| /* |
| * generic functions used by VFIO devices |
| * |
| * Copyright Red Hat, Inc. 2012 |
| * |
| * Authors: |
| * Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Based on qemu-kvm device-assignment: |
| * Adapted for KVM by Qumranet. |
| * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) |
| * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) |
| * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) |
| * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) |
| * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| #ifdef CONFIG_KVM |
| #include <linux/kvm.h> |
| #endif |
| #include <linux/vfio.h> |
| |
| #include "hw/vfio/vfio-common.h" |
| #include "hw/vfio/pci.h" |
| #include "exec/address-spaces.h" |
| #include "exec/memory.h" |
| #include "exec/ram_addr.h" |
| #include "hw/hw.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/range.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/runstate.h" |
| #include "trace.h" |
| #include "qapi/error.h" |
| #include "migration/misc.h" |
| #include "migration/blocker.h" |
| #include "migration/qemu-file.h" |
| #include "sysemu/tpm.h" |
| |
| VFIODeviceList vfio_device_list = |
| QLIST_HEAD_INITIALIZER(vfio_device_list); |
| static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = |
| QLIST_HEAD_INITIALIZER(vfio_address_spaces); |
| |
| #ifdef CONFIG_KVM |
| /* |
| * We have a single VFIO pseudo device per KVM VM. Once created it lives |
| * for the life of the VM. Closing the file descriptor only drops our |
| * reference to it and the device's reference to kvm. Therefore once |
| * initialized, this file descriptor is only released on QEMU exit and |
| * we'll re-use it should another vfio device be attached before then. |
| */ |
| int vfio_kvm_device_fd = -1; |
| #endif |
| |
| /* |
| * Device state interfaces |
| */ |
| |
| bool vfio_mig_active(void) |
| { |
| VFIODevice *vbasedev; |
| |
| if (QLIST_EMPTY(&vfio_device_list)) { |
| return false; |
| } |
| |
| QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { |
| if (vbasedev->migration_blocker) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static Error *multiple_devices_migration_blocker; |
| |
| /* |
| * Multiple devices migration is allowed only if all devices support P2P |
| * migration. Single device migration is allowed regardless of P2P migration |
| * support. |
| */ |
| static bool vfio_multiple_devices_migration_is_supported(void) |
| { |
| VFIODevice *vbasedev; |
| unsigned int device_num = 0; |
| bool all_support_p2p = true; |
| |
| QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { |
| if (vbasedev->migration) { |
| device_num++; |
| |
| if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { |
| all_support_p2p = false; |
| } |
| } |
| } |
| |
| return all_support_p2p || device_num <= 1; |
| } |
| |
| int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) |
| { |
| int ret; |
| |
| if (vfio_multiple_devices_migration_is_supported()) { |
| return 0; |
| } |
| |
| if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { |
| error_setg(errp, "Multiple VFIO devices migration is supported only if " |
| "all of them support P2P migration"); |
| return -EINVAL; |
| } |
| |
| if (multiple_devices_migration_blocker) { |
| return 0; |
| } |
| |
| error_setg(&multiple_devices_migration_blocker, |
| "Multiple VFIO devices migration is supported only if all of " |
| "them support P2P migration"); |
| ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp); |
| |
| return ret; |
| } |
| |
| void vfio_unblock_multiple_devices_migration(void) |
| { |
| if (!multiple_devices_migration_blocker || |
| !vfio_multiple_devices_migration_is_supported()) { |
| return; |
| } |
| |
| migrate_del_blocker(&multiple_devices_migration_blocker); |
| } |
| |
| bool vfio_viommu_preset(VFIODevice *vbasedev) |
| { |
| return vbasedev->bcontainer->space->as != &address_space_memory; |
| } |
| |
| static void vfio_set_migration_error(int ret) |
| { |
| if (migration_is_running()) { |
| migration_file_set_error(ret, NULL); |
| } |
| } |
| |
| bool vfio_device_state_is_running(VFIODevice *vbasedev) |
| { |
| VFIOMigration *migration = vbasedev->migration; |
| |
| return migration->device_state == VFIO_DEVICE_STATE_RUNNING || |
| migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; |
| } |
| |
| bool vfio_device_state_is_precopy(VFIODevice *vbasedev) |
| { |
| VFIOMigration *migration = vbasedev->migration; |
| |
| return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || |
| migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; |
| } |
| |
| static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer) |
| { |
| VFIODevice *vbasedev; |
| |
| if (!migration_is_active() && !migration_is_device()) { |
| return false; |
| } |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| VFIOMigration *migration = vbasedev->migration; |
| |
| if (!migration) { |
| return false; |
| } |
| |
| if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && |
| (vfio_device_state_is_running(vbasedev) || |
| vfio_device_state_is_precopy(vbasedev))) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer) |
| { |
| VFIODevice *vbasedev; |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| if (vbasedev->device_dirty_page_tracking == ON_OFF_AUTO_OFF) { |
| return false; |
| } |
| if (!vbasedev->dirty_pages_supported) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Check if all VFIO devices are running and migration is active, which is |
| * essentially equivalent to the migration being in pre-copy phase. |
| */ |
| bool |
| vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer) |
| { |
| VFIODevice *vbasedev; |
| |
| if (!migration_is_active()) { |
| return false; |
| } |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| VFIOMigration *migration = vbasedev->migration; |
| |
| if (!migration) { |
| return false; |
| } |
| |
| if (vfio_device_state_is_running(vbasedev) || |
| vfio_device_state_is_precopy(vbasedev)) { |
| continue; |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool vfio_listener_skipped_section(MemoryRegionSection *section) |
| { |
| return (!memory_region_is_ram(section->mr) && |
| !memory_region_is_iommu(section->mr)) || |
| memory_region_is_protected(section->mr) || |
| /* |
| * Sizing an enabled 64-bit BAR can cause spurious mappings to |
| * addresses in the upper part of the 64-bit address space. These |
| * are never accessed by the CPU and beyond the address width of |
| * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. |
| */ |
| section->offset_within_address_space & (1ULL << 63); |
| } |
| |
| /* Called with rcu_read_lock held. */ |
| static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, |
| ram_addr_t *ram_addr, bool *read_only, |
| Error **errp) |
| { |
| bool ret, mr_has_discard_manager; |
| |
| ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, |
| &mr_has_discard_manager, errp); |
| if (ret && mr_has_discard_manager) { |
| /* |
| * Malicious VMs might trigger discarding of IOMMU-mapped memory. The |
| * pages will remain pinned inside vfio until unmapped, resulting in a |
| * higher memory consumption than expected. If memory would get |
| * populated again later, there would be an inconsistency between pages |
| * pinned by vfio and pages seen by QEMU. This is the case until |
| * unmapped from the IOMMU (e.g., during device reset). |
| * |
| * With malicious guests, we really only care about pinning more memory |
| * than expected. RLIMIT_MEMLOCK set for the user/process can never be |
| * exceeded and can be used to mitigate this problem. |
| */ |
| warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" |
| " RAM (e.g., virtio-mem) works, however, malicious" |
| " guests can trigger pinning of more memory than" |
| " intended via an IOMMU. It's possible to mitigate " |
| " by setting/adjusting RLIMIT_MEMLOCK."); |
| } |
| return ret; |
| } |
| |
| static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) |
| { |
| VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); |
| VFIOContainerBase *bcontainer = giommu->bcontainer; |
| hwaddr iova = iotlb->iova + giommu->iommu_offset; |
| void *vaddr; |
| int ret; |
| Error *local_err = NULL; |
| |
| trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", |
| iova, iova + iotlb->addr_mask); |
| |
| if (iotlb->target_as != &address_space_memory) { |
| error_report("Wrong target AS \"%s\", only system memory is allowed", |
| iotlb->target_as->name ? iotlb->target_as->name : "none"); |
| vfio_set_migration_error(-EINVAL); |
| return; |
| } |
| |
| rcu_read_lock(); |
| |
| if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { |
| bool read_only; |
| |
| if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, &local_err)) { |
| error_report_err(local_err); |
| goto out; |
| } |
| /* |
| * vaddr is only valid until rcu_read_unlock(). But after |
| * vfio_dma_map has set up the mapping the pages will be |
| * pinned by the kernel. This makes sure that the RAM backend |
| * of vaddr will always be there, even if the memory object is |
| * destroyed and its backing memory munmap-ed. |
| */ |
| ret = vfio_container_dma_map(bcontainer, iova, |
| iotlb->addr_mask + 1, vaddr, |
| read_only); |
| if (ret) { |
| error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx", %p) = %d (%s)", |
| bcontainer, iova, |
| iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); |
| } |
| } else { |
| ret = vfio_container_dma_unmap(bcontainer, iova, |
| iotlb->addr_mask + 1, iotlb); |
| if (ret) { |
| error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") = %d (%s)", |
| bcontainer, iova, |
| iotlb->addr_mask + 1, ret, strerror(-ret)); |
| vfio_set_migration_error(ret); |
| } |
| } |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, |
| MemoryRegionSection *section) |
| { |
| VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, |
| listener); |
| VFIOContainerBase *bcontainer = vrdl->bcontainer; |
| const hwaddr size = int128_get64(section->size); |
| const hwaddr iova = section->offset_within_address_space; |
| int ret; |
| |
| /* Unmap with a single call. */ |
| ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL); |
| if (ret) { |
| error_report("%s: vfio_container_dma_unmap() failed: %s", __func__, |
| strerror(-ret)); |
| } |
| } |
| |
| static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, |
| MemoryRegionSection *section) |
| { |
| VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, |
| listener); |
| VFIOContainerBase *bcontainer = vrdl->bcontainer; |
| const hwaddr end = section->offset_within_region + |
| int128_get64(section->size); |
| hwaddr start, next, iova; |
| void *vaddr; |
| int ret; |
| |
| /* |
| * Map in (aligned within memory region) minimum granularity, so we can |
| * unmap in minimum granularity later. |
| */ |
| for (start = section->offset_within_region; start < end; start = next) { |
| next = ROUND_UP(start + 1, vrdl->granularity); |
| next = MIN(next, end); |
| |
| iova = start - section->offset_within_region + |
| section->offset_within_address_space; |
| vaddr = memory_region_get_ram_ptr(section->mr) + start; |
| |
| ret = vfio_container_dma_map(bcontainer, iova, next - start, |
| vaddr, section->readonly); |
| if (ret) { |
| /* Rollback */ |
| vfio_ram_discard_notify_discard(rdl, section); |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section) |
| { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); |
| VFIORamDiscardListener *vrdl; |
| |
| /* Ignore some corner cases not relevant in practice. */ |
| g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); |
| g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, |
| TARGET_PAGE_SIZE)); |
| g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); |
| |
| vrdl = g_new0(VFIORamDiscardListener, 1); |
| vrdl->bcontainer = bcontainer; |
| vrdl->mr = section->mr; |
| vrdl->offset_within_address_space = section->offset_within_address_space; |
| vrdl->size = int128_get64(section->size); |
| vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, |
| section->mr); |
| |
| g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); |
| g_assert(bcontainer->pgsizes && |
| vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes)); |
| |
| ram_discard_listener_init(&vrdl->listener, |
| vfio_ram_discard_notify_populate, |
| vfio_ram_discard_notify_discard, true); |
| ram_discard_manager_register_listener(rdm, &vrdl->listener, section); |
| QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next); |
| |
| /* |
| * Sanity-check if we have a theoretically problematic setup where we could |
| * exceed the maximum number of possible DMA mappings over time. We assume |
| * that each mapped section in the same address space as a RamDiscardManager |
| * section consumes exactly one DMA mapping, with the exception of |
| * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections |
| * in the same address space as RamDiscardManager sections. |
| * |
| * We assume that each section in the address space consumes one memslot. |
| * We take the number of KVM memory slots as a best guess for the maximum |
| * number of sections in the address space we could have over time, |
| * also consuming DMA mappings. |
| */ |
| if (bcontainer->dma_max_mappings) { |
| unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; |
| |
| #ifdef CONFIG_KVM |
| if (kvm_enabled()) { |
| max_memslots = kvm_get_max_memslots(); |
| } |
| #endif |
| |
| QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { |
| hwaddr start, end; |
| |
| start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, |
| vrdl->granularity); |
| end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, |
| vrdl->granularity); |
| vrdl_mappings += (end - start) / vrdl->granularity; |
| vrdl_count++; |
| } |
| |
| if (vrdl_mappings + max_memslots - vrdl_count > |
| bcontainer->dma_max_mappings) { |
| warn_report("%s: possibly running out of DMA mappings. E.g., try" |
| " increasing the 'block-size' of virtio-mem devies." |
| " Maximum possible DMA mappings: %d, Maximum possible" |
| " memslots: %d", __func__, bcontainer->dma_max_mappings, |
| max_memslots); |
| } |
| } |
| } |
| |
| static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section) |
| { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); |
| VFIORamDiscardListener *vrdl = NULL; |
| |
| QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { |
| if (vrdl->mr == section->mr && |
| vrdl->offset_within_address_space == |
| section->offset_within_address_space) { |
| break; |
| } |
| } |
| |
| if (!vrdl) { |
| hw_error("vfio: Trying to unregister missing RAM discard listener"); |
| } |
| |
| ram_discard_manager_unregister_listener(rdm, &vrdl->listener); |
| QLIST_REMOVE(vrdl, next); |
| g_free(vrdl); |
| } |
| |
| static bool vfio_known_safe_misalignment(MemoryRegionSection *section) |
| { |
| MemoryRegion *mr = section->mr; |
| |
| if (!TPM_IS_CRB(mr->owner)) { |
| return false; |
| } |
| |
| /* this is a known safe misaligned region, just trace for debug purpose */ |
| trace_vfio_known_safe_misalignment(memory_region_name(mr), |
| section->offset_within_address_space, |
| section->offset_within_region, |
| qemu_real_host_page_size()); |
| return true; |
| } |
| |
| static bool vfio_listener_valid_section(MemoryRegionSection *section, |
| const char *name) |
| { |
| if (vfio_listener_skipped_section(section)) { |
| trace_vfio_listener_region_skip(name, |
| section->offset_within_address_space, |
| section->offset_within_address_space + |
| int128_get64(int128_sub(section->size, int128_one()))); |
| return false; |
| } |
| |
| if (unlikely((section->offset_within_address_space & |
| ~qemu_real_host_page_mask()) != |
| (section->offset_within_region & ~qemu_real_host_page_mask()))) { |
| if (!vfio_known_safe_misalignment(section)) { |
| error_report("%s received unaligned region %s iova=0x%"PRIx64 |
| " offset_within_region=0x%"PRIx64 |
| " qemu_real_host_page_size=0x%"PRIxPTR, |
| __func__, memory_region_name(section->mr), |
| section->offset_within_address_space, |
| section->offset_within_region, |
| qemu_real_host_page_size()); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section, |
| hwaddr *out_iova, hwaddr *out_end, |
| Int128 *out_llend) |
| { |
| Int128 llend; |
| hwaddr iova; |
| |
| iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); |
| llend = int128_make64(section->offset_within_address_space); |
| llend = int128_add(llend, section->size); |
| llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); |
| |
| if (int128_ge(int128_make64(iova), llend)) { |
| return false; |
| } |
| |
| *out_iova = iova; |
| *out_end = int128_get64(int128_sub(llend, int128_one())); |
| if (out_llend) { |
| *out_llend = llend; |
| } |
| return true; |
| } |
| |
| static void vfio_listener_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, |
| listener); |
| hwaddr iova, end; |
| Int128 llend, llsize; |
| void *vaddr; |
| int ret; |
| Error *err = NULL; |
| |
| if (!vfio_listener_valid_section(section, "region_add")) { |
| return; |
| } |
| |
| if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, |
| &llend)) { |
| if (memory_region_is_ram_device(section->mr)) { |
| trace_vfio_listener_region_add_no_dma_map( |
| memory_region_name(section->mr), |
| section->offset_within_address_space, |
| int128_getlo(section->size), |
| qemu_real_host_page_size()); |
| } |
| return; |
| } |
| |
| if (!vfio_container_add_section_window(bcontainer, section, &err)) { |
| goto fail; |
| } |
| |
| memory_region_ref(section->mr); |
| |
| if (memory_region_is_iommu(section->mr)) { |
| VFIOGuestIOMMU *giommu; |
| IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); |
| int iommu_idx; |
| |
| trace_vfio_listener_region_add_iommu(section->mr->name, iova, end); |
| /* |
| * FIXME: For VFIO iommu types which have KVM acceleration to |
| * avoid bouncing all map/unmaps through qemu this way, this |
| * would be the right place to wire that up (tell the KVM |
| * device emulation the VFIO iommu handles to use). |
| */ |
| giommu = g_malloc0(sizeof(*giommu)); |
| giommu->iommu_mr = iommu_mr; |
| giommu->iommu_offset = section->offset_within_address_space - |
| section->offset_within_region; |
| giommu->bcontainer = bcontainer; |
| llend = int128_add(int128_make64(section->offset_within_region), |
| section->size); |
| llend = int128_sub(llend, int128_one()); |
| iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, |
| MEMTXATTRS_UNSPECIFIED); |
| iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, |
| IOMMU_NOTIFIER_IOTLB_EVENTS, |
| section->offset_within_region, |
| int128_get64(llend), |
| iommu_idx); |
| |
| ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, |
| &err); |
| if (ret) { |
| g_free(giommu); |
| goto fail; |
| } |
| QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next); |
| memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); |
| |
| return; |
| } |
| |
| /* Here we assume that memory_region_is_ram(section->mr)==true */ |
| |
| /* |
| * For RAM memory regions with a RamDiscardManager, we only want to map the |
| * actually populated parts - and update the mapping whenever we're notified |
| * about changes. |
| */ |
| if (memory_region_has_ram_discard_manager(section->mr)) { |
| vfio_register_ram_discard_listener(bcontainer, section); |
| return; |
| } |
| |
| vaddr = memory_region_get_ram_ptr(section->mr) + |
| section->offset_within_region + |
| (iova - section->offset_within_address_space); |
| |
| trace_vfio_listener_region_add_ram(iova, end, vaddr); |
| |
| llsize = int128_sub(llend, int128_make64(iova)); |
| |
| if (memory_region_is_ram_device(section->mr)) { |
| hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; |
| |
| if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { |
| trace_vfio_listener_region_add_no_dma_map( |
| memory_region_name(section->mr), |
| section->offset_within_address_space, |
| int128_getlo(section->size), |
| pgmask + 1); |
| return; |
| } |
| } |
| |
| ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize), |
| vaddr, section->readonly); |
| if (ret) { |
| error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx", %p) = %d (%s)", |
| bcontainer, iova, int128_get64(llsize), vaddr, ret, |
| strerror(-ret)); |
| if (memory_region_is_ram_device(section->mr)) { |
| /* Allow unexpected mappings not to be fatal for RAM devices */ |
| error_report_err(err); |
| return; |
| } |
| goto fail; |
| } |
| |
| return; |
| |
| fail: |
| if (memory_region_is_ram_device(section->mr)) { |
| error_reportf_err(err, "PCI p2p may not work: "); |
| return; |
| } |
| /* |
| * On the initfn path, store the first error in the container so we |
| * can gracefully fail. Runtime, there's not much we can do other |
| * than throw a hardware error. |
| */ |
| if (!bcontainer->initialized) { |
| if (!bcontainer->error) { |
| error_propagate_prepend(&bcontainer->error, err, |
| "Region %s: ", |
| memory_region_name(section->mr)); |
| } else { |
| error_free(err); |
| } |
| } else { |
| error_report_err(err); |
| hw_error("vfio: DMA mapping failed, unable to continue"); |
| } |
| } |
| |
| static void vfio_listener_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, |
| listener); |
| hwaddr iova, end; |
| Int128 llend, llsize; |
| int ret; |
| bool try_unmap = true; |
| |
| if (!vfio_listener_valid_section(section, "region_del")) { |
| return; |
| } |
| |
| if (memory_region_is_iommu(section->mr)) { |
| VFIOGuestIOMMU *giommu; |
| |
| trace_vfio_listener_region_del_iommu(section->mr->name); |
| QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { |
| if (MEMORY_REGION(giommu->iommu_mr) == section->mr && |
| giommu->n.start == section->offset_within_region) { |
| memory_region_unregister_iommu_notifier(section->mr, |
| &giommu->n); |
| QLIST_REMOVE(giommu, giommu_next); |
| g_free(giommu); |
| break; |
| } |
| } |
| |
| /* |
| * FIXME: We assume the one big unmap below is adequate to |
| * remove any individual page mappings in the IOMMU which |
| * might have been copied into VFIO. This works for a page table |
| * based IOMMU where a big unmap flattens a large range of IO-PTEs. |
| * That may not be true for all IOMMU types. |
| */ |
| } |
| |
| if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, |
| &llend)) { |
| return; |
| } |
| |
| llsize = int128_sub(llend, int128_make64(iova)); |
| |
| trace_vfio_listener_region_del(iova, end); |
| |
| if (memory_region_is_ram_device(section->mr)) { |
| hwaddr pgmask; |
| |
| pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; |
| try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); |
| } else if (memory_region_has_ram_discard_manager(section->mr)) { |
| vfio_unregister_ram_discard_listener(bcontainer, section); |
| /* Unregistering will trigger an unmap. */ |
| try_unmap = false; |
| } |
| |
| if (try_unmap) { |
| if (int128_eq(llsize, int128_2_64())) { |
| /* The unmap ioctl doesn't accept a full 64-bit span. */ |
| llsize = int128_rshift(llsize, 1); |
| ret = vfio_container_dma_unmap(bcontainer, iova, |
| int128_get64(llsize), NULL); |
| if (ret) { |
| error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") = %d (%s)", |
| bcontainer, iova, int128_get64(llsize), ret, |
| strerror(-ret)); |
| } |
| iova += int128_get64(llsize); |
| } |
| ret = vfio_container_dma_unmap(bcontainer, iova, |
| int128_get64(llsize), NULL); |
| if (ret) { |
| error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") = %d (%s)", |
| bcontainer, iova, int128_get64(llsize), ret, |
| strerror(-ret)); |
| } |
| } |
| |
| memory_region_unref(section->mr); |
| |
| vfio_container_del_section_window(bcontainer, section); |
| } |
| |
| typedef struct VFIODirtyRanges { |
| hwaddr min32; |
| hwaddr max32; |
| hwaddr min64; |
| hwaddr max64; |
| hwaddr minpci64; |
| hwaddr maxpci64; |
| } VFIODirtyRanges; |
| |
| typedef struct VFIODirtyRangesListener { |
| VFIOContainerBase *bcontainer; |
| VFIODirtyRanges ranges; |
| MemoryListener listener; |
| } VFIODirtyRangesListener; |
| |
| static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, |
| VFIOContainerBase *bcontainer) |
| { |
| VFIOPCIDevice *pcidev; |
| VFIODevice *vbasedev; |
| Object *owner; |
| |
| owner = memory_region_owner(section->mr); |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { |
| continue; |
| } |
| pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| if (OBJECT(pcidev) == owner) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void vfio_dirty_tracking_update_range(VFIODirtyRanges *range, |
| hwaddr iova, hwaddr end, |
| bool update_pci) |
| { |
| hwaddr *min, *max; |
| |
| /* |
| * The address space passed to the dirty tracker is reduced to three ranges: |
| * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the |
| * PCI 64-bit hole. |
| * |
| * The underlying reports of dirty will query a sub-interval of each of |
| * these ranges. |
| * |
| * The purpose of the three range handling is to handle known cases of big |
| * holes in the address space, like the x86 AMD 1T hole, and firmware (like |
| * OVMF) which may relocate the pci-hole64 to the end of the address space. |
| * The latter would otherwise generate large ranges for tracking, stressing |
| * the limits of supported hardware. The pci-hole32 will always be below 4G |
| * (overlapping or not) so it doesn't need special handling and is part of |
| * the 32-bit range. |
| * |
| * The alternative would be an IOVATree but that has a much bigger runtime |
| * overhead and unnecessary complexity. |
| */ |
| if (update_pci && iova >= UINT32_MAX) { |
| min = &range->minpci64; |
| max = &range->maxpci64; |
| } else { |
| min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; |
| max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; |
| } |
| if (*min > iova) { |
| *min = iova; |
| } |
| if (*max < end) { |
| *max = end; |
| } |
| |
| trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); |
| } |
| |
| static void vfio_dirty_tracking_update(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIODirtyRangesListener *dirty = |
| container_of(listener, VFIODirtyRangesListener, listener); |
| hwaddr iova, end; |
| |
| if (!vfio_listener_valid_section(section, "tracking_update") || |
| !vfio_get_section_iova_range(dirty->bcontainer, section, |
| &iova, &end, NULL)) { |
| return; |
| } |
| |
| vfio_dirty_tracking_update_range(&dirty->ranges, iova, end, |
| vfio_section_is_vfio_pci(section, dirty->bcontainer)); |
| } |
| |
| static const MemoryListener vfio_dirty_tracking_listener = { |
| .name = "vfio-tracking", |
| .region_add = vfio_dirty_tracking_update, |
| }; |
| |
| static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer, |
| VFIODirtyRanges *ranges) |
| { |
| VFIODirtyRangesListener dirty; |
| |
| memset(&dirty, 0, sizeof(dirty)); |
| dirty.ranges.min32 = UINT32_MAX; |
| dirty.ranges.min64 = UINT64_MAX; |
| dirty.ranges.minpci64 = UINT64_MAX; |
| dirty.listener = vfio_dirty_tracking_listener; |
| dirty.bcontainer = bcontainer; |
| |
| memory_listener_register(&dirty.listener, |
| bcontainer->space->as); |
| |
| *ranges = dirty.ranges; |
| |
| /* |
| * The memory listener is synchronous, and used to calculate the range |
| * to dirty tracking. Unregister it after we are done as we are not |
| * interested in any follow-up updates. |
| */ |
| memory_listener_unregister(&dirty.listener); |
| } |
| |
| static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer) |
| { |
| uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), |
| sizeof(uint64_t))] = {}; |
| struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; |
| VFIODevice *vbasedev; |
| |
| feature->argsz = sizeof(buf); |
| feature->flags = VFIO_DEVICE_FEATURE_SET | |
| VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| if (!vbasedev->dirty_tracking) { |
| continue; |
| } |
| |
| if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { |
| warn_report("%s: Failed to stop DMA logging, err %d (%s)", |
| vbasedev->name, -errno, strerror(errno)); |
| } |
| vbasedev->dirty_tracking = false; |
| } |
| } |
| |
| static struct vfio_device_feature * |
| vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer, |
| VFIODirtyRanges *tracking) |
| { |
| struct vfio_device_feature *feature; |
| size_t feature_size; |
| struct vfio_device_feature_dma_logging_control *control; |
| struct vfio_device_feature_dma_logging_range *ranges; |
| |
| feature_size = sizeof(struct vfio_device_feature) + |
| sizeof(struct vfio_device_feature_dma_logging_control); |
| feature = g_try_malloc0(feature_size); |
| if (!feature) { |
| errno = ENOMEM; |
| return NULL; |
| } |
| feature->argsz = feature_size; |
| feature->flags = VFIO_DEVICE_FEATURE_SET | |
| VFIO_DEVICE_FEATURE_DMA_LOGGING_START; |
| |
| control = (struct vfio_device_feature_dma_logging_control *)feature->data; |
| control->page_size = qemu_real_host_page_size(); |
| |
| /* |
| * DMA logging uAPI guarantees to support at least a number of ranges that |
| * fits into a single host kernel base page. |
| */ |
| control->num_ranges = !!tracking->max32 + !!tracking->max64 + |
| !!tracking->maxpci64; |
| ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, |
| control->num_ranges); |
| if (!ranges) { |
| g_free(feature); |
| errno = ENOMEM; |
| |
| return NULL; |
| } |
| |
| control->ranges = (uintptr_t)ranges; |
| if (tracking->max32) { |
| ranges->iova = tracking->min32; |
| ranges->length = (tracking->max32 - tracking->min32) + 1; |
| ranges++; |
| } |
| if (tracking->max64) { |
| ranges->iova = tracking->min64; |
| ranges->length = (tracking->max64 - tracking->min64) + 1; |
| ranges++; |
| } |
| if (tracking->maxpci64) { |
| ranges->iova = tracking->minpci64; |
| ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; |
| } |
| |
| trace_vfio_device_dirty_tracking_start(control->num_ranges, |
| tracking->min32, tracking->max32, |
| tracking->min64, tracking->max64, |
| tracking->minpci64, tracking->maxpci64); |
| |
| return feature; |
| } |
| |
| static void vfio_device_feature_dma_logging_start_destroy( |
| struct vfio_device_feature *feature) |
| { |
| struct vfio_device_feature_dma_logging_control *control = |
| (struct vfio_device_feature_dma_logging_control *)feature->data; |
| struct vfio_device_feature_dma_logging_range *ranges = |
| (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; |
| |
| g_free(ranges); |
| g_free(feature); |
| } |
| |
| static bool vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer, |
| Error **errp) |
| { |
| struct vfio_device_feature *feature; |
| VFIODirtyRanges ranges; |
| VFIODevice *vbasedev; |
| int ret = 0; |
| |
| vfio_dirty_tracking_init(bcontainer, &ranges); |
| feature = vfio_device_feature_dma_logging_start_create(bcontainer, |
| &ranges); |
| if (!feature) { |
| error_setg_errno(errp, errno, "Failed to prepare DMA logging"); |
| return false; |
| } |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| if (vbasedev->dirty_tracking) { |
| continue; |
| } |
| |
| ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); |
| if (ret) { |
| ret = -errno; |
| error_setg_errno(errp, errno, "%s: Failed to start DMA logging", |
| vbasedev->name); |
| goto out; |
| } |
| vbasedev->dirty_tracking = true; |
| } |
| |
| out: |
| if (ret) { |
| vfio_devices_dma_logging_stop(bcontainer); |
| } |
| |
| vfio_device_feature_dma_logging_start_destroy(feature); |
| |
| return ret == 0; |
| } |
| |
| static bool vfio_listener_log_global_start(MemoryListener *listener, |
| Error **errp) |
| { |
| ERRP_GUARD(); |
| VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, |
| listener); |
| bool ret; |
| |
| if (vfio_devices_all_device_dirty_tracking(bcontainer)) { |
| ret = vfio_devices_dma_logging_start(bcontainer, errp); |
| } else { |
| ret = vfio_container_set_dirty_page_tracking(bcontainer, true, errp) == 0; |
| } |
| |
| if (!ret) { |
| error_prepend(errp, "vfio: Could not start dirty page tracking - "); |
| } |
| return ret; |
| } |
| |
| static void vfio_listener_log_global_stop(MemoryListener *listener) |
| { |
| VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, |
| listener); |
| Error *local_err = NULL; |
| int ret = 0; |
| |
| if (vfio_devices_all_device_dirty_tracking(bcontainer)) { |
| vfio_devices_dma_logging_stop(bcontainer); |
| } else { |
| ret = vfio_container_set_dirty_page_tracking(bcontainer, false, |
| &local_err); |
| } |
| |
| if (ret) { |
| error_prepend(&local_err, |
| "vfio: Could not stop dirty page tracking - "); |
| error_report_err(local_err); |
| vfio_set_migration_error(ret); |
| } |
| } |
| |
| static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, |
| hwaddr size, void *bitmap) |
| { |
| uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + |
| sizeof(struct vfio_device_feature_dma_logging_report), |
| sizeof(uint64_t))] = {}; |
| struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; |
| struct vfio_device_feature_dma_logging_report *report = |
| (struct vfio_device_feature_dma_logging_report *)feature->data; |
| |
| report->iova = iova; |
| report->length = size; |
| report->page_size = qemu_real_host_page_size(); |
| report->bitmap = (uintptr_t)bitmap; |
| |
| feature->argsz = sizeof(buf); |
| feature->flags = VFIO_DEVICE_FEATURE_GET | |
| VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; |
| |
| if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { |
| return -errno; |
| } |
| |
| return 0; |
| } |
| |
| int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer, |
| VFIOBitmap *vbmap, hwaddr iova, hwaddr size, Error **errp) |
| { |
| VFIODevice *vbasedev; |
| int ret; |
| |
| QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { |
| ret = vfio_device_dma_logging_report(vbasedev, iova, size, |
| vbmap->bitmap); |
| if (ret) { |
| error_setg_errno(errp, -ret, |
| "%s: Failed to get DMA logging report, iova: " |
| "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx, |
| vbasedev->name, iova, size); |
| |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova, |
| uint64_t size, ram_addr_t ram_addr, Error **errp) |
| { |
| bool all_device_dirty_tracking = |
| vfio_devices_all_device_dirty_tracking(bcontainer); |
| uint64_t dirty_pages; |
| VFIOBitmap vbmap; |
| int ret; |
| |
| if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) { |
| cpu_physical_memory_set_dirty_range(ram_addr, size, |
| tcg_enabled() ? DIRTY_CLIENTS_ALL : |
| DIRTY_CLIENTS_NOCODE); |
| return 0; |
| } |
| |
| ret = vfio_bitmap_alloc(&vbmap, size); |
| if (ret) { |
| error_setg_errno(errp, -ret, |
| "Failed to allocate dirty tracking bitmap"); |
| return ret; |
| } |
| |
| if (all_device_dirty_tracking) { |
| ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size, |
| errp); |
| } else { |
| ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size, |
| errp); |
| } |
| |
| if (ret) { |
| goto out; |
| } |
| |
| dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, |
| vbmap.pages); |
| |
| trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages); |
| out: |
| g_free(vbmap.bitmap); |
| |
| return ret; |
| } |
| |
| typedef struct { |
| IOMMUNotifier n; |
| VFIOGuestIOMMU *giommu; |
| } vfio_giommu_dirty_notifier; |
| |
| static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) |
| { |
| vfio_giommu_dirty_notifier *gdn = container_of(n, |
| vfio_giommu_dirty_notifier, n); |
| VFIOGuestIOMMU *giommu = gdn->giommu; |
| VFIOContainerBase *bcontainer = giommu->bcontainer; |
| hwaddr iova = iotlb->iova + giommu->iommu_offset; |
| ram_addr_t translated_addr; |
| Error *local_err = NULL; |
| int ret = -EINVAL; |
| |
| trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); |
| |
| if (iotlb->target_as != &address_space_memory) { |
| error_report("Wrong target AS \"%s\", only system memory is allowed", |
| iotlb->target_as->name ? iotlb->target_as->name : "none"); |
| goto out; |
| } |
| |
| rcu_read_lock(); |
| if (!vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL, &local_err)) { |
| error_report_err(local_err); |
| goto out_unlock; |
| } |
| |
| ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1, |
| translated_addr, &local_err); |
| if (ret) { |
| error_prepend(&local_err, |
| "vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") failed - ", bcontainer, iova, |
| iotlb->addr_mask + 1); |
| error_report_err(local_err); |
| } |
| |
| out_unlock: |
| rcu_read_unlock(); |
| |
| out: |
| if (ret) { |
| vfio_set_migration_error(ret); |
| } |
| } |
| |
| static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, |
| void *opaque) |
| { |
| const hwaddr size = int128_get64(section->size); |
| const hwaddr iova = section->offset_within_address_space; |
| const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + |
| section->offset_within_region; |
| VFIORamDiscardListener *vrdl = opaque; |
| Error *local_err = NULL; |
| int ret; |
| |
| /* |
| * Sync the whole mapped region (spanning multiple individual mappings) |
| * in one go. |
| */ |
| ret = vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr, |
| &local_err); |
| if (ret) { |
| error_report_err(local_err); |
| } |
| return ret; |
| } |
| |
| static int |
| vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section) |
| { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); |
| VFIORamDiscardListener *vrdl = NULL; |
| |
| QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { |
| if (vrdl->mr == section->mr && |
| vrdl->offset_within_address_space == |
| section->offset_within_address_space) { |
| break; |
| } |
| } |
| |
| if (!vrdl) { |
| hw_error("vfio: Trying to sync missing RAM discard listener"); |
| } |
| |
| /* |
| * We only want/can synchronize the bitmap for actually mapped parts - |
| * which correspond to populated parts. Replay all populated parts. |
| */ |
| return ram_discard_manager_replay_populated(rdm, section, |
| vfio_ram_discard_get_dirty_bitmap, |
| &vrdl); |
| } |
| |
| static int vfio_sync_iommu_dirty_bitmap(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section) |
| { |
| VFIOGuestIOMMU *giommu; |
| bool found = false; |
| Int128 llend; |
| vfio_giommu_dirty_notifier gdn; |
| int idx; |
| |
| QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { |
| if (MEMORY_REGION(giommu->iommu_mr) == section->mr && |
| giommu->n.start == section->offset_within_region) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| return 0; |
| } |
| |
| gdn.giommu = giommu; |
| idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| llend = int128_add(int128_make64(section->offset_within_region), |
| section->size); |
| llend = int128_sub(llend, int128_one()); |
| |
| iommu_notifier_init(&gdn.n, vfio_iommu_map_dirty_notify, IOMMU_NOTIFIER_MAP, |
| section->offset_within_region, int128_get64(llend), |
| idx); |
| memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); |
| |
| return 0; |
| } |
| |
| static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer, |
| MemoryRegionSection *section, Error **errp) |
| { |
| ram_addr_t ram_addr; |
| |
| if (memory_region_is_iommu(section->mr)) { |
| return vfio_sync_iommu_dirty_bitmap(bcontainer, section); |
| } else if (memory_region_has_ram_discard_manager(section->mr)) { |
| int ret; |
| |
| ret = vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section); |
| if (ret) { |
| error_setg(errp, |
| "Failed to sync dirty bitmap with RAM discard listener"); |
| } |
| return ret; |
| } |
| |
| ram_addr = memory_region_get_ram_addr(section->mr) + |
| section->offset_within_region; |
| |
| return vfio_get_dirty_bitmap(bcontainer, |
| REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), |
| int128_get64(section->size), ram_addr, errp); |
| } |
| |
| static void vfio_listener_log_sync(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, |
| listener); |
| int ret; |
| Error *local_err = NULL; |
| |
| if (vfio_listener_skipped_section(section)) { |
| return; |
| } |
| |
| if (vfio_devices_all_dirty_tracking(bcontainer)) { |
| ret = vfio_sync_dirty_bitmap(bcontainer, section, &local_err); |
| if (ret) { |
| error_report_err(local_err); |
| vfio_set_migration_error(ret); |
| } |
| } |
| } |
| |
| const MemoryListener vfio_memory_listener = { |
| .name = "vfio", |
| .region_add = vfio_listener_region_add, |
| .region_del = vfio_listener_region_del, |
| .log_global_start = vfio_listener_log_global_start, |
| .log_global_stop = vfio_listener_log_global_stop, |
| .log_sync = vfio_listener_log_sync, |
| }; |
| |
| void vfio_reset_handler(void *opaque) |
| { |
| VFIODevice *vbasedev; |
| |
| QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { |
| if (vbasedev->dev->realized) { |
| vbasedev->ops->vfio_compute_needs_reset(vbasedev); |
| } |
| } |
| |
| QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { |
| if (vbasedev->dev->realized && vbasedev->needs_reset) { |
| vbasedev->ops->vfio_hot_reset_multi(vbasedev); |
| } |
| } |
| } |
| |
| int vfio_kvm_device_add_fd(int fd, Error **errp) |
| { |
| #ifdef CONFIG_KVM |
| struct kvm_device_attr attr = { |
| .group = KVM_DEV_VFIO_FILE, |
| .attr = KVM_DEV_VFIO_FILE_ADD, |
| .addr = (uint64_t)(unsigned long)&fd, |
| }; |
| |
| if (!kvm_enabled()) { |
| return 0; |
| } |
| |
| if (vfio_kvm_device_fd < 0) { |
| struct kvm_create_device cd = { |
| .type = KVM_DEV_TYPE_VFIO, |
| }; |
| |
| if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { |
| error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); |
| return -errno; |
| } |
| |
| vfio_kvm_device_fd = cd.fd; |
| } |
| |
| if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { |
| error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", |
| fd); |
| return -errno; |
| } |
| #endif |
| return 0; |
| } |
| |
| int vfio_kvm_device_del_fd(int fd, Error **errp) |
| { |
| #ifdef CONFIG_KVM |
| struct kvm_device_attr attr = { |
| .group = KVM_DEV_VFIO_FILE, |
| .attr = KVM_DEV_VFIO_FILE_DEL, |
| .addr = (uint64_t)(unsigned long)&fd, |
| }; |
| |
| if (vfio_kvm_device_fd < 0) { |
| error_setg(errp, "KVM VFIO device isn't created yet"); |
| return -EINVAL; |
| } |
| |
| if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { |
| error_setg_errno(errp, errno, |
| "Failed to remove fd %d from KVM VFIO device", fd); |
| return -errno; |
| } |
| #endif |
| return 0; |
| } |
| |
| VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) |
| { |
| VFIOAddressSpace *space; |
| |
| QLIST_FOREACH(space, &vfio_address_spaces, list) { |
| if (space->as == as) { |
| return space; |
| } |
| } |
| |
| /* No suitable VFIOAddressSpace, create a new one */ |
| space = g_malloc0(sizeof(*space)); |
| space->as = as; |
| QLIST_INIT(&space->containers); |
| |
| if (QLIST_EMPTY(&vfio_address_spaces)) { |
| qemu_register_reset(vfio_reset_handler, NULL); |
| } |
| |
| QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); |
| |
| return space; |
| } |
| |
| void vfio_put_address_space(VFIOAddressSpace *space) |
| { |
| if (!QLIST_EMPTY(&space->containers)) { |
| return; |
| } |
| |
| QLIST_REMOVE(space, list); |
| g_free(space); |
| |
| if (QLIST_EMPTY(&vfio_address_spaces)) { |
| qemu_unregister_reset(vfio_reset_handler, NULL); |
| } |
| } |
| |
| void vfio_address_space_insert(VFIOAddressSpace *space, |
| VFIOContainerBase *bcontainer) |
| { |
| QLIST_INSERT_HEAD(&space->containers, bcontainer, next); |
| bcontainer->space = space; |
| } |
| |
| struct vfio_device_info *vfio_get_device_info(int fd) |
| { |
| struct vfio_device_info *info; |
| uint32_t argsz = sizeof(*info); |
| |
| info = g_malloc0(argsz); |
| |
| retry: |
| info->argsz = argsz; |
| |
| if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { |
| g_free(info); |
| return NULL; |
| } |
| |
| if (info->argsz > argsz) { |
| argsz = info->argsz; |
| info = g_realloc(info, argsz); |
| goto retry; |
| } |
| |
| return info; |
| } |
| |
| bool vfio_attach_device(char *name, VFIODevice *vbasedev, |
| AddressSpace *as, Error **errp) |
| { |
| const VFIOIOMMUClass *ops = |
| VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY)); |
| HostIOMMUDevice *hiod = NULL; |
| |
| if (vbasedev->iommufd) { |
| ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD)); |
| } |
| |
| assert(ops); |
| |
| |
| if (!vbasedev->mdev) { |
| hiod = HOST_IOMMU_DEVICE(object_new(ops->hiod_typename)); |
| vbasedev->hiod = hiod; |
| } |
| |
| if (!ops->attach_device(name, vbasedev, as, errp)) { |
| object_unref(hiod); |
| vbasedev->hiod = NULL; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void vfio_detach_device(VFIODevice *vbasedev) |
| { |
| if (!vbasedev->bcontainer) { |
| return; |
| } |
| object_unref(vbasedev->hiod); |
| VFIO_IOMMU_GET_CLASS(vbasedev->bcontainer)->detach_device(vbasedev); |
| } |