_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) |
| target_bits |= 1; |
| if (host_bits & float_flag_divbyzero) |
| target_bits |= 2; |
| if (host_bits & float_flag_overflow) |
| target_bits |= 4; |
| if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
| target_bits |= 8; |
| if (host_bits & float_flag_inexact) |
| target_bits |= 0x10; |
| if (host_bits & float_flag_input_denormal) |
| target_bits |= 0x80; |
| return target_bits; |
| } |
| |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) |
| | (env->vfp.vec_len << 16) |
| | (env->vfp.vec_stride << 20); |
| i = get_float_exception_flags(&env->vfp.fp_status); |
| i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| fpscr |= vfp_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| uint32_t vfp_get_fpscr(CPUARMState *env) |
| { |
| return HELPER(vfp_get_fpscr)(env); |
| } |
| |
| /* Convert vfp exception flags to target form. */ |
| static inline int vfp_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & 1) |
| host_bits |= float_flag_invalid; |
| if (target_bits & 2) |
| host_bits |= float_flag_divbyzero; |
| if (target_bits & 4) |
| host_bits |= float_flag_overflow; |
| if (target_bits & 8) |
| host_bits |= float_flag_underflow; |
| if (target_bits & 0x10) |
| host_bits |= float_flag_inexact; |
| if (target_bits & 0x80) |
| host_bits |= float_flag_input_denormal; |
| return host_bits; |
| } |
| |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
| { |
| int i; |
| uint32_t changed; |
| |
| changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
| env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); |
| env->vfp.vec_len = (val >> 16) & 7; |
| env->vfp.vec_stride = (val >> 20) & 3; |
| |
| changed ^= val; |
| if (changed & (3 << 22)) { |
| i = (val >> 22) & 3; |
| switch (i) { |
| case 0: |
| i = float_round_nearest_even; |
| break; |
| case 1: |
| i = float_round_up; |
| break; |
| case 2: |
| i = float_round_down; |
| break; |
| case 3: |
| i = float_round_to_zero; |
| break; |
| } |
| set_float_rounding_mode(i, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 24)) { |
| set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 25)) |
| set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
| |
| i = vfp_exceptbits_to_host(val); |
| set_float_exception_flags(i, &env->vfp.fp_status); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| } |
| |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| { |
| HELPER(vfp_set_fpscr)(env, val); |
| } |
| |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
| |
| #define VFP_BINOP(name) \ |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float32_ ## name(a, b, fpst); \ |
| } \ |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float64_ ## name(a, b, fpst); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| #undef VFP_BINOP |
| |
| float32 VFP_HELPER(neg, s)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 VFP_HELPER(neg, d)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 VFP_HELPER(abs, s)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 VFP_HELPER(abs, d)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
| { |
| return float32_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
| { |
| return float64_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| #define DO_VFP_cmp(p, type) \ |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } \ |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } |
| DO_VFP_cmp(s, float32) |
| DO_VFP_cmp(d, float64) |
| #undef DO_VFP_cmp |
| |
| /* Integer to float and float to integer conversions */ |
| |
| #define CONV_ITOF(name, fsz, sign) \ |
| float##fsz HELPER(name)(uint32_t x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| } |
| |
| #define CONV_FTOI(name, fsz, sign, round) \ |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| } |
| |
| #define FLOAT_CONVS(name, p, fsz, sign) \ |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
| |
| FLOAT_CONVS(si, s, 32, ) |
| FLOAT_CONVS(si, d, 64, ) |
| FLOAT_CONVS(ui, s, 32, u) |
| FLOAT_CONVS(ui, d, 64, u) |
| |
| #undef CONV_ITOF |
| #undef CONV_FTOI |
| #undef FLOAT_CONVS |
| |
| /* floating point conversion */ |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
| { |
| float64 r = float32_to_float64(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float64_maybe_silence_nan(r); |
| } |
| |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
| { |
| float32 r = float64_to_float32(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float32_maybe_silence_nan(r); |
| } |
| |
| /* VFP3 fixed point conversion. */ |
| #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ |
| float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ |
| return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
| } \ |
| uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| tmp = float##fsz##_scalbn(x, shift, fpst); \ |
| return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ |
| } |
| |
| VFP_CONV_FIX(sh, d, 64, int16, ) |
| VFP_CONV_FIX(sl, d, 64, int32, ) |
| VFP_CONV_FIX(uh, d, 64, uint16, u) |
| VFP_CONV_FIX(ul, d, 64, uint32, u) |
| VFP_CONV_FIX(sh, s, 32, int16, ) |
| VFP_CONV_FIX(sl, s, 32, int32, ) |
| VFP_CONV_FIX(uh, s, 32, uint16, u) |
| VFP_CONV_FIX(ul, s, 32, uint32, u) |
| #undef VFP_CONV_FIX |
| |
| /* Half precision conversions. */ |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float32 r = float16_to_float32(make_float16(a), ieee, s); |
| if (ieee) { |
| return float32_maybe_silence_nan(r); |
| } |
| return r; |
| } |
| |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float32_to_float16(a, ieee, s); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r); |
| } |
| return float16_val(r); |
| } |
| |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
| } |
| |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_two; |
| } |
| return float32_sub(float32_two, float32_mul(a, b, s), s); |
| } |
| |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float32 product; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_one_point_five; |
| } |
| product = float32_mul(a, b, s); |
| return float32_div(float32_sub(float32_three, product, s), float32_two, s); |
| } |
| |
| /* NEON helpers. */ |
| |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| * int->float conversions at run-time. */ |
| #define float64_256 make_float64(0x4070000000000000LL) |
| #define float64_512 make_float64(0x4080000000000000LL) |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| /* q = (int)(a * 512.0) */ |
| float64 q = float64_mul(float64_512, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_div(float64_one, q, s); |
| |
| /* s = (int)(256.0 * r + 0.5) */ |
| q = float64_mul(q, float64_256, s); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0 */ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float64 f64; |
| uint32_t val32 = float32_val(a); |
| |
| int result_exp; |
| int a_exp = (val32 & 0x7f800000) >> 23; |
| int sign = val32 & 0x80000000; |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (a_exp >= 253) { |
| float_raise(float_flag_underflow, s); |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(val32 & 0x7fffff) << 29)); |
| |
| result_exp = 253 - a_exp; |
| |
| f64 = recip_estimate(f64, env); |
| |
| val32 = sign |
| | ((result_exp & 0xff) << 23) |
| | ((float64_val(f64) >> 29) & 0x7fffff); |
| return make_float32(val32); |
| } |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| float64 q; |
| int64_t q_int; |
| |
| if (float64_lt(a, float64_half, s)) { |
| /* range 0.25 <= a < 0.5 */ |
| |
| /* a in units of 1/512 rounded down */ |
| /* q0 = (int)(a * 512.0); */ |
| q = float64_mul(float64_512, a, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } else { |
| /* range 0.5 <= a < 1.0 */ |
| |
| /* a in units of 1/256 rounded down */ |
| /* q1 = (int)(a * 256.0); */ |
| q = float64_mul(float64_256, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_256, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } |
| /* r in units of 1/256 rounded to nearest */ |
| /* s = (int)(256.0 * r + 0.5); */ |
| |
| q = float64_mul(q, float64_256,s ); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0;*/ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| int result_exp; |
| float64 f64; |
| uint32_t val; |
| uint64_t val64; |
| |
| val = float32_val(a); |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (float32_is_neg(a)) { |
| float_raise(float_flag_invalid, s); |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_zero; |
| } |
| |
| /* Normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| if ((val & 0x800000) == 0) { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3feULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } else { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3fdULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } |
| |
| result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| val64 = float64_val(f64); |
| |
| val = ((result_exp & 0xff) << 23) |
| | ((val64 >> 29) & 0x7fffff); |
| return make_float32(val); |
| } |
| |
| uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0x80000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(a & 0x7fffffff) << 21)); |
| |
| f64 = recip_estimate (f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0xc0000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| if (a & 0x80000000) { |
| f64 = make_float64((0x3feULL << 52) |
| | ((uint64_t)(a & 0x7fffffff) << 21)); |
| } else { /* bits 31-30 == '01' */ |
| f64 = make_float64((0x3fdULL << 52) |
| | ((uint64_t)(a & 0x3fffffff) << 22)); |
| } |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| /* VFPv4 fused multiply-accumulate */ |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float32_muladd(a, b, c, 0, fpst); |
| } |
| |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float64_muladd(a, b, c, 0, fpst); |
| } |