| /* |
| * QEMU support -- ARM Power Control specific functions. |
| * |
| * Copyright (c) 2016 Jean-Christophe Dubois |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "cpu-qom.h" |
| #include "internals.h" |
| #include "arm-powerctl.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| |
| #ifndef DEBUG_ARM_POWERCTL |
| #define DEBUG_ARM_POWERCTL 0 |
| #endif |
| |
| #define DPRINTF(fmt, args...) \ |
| do { \ |
| if (DEBUG_ARM_POWERCTL) { \ |
| fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \ |
| } \ |
| } while (0) |
| |
| CPUState *arm_get_cpu_by_id(uint64_t id) |
| { |
| CPUState *cpu; |
| |
| DPRINTF("cpu %" PRId64 "\n", id); |
| |
| CPU_FOREACH(cpu) { |
| ARMCPU *armcpu = ARM_CPU(cpu); |
| |
| if (armcpu->mp_affinity == id) { |
| return cpu; |
| } |
| } |
| |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: Requesting unknown CPU %" PRId64 "\n", |
| __func__, id); |
| |
| return NULL; |
| } |
| |
| struct CpuOnInfo { |
| uint64_t entry; |
| uint64_t context_id; |
| uint32_t target_el; |
| bool target_aa64; |
| }; |
| |
| |
| static void arm_set_cpu_on_async_work(CPUState *target_cpu_state, |
| run_on_cpu_data data) |
| { |
| ARMCPU *target_cpu = ARM_CPU(target_cpu_state); |
| struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr; |
| |
| /* Initialize the cpu we are turning on */ |
| cpu_reset(target_cpu_state); |
| target_cpu_state->halted = 0; |
| |
| if (info->target_aa64) { |
| if ((info->target_el < 3) && arm_feature(&target_cpu->env, |
| ARM_FEATURE_EL3)) { |
| /* |
| * As target mode is AArch64, we need to set lower |
| * exception level (the requested level 2) to AArch64 |
| */ |
| target_cpu->env.cp15.scr_el3 |= SCR_RW; |
| } |
| |
| if ((info->target_el < 2) && arm_feature(&target_cpu->env, |
| ARM_FEATURE_EL2)) { |
| /* |
| * As target mode is AArch64, we need to set lower |
| * exception level (the requested level 1) to AArch64 |
| */ |
| target_cpu->env.cp15.hcr_el2 |= HCR_RW; |
| } |
| |
| target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true); |
| } else { |
| /* We are requested to boot in AArch32 mode */ |
| static const uint32_t mode_for_el[] = { 0, |
| ARM_CPU_MODE_SVC, |
| ARM_CPU_MODE_HYP, |
| ARM_CPU_MODE_SVC }; |
| |
| cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M, |
| CPSRWriteRaw); |
| } |
| |
| if (info->target_el == 3) { |
| /* Processor is in secure mode */ |
| target_cpu->env.cp15.scr_el3 &= ~SCR_NS; |
| } else { |
| /* Processor is not in secure mode */ |
| target_cpu->env.cp15.scr_el3 |= SCR_NS; |
| |
| /* |
| * If QEMU is providing the equivalent of EL3 firmware, then we need |
| * to make sure a CPU targeting EL2 comes out of reset with a |
| * functional HVC insn. |
| */ |
| if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3) |
| && info->target_el == 2) { |
| target_cpu->env.cp15.scr_el3 |= SCR_HCE; |
| } |
| } |
| |
| /* We check if the started CPU is now at the correct level */ |
| assert(info->target_el == arm_current_el(&target_cpu->env)); |
| |
| if (info->target_aa64) { |
| target_cpu->env.xregs[0] = info->context_id; |
| } else { |
| target_cpu->env.regs[0] = info->context_id; |
| } |
| |
| /* Start the new CPU at the requested address */ |
| cpu_set_pc(target_cpu_state, info->entry); |
| |
| g_free(info); |
| |
| /* Finally set the power status */ |
| assert(qemu_mutex_iothread_locked()); |
| target_cpu->power_state = PSCI_ON; |
| } |
| |
| int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id, |
| uint32_t target_el, bool target_aa64) |
| { |
| CPUState *target_cpu_state; |
| ARMCPU *target_cpu; |
| struct CpuOnInfo *info; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64 |
| "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry, |
| context_id); |
| |
| /* requested EL level need to be in the 1 to 3 range */ |
| assert((target_el > 0) && (target_el < 4)); |
| |
| if (target_aa64 && (entry & 3)) { |
| /* |
| * if we are booting in AArch64 mode then "entry" needs to be 4 bytes |
| * aligned. |
| */ |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| |
| /* Retrieve the cpu we are powering up */ |
| target_cpu_state = arm_get_cpu_by_id(cpuid); |
| if (!target_cpu_state) { |
| /* The cpu was not found */ |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| |
| target_cpu = ARM_CPU(target_cpu_state); |
| if (target_cpu->power_state == PSCI_ON) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is already on\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_ALREADY_ON; |
| } |
| |
| /* |
| * The newly brought CPU is requested to enter the exception level |
| * "target_el" and be in the requested mode (AArch64 or AArch32). |
| */ |
| |
| if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) || |
| ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) { |
| /* |
| * The CPU does not support requested level |
| */ |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| |
| if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) { |
| /* |
| * For now we don't support booting an AArch64 CPU in AArch32 mode |
| * TODO: We should add this support later |
| */ |
| qemu_log_mask(LOG_UNIMP, |
| "[ARM]%s: Starting AArch64 CPU %" PRId64 |
| " in AArch32 mode is not supported yet\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| |
| /* |
| * If another CPU has powered the target on we are in the state |
| * ON_PENDING and additional attempts to power on the CPU should |
| * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI |
| * spec) |
| */ |
| if (target_cpu->power_state == PSCI_ON_PENDING) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is already powering on\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_ON_PENDING; |
| } |
| |
| /* To avoid racing with a CPU we are just kicking off we do the |
| * final bit of preparation for the work in the target CPUs |
| * context. |
| */ |
| info = g_new(struct CpuOnInfo, 1); |
| info->entry = entry; |
| info->context_id = context_id; |
| info->target_el = target_el; |
| info->target_aa64 = target_aa64; |
| |
| async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work, |
| RUN_ON_CPU_HOST_PTR(info)); |
| |
| /* We are good to go */ |
| return QEMU_ARM_POWERCTL_RET_SUCCESS; |
| } |
| |
| static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state, |
| run_on_cpu_data data) |
| { |
| ARMCPU *target_cpu = ARM_CPU(target_cpu_state); |
| |
| /* Initialize the cpu we are turning on */ |
| cpu_reset(target_cpu_state); |
| target_cpu_state->halted = 0; |
| |
| /* Finally set the power status */ |
| assert(qemu_mutex_iothread_locked()); |
| target_cpu->power_state = PSCI_ON; |
| } |
| |
| int arm_set_cpu_on_and_reset(uint64_t cpuid) |
| { |
| CPUState *target_cpu_state; |
| ARMCPU *target_cpu; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| /* Retrieve the cpu we are powering up */ |
| target_cpu_state = arm_get_cpu_by_id(cpuid); |
| if (!target_cpu_state) { |
| /* The cpu was not found */ |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| |
| target_cpu = ARM_CPU(target_cpu_state); |
| if (target_cpu->power_state == PSCI_ON) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is already on\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_ALREADY_ON; |
| } |
| |
| /* |
| * If another CPU has powered the target on we are in the state |
| * ON_PENDING and additional attempts to power on the CPU should |
| * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI |
| * spec) |
| */ |
| if (target_cpu->power_state == PSCI_ON_PENDING) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is already powering on\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_ON_PENDING; |
| } |
| |
| async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work, |
| RUN_ON_CPU_NULL); |
| |
| /* We are good to go */ |
| return QEMU_ARM_POWERCTL_RET_SUCCESS; |
| } |
| |
| static void arm_set_cpu_off_async_work(CPUState *target_cpu_state, |
| run_on_cpu_data data) |
| { |
| ARMCPU *target_cpu = ARM_CPU(target_cpu_state); |
| |
| assert(qemu_mutex_iothread_locked()); |
| target_cpu->power_state = PSCI_OFF; |
| target_cpu_state->halted = 1; |
| target_cpu_state->exception_index = EXCP_HLT; |
| } |
| |
| int arm_set_cpu_off(uint64_t cpuid) |
| { |
| CPUState *target_cpu_state; |
| ARMCPU *target_cpu; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| DPRINTF("cpu %" PRId64 "\n", cpuid); |
| |
| /* change to the cpu we are powering up */ |
| target_cpu_state = arm_get_cpu_by_id(cpuid); |
| if (!target_cpu_state) { |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| target_cpu = ARM_CPU(target_cpu_state); |
| if (target_cpu->power_state == PSCI_OFF) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is already off\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_IS_OFF; |
| } |
| |
| /* Queue work to run under the target vCPUs context */ |
| async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work, |
| RUN_ON_CPU_NULL); |
| |
| return QEMU_ARM_POWERCTL_RET_SUCCESS; |
| } |
| |
| static void arm_reset_cpu_async_work(CPUState *target_cpu_state, |
| run_on_cpu_data data) |
| { |
| /* Reset the cpu */ |
| cpu_reset(target_cpu_state); |
| } |
| |
| int arm_reset_cpu(uint64_t cpuid) |
| { |
| CPUState *target_cpu_state; |
| ARMCPU *target_cpu; |
| |
| assert(qemu_mutex_iothread_locked()); |
| |
| DPRINTF("cpu %" PRId64 "\n", cpuid); |
| |
| /* change to the cpu we are resetting */ |
| target_cpu_state = arm_get_cpu_by_id(cpuid); |
| if (!target_cpu_state) { |
| return QEMU_ARM_POWERCTL_INVALID_PARAM; |
| } |
| target_cpu = ARM_CPU(target_cpu_state); |
| |
| if (target_cpu->power_state == PSCI_OFF) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "[ARM]%s: CPU %" PRId64 " is off\n", |
| __func__, cpuid); |
| return QEMU_ARM_POWERCTL_IS_OFF; |
| } |
| |
| /* Queue work to run under the target vCPUs context */ |
| async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work, |
| RUN_ON_CPU_NULL); |
| |
| return QEMU_ARM_POWERCTL_RET_SUCCESS; |
| } |