| /* |
| * ARM Generic Interrupt Controller v3 (emulation) |
| * |
| * Copyright (c) 2016 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This code is licensed under the GPL, version 2 or (at your option) |
| * any later version. |
| */ |
| |
| /* This file contains the code for the system register interface |
| * portions of the GICv3. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/bitops.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "trace.h" |
| #include "gicv3_internal.h" |
| #include "hw/irq.h" |
| #include "cpu.h" |
| #include "target/arm/cpregs.h" |
| #include "sysemu/tcg.h" |
| #include "sysemu/qtest.h" |
| |
| /* |
| * Special case return value from hppvi_index(); must be larger than |
| * the architecturally maximum possible list register index (which is 15) |
| */ |
| #define HPPVI_INDEX_VLPI 16 |
| |
| static GICv3CPUState *icc_cs_from_env(CPUARMState *env) |
| { |
| return env->gicv3state; |
| } |
| |
| static bool gicv3_use_ns_bank(CPUARMState *env) |
| { |
| /* Return true if we should use the NonSecure bank for a banked GIC |
| * CPU interface register. Note that this differs from the |
| * access_secure_reg() function because GICv3 banked registers are |
| * banked even for AArch64, unlike the other CPU system registers. |
| */ |
| return !arm_is_secure_below_el3(env); |
| } |
| |
| /* The minimum BPR for the virtual interface is a configurable property */ |
| static inline int icv_min_vbpr(GICv3CPUState *cs) |
| { |
| return 7 - cs->vprebits; |
| } |
| |
| static inline int ich_num_aprs(GICv3CPUState *cs) |
| { |
| /* Return the number of virtual APR registers (1, 2, or 4) */ |
| int aprmax = 1 << (cs->vprebits - 5); |
| assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); |
| return aprmax; |
| } |
| |
| /* Simple accessor functions for LR fields */ |
| static uint32_t ich_lr_vintid(uint64_t lr) |
| { |
| return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); |
| } |
| |
| static uint32_t ich_lr_pintid(uint64_t lr) |
| { |
| return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); |
| } |
| |
| static uint32_t ich_lr_prio(uint64_t lr) |
| { |
| return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); |
| } |
| |
| static int ich_lr_state(uint64_t lr) |
| { |
| return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); |
| } |
| |
| static bool icv_access(CPUARMState *env, int hcr_flags) |
| { |
| /* Return true if this ICC_ register access should really be |
| * directed to an ICV_ access. hcr_flags is a mask of |
| * HCR_EL2 bits to check: we treat this as an ICV_ access |
| * if we are in NS EL1 and at least one of the specified |
| * HCR_EL2 bits is set. |
| * |
| * ICV registers fall into four categories: |
| * * access if NS EL1 and HCR_EL2.FMO == 1: |
| * all ICV regs with '0' in their name |
| * * access if NS EL1 and HCR_EL2.IMO == 1: |
| * all ICV regs with '1' in their name |
| * * access if NS EL1 and either IMO or FMO == 1: |
| * CTLR, DIR, PMR, RPR |
| */ |
| uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
| bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); |
| |
| return flagmatch && arm_current_el(env) == 1 |
| && !arm_is_secure_below_el3(env); |
| } |
| |
| static int read_vbpr(GICv3CPUState *cs, int grp) |
| { |
| /* Read VBPR value out of the VMCR field (caller must handle |
| * VCBPR effects if required) |
| */ |
| if (grp == GICV3_G0) { |
| return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, |
| ICH_VMCR_EL2_VBPR0_LENGTH); |
| } else { |
| return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, |
| ICH_VMCR_EL2_VBPR1_LENGTH); |
| } |
| } |
| |
| static void write_vbpr(GICv3CPUState *cs, int grp, int value) |
| { |
| /* Write new VBPR1 value, handling the "writing a value less than |
| * the minimum sets it to the minimum" semantics. |
| */ |
| int min = icv_min_vbpr(cs); |
| |
| if (grp != GICV3_G0) { |
| min++; |
| } |
| |
| value = MAX(value, min); |
| |
| if (grp == GICV3_G0) { |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, |
| ICH_VMCR_EL2_VBPR0_LENGTH, value); |
| } else { |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, |
| ICH_VMCR_EL2_VBPR1_LENGTH, value); |
| } |
| } |
| |
| static uint32_t icv_fullprio_mask(GICv3CPUState *cs) |
| { |
| /* Return a mask word which clears the unimplemented priority bits |
| * from a priority value for a virtual interrupt. (Not to be confused |
| * with the group priority, whose mask depends on the value of VBPR |
| * for the interrupt group.) |
| */ |
| return (~0U << (8 - cs->vpribits)) & 0xff; |
| } |
| |
| static int ich_highest_active_virt_prio(GICv3CPUState *cs) |
| { |
| /* Calculate the current running priority based on the set bits |
| * in the ICH Active Priority Registers. |
| */ |
| int i; |
| int aprmax = ich_num_aprs(cs); |
| |
| for (i = 0; i < aprmax; i++) { |
| uint32_t apr = cs->ich_apr[GICV3_G0][i] | |
| cs->ich_apr[GICV3_G1NS][i]; |
| |
| if (!apr) { |
| continue; |
| } |
| return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); |
| } |
| /* No current active interrupts: return idle priority */ |
| return 0xff; |
| } |
| |
| static int hppvi_index(GICv3CPUState *cs) |
| { |
| /* |
| * Return the list register index of the highest priority pending |
| * virtual interrupt, as per the HighestPriorityVirtualInterrupt |
| * pseudocode. If no pending virtual interrupts, return -1. |
| * If the highest priority pending virtual interrupt is a vLPI, |
| * return HPPVI_INDEX_VLPI. |
| * (The pseudocode handles checking whether the vLPI is higher |
| * priority than the highest priority list register at every |
| * callsite of HighestPriorityVirtualInterrupt; we check it here.) |
| */ |
| ARMCPU *cpu = ARM_CPU(cs->cpu); |
| CPUARMState *env = &cpu->env; |
| int idx = -1; |
| int i; |
| /* Note that a list register entry with a priority of 0xff will |
| * never be reported by this function; this is the architecturally |
| * correct behaviour. |
| */ |
| int prio = 0xff; |
| |
| if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { |
| /* Both groups disabled, definitely nothing to do */ |
| return idx; |
| } |
| |
| for (i = 0; i < cs->num_list_regs; i++) { |
| uint64_t lr = cs->ich_lr_el2[i]; |
| int thisprio; |
| |
| if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { |
| /* Not Pending */ |
| continue; |
| } |
| |
| /* Ignore interrupts if relevant group enable not set */ |
| if (lr & ICH_LR_EL2_GROUP) { |
| if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { |
| continue; |
| } |
| } else { |
| if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { |
| continue; |
| } |
| } |
| |
| thisprio = ich_lr_prio(lr); |
| |
| if (thisprio < prio) { |
| prio = thisprio; |
| idx = i; |
| } |
| } |
| |
| /* |
| * "no pending vLPI" is indicated with prio = 0xff, which always |
| * fails the priority check here. vLPIs are only considered |
| * when we are in Non-Secure state. |
| */ |
| if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { |
| if (cs->hppvlpi.grp == GICV3_G0) { |
| if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { |
| return HPPVI_INDEX_VLPI; |
| } |
| } else { |
| if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { |
| return HPPVI_INDEX_VLPI; |
| } |
| } |
| } |
| |
| return idx; |
| } |
| |
| static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) |
| { |
| /* Return a mask word which clears the subpriority bits from |
| * a priority value for a virtual interrupt in the specified group. |
| * This depends on the VBPR value. |
| * If using VBPR0 then: |
| * a BPR of 0 means the group priority bits are [7:1]; |
| * a BPR of 1 means they are [7:2], and so on down to |
| * a BPR of 7 meaning no group priority bits at all. |
| * If using VBPR1 then: |
| * a BPR of 0 is impossible (the minimum value is 1) |
| * a BPR of 1 means the group priority bits are [7:1]; |
| * a BPR of 2 means they are [7:2], and so on down to |
| * a BPR of 7 meaning the group priority is [7]. |
| * |
| * Which BPR to use depends on the group of the interrupt and |
| * the current ICH_VMCR_EL2.VCBPR settings. |
| * |
| * This corresponds to the VGroupBits() pseudocode. |
| */ |
| int bpr; |
| |
| if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { |
| group = GICV3_G0; |
| } |
| |
| bpr = read_vbpr(cs, group); |
| if (group == GICV3_G1NS) { |
| assert(bpr > 0); |
| bpr--; |
| } |
| |
| return ~0U << (bpr + 1); |
| } |
| |
| static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) |
| { |
| /* Return true if we can signal this virtual interrupt defined by |
| * the given list register value; see the pseudocode functions |
| * CanSignalVirtualInterrupt and CanSignalVirtualInt. |
| * Compare also icc_hppi_can_preempt() which is the non-virtual |
| * equivalent of these checks. |
| */ |
| int grp; |
| uint32_t mask, prio, rprio, vpmr; |
| |
| if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { |
| /* Virtual interface disabled */ |
| return false; |
| } |
| |
| /* We don't need to check that this LR is in Pending state because |
| * that has already been done in hppvi_index(). |
| */ |
| |
| prio = ich_lr_prio(lr); |
| vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, |
| ICH_VMCR_EL2_VPMR_LENGTH); |
| |
| if (prio >= vpmr) { |
| /* Priority mask masks this interrupt */ |
| return false; |
| } |
| |
| rprio = ich_highest_active_virt_prio(cs); |
| if (rprio == 0xff) { |
| /* No running interrupt so we can preempt */ |
| return true; |
| } |
| |
| grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; |
| |
| mask = icv_gprio_mask(cs, grp); |
| |
| /* We only preempt a running interrupt if the pending interrupt's |
| * group priority is sufficient (the subpriorities are not considered). |
| */ |
| if ((prio & mask) < (rprio & mask)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) |
| { |
| /* |
| * Return true if we can signal the highest priority pending vLPI. |
| * We can assume we're Non-secure because hppvi_index() already |
| * tested for that. |
| */ |
| uint32_t mask, rprio, vpmr; |
| |
| if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { |
| /* Virtual interface disabled */ |
| return false; |
| } |
| |
| vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, |
| ICH_VMCR_EL2_VPMR_LENGTH); |
| |
| if (cs->hppvlpi.prio >= vpmr) { |
| /* Priority mask masks this interrupt */ |
| return false; |
| } |
| |
| rprio = ich_highest_active_virt_prio(cs); |
| if (rprio == 0xff) { |
| /* No running interrupt so we can preempt */ |
| return true; |
| } |
| |
| mask = icv_gprio_mask(cs, cs->hppvlpi.grp); |
| |
| /* |
| * We only preempt a running interrupt if the pending interrupt's |
| * group priority is sufficient (the subpriorities are not considered). |
| */ |
| if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, |
| uint32_t *misr) |
| { |
| /* Return a set of bits indicating the EOI maintenance interrupt status |
| * for each list register. The EOI maintenance interrupt status is |
| * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 |
| * (see the GICv3 spec for the ICH_EISR_EL2 register). |
| * If misr is not NULL then we should also collect the information |
| * about the MISR.EOI, MISR.NP and MISR.U bits. |
| */ |
| uint32_t value = 0; |
| int validcount = 0; |
| bool seenpending = false; |
| int i; |
| |
| for (i = 0; i < cs->num_list_regs; i++) { |
| uint64_t lr = cs->ich_lr_el2[i]; |
| |
| if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) |
| == ICH_LR_EL2_EOI) { |
| value |= (1 << i); |
| } |
| if ((lr & ICH_LR_EL2_STATE_MASK)) { |
| validcount++; |
| } |
| if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { |
| seenpending = true; |
| } |
| } |
| |
| if (misr) { |
| if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { |
| *misr |= ICH_MISR_EL2_U; |
| } |
| if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { |
| *misr |= ICH_MISR_EL2_NP; |
| } |
| if (value) { |
| *misr |= ICH_MISR_EL2_EOI; |
| } |
| } |
| return value; |
| } |
| |
| static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) |
| { |
| /* Return a set of bits indicating the maintenance interrupt status |
| * (as seen in the ICH_MISR_EL2 register). |
| */ |
| uint32_t value = 0; |
| |
| /* Scan list registers and fill in the U, NP and EOI bits */ |
| eoi_maintenance_interrupt_state(cs, &value); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && |
| (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { |
| value |= ICH_MISR_EL2_LRENP; |
| } |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && |
| (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { |
| value |= ICH_MISR_EL2_VGRP0E; |
| } |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && |
| !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { |
| value |= ICH_MISR_EL2_VGRP0D; |
| } |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && |
| (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { |
| value |= ICH_MISR_EL2_VGRP1E; |
| } |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && |
| !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { |
| value |= ICH_MISR_EL2_VGRP1D; |
| } |
| |
| return value; |
| } |
| |
| void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) |
| { |
| /* |
| * Tell the CPU about any pending virtual interrupts. |
| * This should only be called for changes that affect the |
| * vIRQ and vFIQ status and do not change the maintenance |
| * interrupt status. This means that unlike gicv3_cpuif_virt_update() |
| * this function won't recursively call back into the GIC code. |
| * The main use of this is when the redistributor has changed the |
| * highest priority pending virtual LPI. |
| */ |
| int idx; |
| int irqlevel = 0; |
| int fiqlevel = 0; |
| |
| idx = hppvi_index(cs); |
| trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, |
| cs->hppvlpi.irq, cs->hppvlpi.grp, |
| cs->hppvlpi.prio); |
| if (idx == HPPVI_INDEX_VLPI) { |
| if (icv_hppvlpi_can_preempt(cs)) { |
| if (cs->hppvlpi.grp == GICV3_G0) { |
| fiqlevel = 1; |
| } else { |
| irqlevel = 1; |
| } |
| } |
| } else if (idx >= 0) { |
| uint64_t lr = cs->ich_lr_el2[idx]; |
| |
| if (icv_hppi_can_preempt(cs, lr)) { |
| /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ |
| if (lr & ICH_LR_EL2_GROUP) { |
| irqlevel = 1; |
| } else { |
| fiqlevel = 1; |
| } |
| } |
| } |
| |
| trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); |
| qemu_set_irq(cs->parent_vfiq, fiqlevel); |
| qemu_set_irq(cs->parent_virq, irqlevel); |
| } |
| |
| static void gicv3_cpuif_virt_update(GICv3CPUState *cs) |
| { |
| /* |
| * Tell the CPU about any pending virtual interrupts or |
| * maintenance interrupts, following a change to the state |
| * of the CPU interface relevant to virtual interrupts. |
| * |
| * CAUTION: this function will call qemu_set_irq() on the |
| * CPU maintenance IRQ line, which is typically wired up |
| * to the GIC as a per-CPU interrupt. This means that it |
| * will recursively call back into the GIC code via |
| * gicv3_redist_set_irq() and thus into the CPU interface code's |
| * gicv3_cpuif_update(). It is therefore important that this |
| * function is only called as the final action of a CPU interface |
| * register write implementation, after all the GIC state |
| * fields have been updated. gicv3_cpuif_update() also must |
| * not cause this function to be called, but that happens |
| * naturally as a result of there being no architectural |
| * linkage between the physical and virtual GIC logic. |
| */ |
| ARMCPU *cpu = ARM_CPU(cs->cpu); |
| int maintlevel = 0; |
| |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && |
| maintenance_interrupt_state(cs) != 0) { |
| maintlevel = 1; |
| } |
| |
| trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); |
| qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); |
| } |
| |
| static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
| uint64_t value = cs->ich_apr[grp][regno]; |
| |
| trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
| |
| trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| |
| cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; |
| |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| return; |
| } |
| |
| static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; |
| uint64_t bpr; |
| bool satinc = false; |
| |
| if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { |
| /* reads return bpr0 + 1 saturated to 7, writes ignored */ |
| grp = GICV3_G0; |
| satinc = true; |
| } |
| |
| bpr = read_vbpr(cs, grp); |
| |
| if (satinc) { |
| bpr++; |
| bpr = MIN(bpr, 7); |
| } |
| |
| trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); |
| |
| return bpr; |
| } |
| |
| static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; |
| |
| trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, |
| gicv3_redist_affid(cs), value); |
| |
| if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { |
| /* reads return bpr0 + 1 saturated to 7, writes ignored */ |
| return; |
| } |
| |
| write_vbpr(cs, grp, value); |
| |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, |
| ICH_VMCR_EL2_VPMR_LENGTH); |
| |
| trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); |
| |
| value &= icv_fullprio_mask(cs); |
| |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, |
| ICH_VMCR_EL2_VPMR_LENGTH, value); |
| |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int enbit; |
| uint64_t value; |
| |
| enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; |
| value = extract64(cs->ich_vmcr_el2, enbit, 1); |
| |
| trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, |
| gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int enbit; |
| |
| trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, |
| gicv3_redist_affid(cs), value); |
| |
| enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; |
| |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) |
| * should match the ones reported in ich_vtr_read(). |
| */ |
| value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | |
| ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); |
| |
| if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { |
| value |= ICC_CTLR_EL1_EOIMODE; |
| } |
| |
| if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { |
| value |= ICC_CTLR_EL1_CBPR; |
| } |
| |
| trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); |
| |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, |
| 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); |
| cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, |
| 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); |
| |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int prio = ich_highest_active_virt_prio(cs); |
| |
| trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); |
| return prio; |
| } |
| |
| static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; |
| int idx = hppvi_index(cs); |
| uint64_t value = INTID_SPURIOUS; |
| |
| if (idx == HPPVI_INDEX_VLPI) { |
| if (cs->hppvlpi.grp == grp) { |
| value = cs->hppvlpi.irq; |
| } |
| } else if (idx >= 0) { |
| uint64_t lr = cs->ich_lr_el2[idx]; |
| int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; |
| |
| if (grp == thisgrp) { |
| value = ich_lr_vintid(lr); |
| } |
| } |
| |
| trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, |
| gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) |
| { |
| /* Activate the interrupt in the specified list register |
| * by moving it from Pending to Active state, and update the |
| * Active Priority Registers. |
| */ |
| uint32_t mask = icv_gprio_mask(cs, grp); |
| int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; |
| int aprbit = prio >> (8 - cs->vprebits); |
| int regno = aprbit / 32; |
| int regbit = aprbit % 32; |
| |
| cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; |
| cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; |
| cs->ich_apr[grp][regno] |= (1 << regbit); |
| } |
| |
| static void icv_activate_vlpi(GICv3CPUState *cs) |
| { |
| uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); |
| int prio = cs->hppvlpi.prio & mask; |
| int aprbit = prio >> (8 - cs->vprebits); |
| int regno = aprbit / 32; |
| int regbit = aprbit % 32; |
| |
| cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); |
| gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); |
| } |
| |
| static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; |
| int idx = hppvi_index(cs); |
| uint64_t intid = INTID_SPURIOUS; |
| |
| if (idx == HPPVI_INDEX_VLPI) { |
| if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { |
| intid = cs->hppvlpi.irq; |
| icv_activate_vlpi(cs); |
| } |
| } else if (idx >= 0) { |
| uint64_t lr = cs->ich_lr_el2[idx]; |
| int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; |
| |
| if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { |
| intid = ich_lr_vintid(lr); |
| if (!gicv3_intid_is_special(intid)) { |
| icv_activate_irq(cs, idx, grp); |
| } else { |
| /* Interrupt goes from Pending to Invalid */ |
| cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; |
| /* We will now return the (bogus) ID from the list register, |
| * as per the pseudocode. |
| */ |
| } |
| } |
| } |
| |
| trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, |
| gicv3_redist_affid(cs), intid); |
| |
| gicv3_cpuif_virt_update(cs); |
| |
| return intid; |
| } |
| |
| static uint32_t icc_fullprio_mask(GICv3CPUState *cs) |
| { |
| /* |
| * Return a mask word which clears the unimplemented priority bits |
| * from a priority value for a physical interrupt. (Not to be confused |
| * with the group priority, whose mask depends on the value of BPR |
| * for the interrupt group.) |
| */ |
| return (~0U << (8 - cs->pribits)) & 0xff; |
| } |
| |
| static inline int icc_min_bpr(GICv3CPUState *cs) |
| { |
| /* The minimum BPR for the physical interface. */ |
| return 7 - cs->prebits; |
| } |
| |
| static inline int icc_min_bpr_ns(GICv3CPUState *cs) |
| { |
| return icc_min_bpr(cs) + 1; |
| } |
| |
| static inline int icc_num_aprs(GICv3CPUState *cs) |
| { |
| /* Return the number of APR registers (1, 2, or 4) */ |
| int aprmax = 1 << MAX(cs->prebits - 5, 0); |
| assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); |
| return aprmax; |
| } |
| |
| static int icc_highest_active_prio(GICv3CPUState *cs) |
| { |
| /* Calculate the current running priority based on the set bits |
| * in the Active Priority Registers. |
| */ |
| int i; |
| |
| for (i = 0; i < icc_num_aprs(cs); i++) { |
| uint32_t apr = cs->icc_apr[GICV3_G0][i] | |
| cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; |
| |
| if (!apr) { |
| continue; |
| } |
| return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); |
| } |
| /* No current active interrupts: return idle priority */ |
| return 0xff; |
| } |
| |
| static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) |
| { |
| /* Return a mask word which clears the subpriority bits from |
| * a priority value for an interrupt in the specified group. |
| * This depends on the BPR value. For CBPR0 (S or NS): |
| * a BPR of 0 means the group priority bits are [7:1]; |
| * a BPR of 1 means they are [7:2], and so on down to |
| * a BPR of 7 meaning no group priority bits at all. |
| * For CBPR1 NS: |
| * a BPR of 0 is impossible (the minimum value is 1) |
| * a BPR of 1 means the group priority bits are [7:1]; |
| * a BPR of 2 means they are [7:2], and so on down to |
| * a BPR of 7 meaning the group priority is [7]. |
| * |
| * Which BPR to use depends on the group of the interrupt and |
| * the current ICC_CTLR.CBPR settings. |
| * |
| * This corresponds to the GroupBits() pseudocode. |
| */ |
| int bpr; |
| |
| if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || |
| (group == GICV3_G1NS && |
| cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { |
| group = GICV3_G0; |
| } |
| |
| bpr = cs->icc_bpr[group] & 7; |
| |
| if (group == GICV3_G1NS) { |
| assert(bpr > 0); |
| bpr--; |
| } |
| |
| return ~0U << (bpr + 1); |
| } |
| |
| static bool icc_no_enabled_hppi(GICv3CPUState *cs) |
| { |
| /* Return true if there is no pending interrupt, or the |
| * highest priority pending interrupt is in a group which has been |
| * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. |
| */ |
| return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); |
| } |
| |
| static bool icc_hppi_can_preempt(GICv3CPUState *cs) |
| { |
| /* Return true if we have a pending interrupt of sufficient |
| * priority to preempt. |
| */ |
| int rprio; |
| uint32_t mask; |
| |
| if (icc_no_enabled_hppi(cs)) { |
| return false; |
| } |
| |
| if (cs->hppi.prio >= cs->icc_pmr_el1) { |
| /* Priority mask masks this interrupt */ |
| return false; |
| } |
| |
| rprio = icc_highest_active_prio(cs); |
| if (rprio == 0xff) { |
| /* No currently running interrupt so we can preempt */ |
| return true; |
| } |
| |
| mask = icc_gprio_mask(cs, cs->hppi.grp); |
| |
| /* We only preempt a running interrupt if the pending interrupt's |
| * group priority is sufficient (the subpriorities are not considered). |
| */ |
| if ((cs->hppi.prio & mask) < (rprio & mask)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void gicv3_cpuif_update(GICv3CPUState *cs) |
| { |
| /* Tell the CPU about its highest priority pending interrupt */ |
| int irqlevel = 0; |
| int fiqlevel = 0; |
| ARMCPU *cpu = ARM_CPU(cs->cpu); |
| CPUARMState *env = &cpu->env; |
| |
| g_assert(bql_locked()); |
| |
| trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, |
| cs->hppi.grp, cs->hppi.prio); |
| |
| if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { |
| /* If a Security-enabled GIC sends a G1S interrupt to a |
| * Security-disabled CPU, we must treat it as if it were G0. |
| */ |
| cs->hppi.grp = GICV3_G0; |
| } |
| |
| if (icc_hppi_can_preempt(cs)) { |
| /* We have an interrupt: should we signal it as IRQ or FIQ? |
| * This is described in the GICv3 spec section 4.6.2. |
| */ |
| bool isfiq; |
| |
| switch (cs->hppi.grp) { |
| case GICV3_G0: |
| isfiq = true; |
| break; |
| case GICV3_G1: |
| isfiq = (!arm_is_secure(env) || |
| (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); |
| break; |
| case GICV3_G1NS: |
| isfiq = arm_is_secure(env); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (isfiq) { |
| fiqlevel = 1; |
| } else { |
| irqlevel = 1; |
| } |
| } |
| |
| trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); |
| |
| qemu_set_irq(cs->parent_fiq, fiqlevel); |
| qemu_set_irq(cs->parent_irq, irqlevel); |
| } |
| |
| static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint32_t value = cs->icc_pmr_el1; |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| return icv_pmr_read(env, ri); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && |
| (env->cp15.scr_el3 & SCR_FIQ)) { |
| /* NS access and Group 0 is inaccessible to NS: return the |
| * NS view of the current priority |
| */ |
| if ((value & 0x80) == 0) { |
| /* Secure priorities not visible to NS */ |
| value = 0; |
| } else if (value != 0xff) { |
| value = (value << 1) & 0xff; |
| } |
| } |
| |
| trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); |
| |
| return value; |
| } |
| |
| static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| return icv_pmr_write(env, ri, value); |
| } |
| |
| trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && |
| (env->cp15.scr_el3 & SCR_FIQ)) { |
| /* NS access and Group 0 is inaccessible to NS: return the |
| * NS view of the current priority |
| */ |
| if (!(cs->icc_pmr_el1 & 0x80)) { |
| /* Current PMR in the secure range, don't allow NS to change it */ |
| return; |
| } |
| value = (value >> 1) | 0x80; |
| } |
| value &= icc_fullprio_mask(cs); |
| cs->icc_pmr_el1 = value; |
| gicv3_cpuif_update(cs); |
| } |
| |
| static void icc_activate_irq(GICv3CPUState *cs, int irq) |
| { |
| /* Move the interrupt from the Pending state to Active, and update |
| * the Active Priority Registers |
| */ |
| uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); |
| int prio = cs->hppi.prio & mask; |
| int aprbit = prio >> (8 - cs->prebits); |
| int regno = aprbit / 32; |
| int regbit = aprbit % 32; |
| |
| cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); |
| |
| if (irq < GIC_INTERNAL) { |
| cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); |
| cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); |
| gicv3_redist_update(cs); |
| } else if (irq < GICV3_LPI_INTID_START) { |
| gicv3_gicd_active_set(cs->gic, irq); |
| gicv3_gicd_pending_clear(cs->gic, irq); |
| gicv3_update(cs->gic, irq, 1); |
| } else { |
| gicv3_redist_lpi_pending(cs, irq, 0); |
| } |
| } |
| |
| static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) |
| { |
| /* Return the highest priority pending interrupt register value |
| * for group 0. |
| */ |
| bool irq_is_secure; |
| |
| if (cs->hppi.prio == 0xff) { |
| return INTID_SPURIOUS; |
| } |
| |
| /* Check whether we can return the interrupt or if we should return |
| * a special identifier, as per the CheckGroup0ForSpecialIdentifiers |
| * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM |
| * is always zero.) |
| */ |
| irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && |
| (cs->hppi.grp != GICV3_G1NS)); |
| |
| if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { |
| return INTID_SPURIOUS; |
| } |
| if (irq_is_secure && !arm_is_secure(env)) { |
| /* Secure interrupts not visible to Nonsecure */ |
| return INTID_SPURIOUS; |
| } |
| |
| if (cs->hppi.grp != GICV3_G0) { |
| /* Indicate to EL3 that there's a Group 1 interrupt for the other |
| * state pending. |
| */ |
| return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; |
| } |
| |
| return cs->hppi.irq; |
| } |
| |
| static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) |
| { |
| /* Return the highest priority pending interrupt register value |
| * for group 1. |
| */ |
| bool irq_is_secure; |
| |
| if (cs->hppi.prio == 0xff) { |
| return INTID_SPURIOUS; |
| } |
| |
| /* Check whether we can return the interrupt or if we should return |
| * a special identifier, as per the CheckGroup1ForSpecialIdentifiers |
| * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM |
| * is always zero.) |
| */ |
| irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && |
| (cs->hppi.grp != GICV3_G1NS)); |
| |
| if (cs->hppi.grp == GICV3_G0) { |
| /* Group 0 interrupts not visible via HPPIR1 */ |
| return INTID_SPURIOUS; |
| } |
| if (irq_is_secure) { |
| if (!arm_is_secure(env)) { |
| /* Secure interrupts not visible in Non-secure */ |
| return INTID_SPURIOUS; |
| } |
| } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { |
| /* Group 1 non-secure interrupts not visible in Secure EL1 */ |
| return INTID_SPURIOUS; |
| } |
| |
| return cs->hppi.irq; |
| } |
| |
| static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t intid; |
| |
| if (icv_access(env, HCR_FMO)) { |
| return icv_iar_read(env, ri); |
| } |
| |
| if (!icc_hppi_can_preempt(cs)) { |
| intid = INTID_SPURIOUS; |
| } else { |
| intid = icc_hppir0_value(cs, env); |
| } |
| |
| if (!gicv3_intid_is_special(intid)) { |
| icc_activate_irq(cs, intid); |
| } |
| |
| trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); |
| return intid; |
| } |
| |
| static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t intid; |
| |
| if (icv_access(env, HCR_IMO)) { |
| return icv_iar_read(env, ri); |
| } |
| |
| if (!icc_hppi_can_preempt(cs)) { |
| intid = INTID_SPURIOUS; |
| } else { |
| intid = icc_hppir1_value(cs, env); |
| } |
| |
| if (!gicv3_intid_is_special(intid)) { |
| icc_activate_irq(cs, intid); |
| } |
| |
| trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); |
| return intid; |
| } |
| |
| static void icc_drop_prio(GICv3CPUState *cs, int grp) |
| { |
| /* Drop the priority of the currently active interrupt in |
| * the specified group. |
| * |
| * Note that we can guarantee (because of the requirement to nest |
| * ICC_IAR reads [which activate an interrupt and raise priority] |
| * with ICC_EOIR writes [which drop the priority for the interrupt]) |
| * that the interrupt we're being called for is the highest priority |
| * active interrupt, meaning that it has the lowest set bit in the |
| * APR registers. |
| * |
| * If the guest does not honour the ordering constraints then the |
| * behaviour of the GIC is UNPREDICTABLE, which for us means that |
| * the values of the APR registers might become incorrect and the |
| * running priority will be wrong, so interrupts that should preempt |
| * might not do so, and interrupts that should not preempt might do so. |
| */ |
| int i; |
| |
| for (i = 0; i < icc_num_aprs(cs); i++) { |
| uint64_t *papr = &cs->icc_apr[grp][i]; |
| |
| if (!*papr) { |
| continue; |
| } |
| /* Clear the lowest set bit */ |
| *papr &= *papr - 1; |
| break; |
| } |
| |
| /* running priority change means we need an update for this cpu i/f */ |
| gicv3_cpuif_update(cs); |
| } |
| |
| static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) |
| { |
| /* Return true if we should split priority drop and interrupt |
| * deactivation, ie whether the relevant EOIMode bit is set. |
| */ |
| if (arm_is_el3_or_mon(env)) { |
| return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; |
| } |
| if (arm_is_secure_below_el3(env)) { |
| return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; |
| } else { |
| return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; |
| } |
| } |
| |
| static int icc_highest_active_group(GICv3CPUState *cs) |
| { |
| /* Return the group with the highest priority active interrupt. |
| * We can do this by just comparing the APRs to see which one |
| * has the lowest set bit. |
| * (If more than one group is active at the same priority then |
| * we're in UNPREDICTABLE territory.) |
| */ |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { |
| int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); |
| int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); |
| int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); |
| |
| if (g1nsctz < g0ctz && g1nsctz < g1ctz) { |
| return GICV3_G1NS; |
| } |
| if (g1ctz < g0ctz) { |
| return GICV3_G1; |
| } |
| if (g0ctz < 32) { |
| return GICV3_G0; |
| } |
| } |
| /* No set active bits? UNPREDICTABLE; return -1 so the caller |
| * ignores the spurious EOI attempt. |
| */ |
| return -1; |
| } |
| |
| static void icc_deactivate_irq(GICv3CPUState *cs, int irq) |
| { |
| if (irq < GIC_INTERNAL) { |
| cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); |
| gicv3_redist_update(cs); |
| } else { |
| gicv3_gicd_active_clear(cs->gic, irq); |
| gicv3_update(cs->gic, irq, 1); |
| } |
| } |
| |
| static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) |
| { |
| /* Return true if we should split priority drop and interrupt |
| * deactivation, ie whether the virtual EOIMode bit is set. |
| */ |
| return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; |
| } |
| |
| static int icv_find_active(GICv3CPUState *cs, int irq) |
| { |
| /* Given an interrupt number for an active interrupt, return the index |
| * of the corresponding list register, or -1 if there is no match. |
| * Corresponds to FindActiveVirtualInterrupt pseudocode. |
| */ |
| int i; |
| |
| for (i = 0; i < cs->num_list_regs; i++) { |
| uint64_t lr = cs->ich_lr_el2[i]; |
| |
| if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static void icv_deactivate_irq(GICv3CPUState *cs, int idx) |
| { |
| /* Deactivate the interrupt in the specified list register index */ |
| uint64_t lr = cs->ich_lr_el2[idx]; |
| |
| if (lr & ICH_LR_EL2_HW) { |
| /* Deactivate the associated physical interrupt */ |
| int pirq = ich_lr_pintid(lr); |
| |
| if (pirq < INTID_SECURE) { |
| icc_deactivate_irq(cs, pirq); |
| } |
| } |
| |
| /* Clear the 'active' part of the state, so ActivePending->Pending |
| * and Active->Invalid. |
| */ |
| lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; |
| cs->ich_lr_el2[idx] = lr; |
| } |
| |
| static void icv_increment_eoicount(GICv3CPUState *cs) |
| { |
| /* Increment the EOICOUNT field in ICH_HCR_EL2 */ |
| int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, |
| ICH_HCR_EL2_EOICOUNT_LENGTH); |
| |
| cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, |
| ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); |
| } |
| |
| static int icv_drop_prio(GICv3CPUState *cs) |
| { |
| /* Drop the priority of the currently active virtual interrupt |
| * (favouring group 0 if there is a set active bit at |
| * the same priority for both group 0 and group 1). |
| * Return the priority value for the bit we just cleared, |
| * or 0xff if no bits were set in the AP registers at all. |
| * Note that though the ich_apr[] are uint64_t only the low |
| * 32 bits are actually relevant. |
| */ |
| int i; |
| int aprmax = ich_num_aprs(cs); |
| |
| for (i = 0; i < aprmax; i++) { |
| uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; |
| uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; |
| int apr0count, apr1count; |
| |
| if (!*papr0 && !*papr1) { |
| continue; |
| } |
| |
| /* We can't just use the bit-twiddling hack icc_drop_prio() does |
| * because we need to return the bit number we cleared so |
| * it can be compared against the list register's priority field. |
| */ |
| apr0count = ctz32(*papr0); |
| apr1count = ctz32(*papr1); |
| |
| if (apr0count <= apr1count) { |
| *papr0 &= *papr0 - 1; |
| return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); |
| } else { |
| *papr1 &= *papr1 - 1; |
| return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); |
| } |
| } |
| return 0xff; |
| } |
| |
| static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Deactivate interrupt */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int idx; |
| int irq = value & 0xffffff; |
| |
| trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); |
| |
| if (irq >= GICV3_MAXIRQ) { |
| /* Also catches special interrupt numbers and LPIs */ |
| return; |
| } |
| |
| if (!icv_eoi_split(env, cs)) { |
| return; |
| } |
| |
| idx = icv_find_active(cs, irq); |
| |
| if (idx < 0) { |
| /* No list register matching this, so increment the EOI count |
| * (might trigger a maintenance interrupt) |
| */ |
| icv_increment_eoicount(cs); |
| } else { |
| icv_deactivate_irq(cs, idx); |
| } |
| |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* End of Interrupt */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int irq = value & 0xffffff; |
| int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; |
| int idx, dropprio; |
| |
| trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, |
| gicv3_redist_affid(cs), value); |
| |
| if (gicv3_intid_is_special(irq)) { |
| return; |
| } |
| |
| /* We implement the IMPDEF choice of "drop priority before doing |
| * error checks" (because that lets us avoid scanning the AP |
| * registers twice). |
| */ |
| dropprio = icv_drop_prio(cs); |
| if (dropprio == 0xff) { |
| /* No active interrupt. It is CONSTRAINED UNPREDICTABLE |
| * whether the list registers are checked in this |
| * situation; we choose not to. |
| */ |
| return; |
| } |
| |
| idx = icv_find_active(cs, irq); |
| |
| if (idx < 0) { |
| /* |
| * No valid list register corresponding to EOI ID; if this is a vLPI |
| * not in the list regs then do nothing; otherwise increment EOI count |
| */ |
| if (irq < GICV3_LPI_INTID_START) { |
| icv_increment_eoicount(cs); |
| } |
| } else { |
| uint64_t lr = cs->ich_lr_el2[idx]; |
| int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; |
| int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); |
| |
| if (thisgrp == grp && lr_gprio == dropprio) { |
| if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { |
| /* |
| * Priority drop and deactivate not split: deactivate irq now. |
| * LPIs always get their active state cleared immediately |
| * because no separate deactivate is expected. |
| */ |
| icv_deactivate_irq(cs, idx); |
| } |
| } |
| } |
| |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* End of Interrupt */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int irq = value & 0xffffff; |
| int grp; |
| bool is_eoir0 = ri->crm == 8; |
| |
| if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { |
| icv_eoir_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, |
| gicv3_redist_affid(cs), value); |
| |
| if ((irq >= cs->gic->num_irq) && |
| !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { |
| /* This handles two cases: |
| * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] |
| * to the GICC_EOIR, the GIC ignores that write. |
| * 2. If software writes the number of a non-existent interrupt |
| * this must be a subcase of "value written does not match the last |
| * valid interrupt value read from the Interrupt Acknowledge |
| * register" and so this is UNPREDICTABLE. We choose to ignore it. |
| */ |
| return; |
| } |
| |
| grp = icc_highest_active_group(cs); |
| switch (grp) { |
| case GICV3_G0: |
| if (!is_eoir0) { |
| return; |
| } |
| if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) |
| && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { |
| return; |
| } |
| break; |
| case GICV3_G1: |
| if (is_eoir0) { |
| return; |
| } |
| if (!arm_is_secure(env)) { |
| return; |
| } |
| break; |
| case GICV3_G1NS: |
| if (is_eoir0) { |
| return; |
| } |
| if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { |
| return; |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: IRQ %d isn't active\n", __func__, irq); |
| return; |
| } |
| |
| icc_drop_prio(cs, grp); |
| |
| if (!icc_eoi_split(env, cs)) { |
| /* Priority drop and deactivate not split: deactivate irq now */ |
| icc_deactivate_irq(cs, irq); |
| } |
| } |
| |
| static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| if (icv_access(env, HCR_FMO)) { |
| return icv_hppir_read(env, ri); |
| } |
| |
| value = icc_hppir0_value(cs, env); |
| trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| if (icv_access(env, HCR_IMO)) { |
| return icv_hppir_read(env, ri); |
| } |
| |
| value = icc_hppir1_value(cs, env); |
| trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; |
| bool satinc = false; |
| uint64_t bpr; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| return icv_bpr_read(env, ri); |
| } |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && |
| (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { |
| /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses |
| * modify BPR0 |
| */ |
| grp = GICV3_G0; |
| } |
| |
| if (grp == GICV3_G1NS && arm_current_el(env) < 3 && |
| (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { |
| /* reads return bpr0 + 1 sat to 7, writes ignored */ |
| grp = GICV3_G0; |
| satinc = true; |
| } |
| |
| bpr = cs->icc_bpr[grp]; |
| if (satinc) { |
| bpr++; |
| bpr = MIN(bpr, 7); |
| } |
| |
| trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); |
| |
| return bpr; |
| } |
| |
| static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; |
| uint64_t minval; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| icv_bpr_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, |
| gicv3_redist_affid(cs), value); |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && |
| (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { |
| /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses |
| * modify BPR0 |
| */ |
| grp = GICV3_G0; |
| } |
| |
| if (grp == GICV3_G1NS && arm_current_el(env) < 3 && |
| (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { |
| /* reads return bpr0 + 1 sat to 7, writes ignored */ |
| return; |
| } |
| |
| minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); |
| if (value < minval) { |
| value = minval; |
| } |
| |
| cs->icc_bpr[grp] = value & 7; |
| gicv3_cpuif_update(cs); |
| } |
| |
| static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| return icv_ap_read(env, ri); |
| } |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| value = cs->icc_apr[grp][regno]; |
| |
| trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| icv_ap_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| /* It's not possible to claim that a Non-secure interrupt is active |
| * at a priority outside the Non-secure range (128..255), since this |
| * would otherwise allow malicious NS code to block delivery of S interrupts |
| * by writing a bad value to these registers. |
| */ |
| if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { |
| return; |
| } |
| |
| cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; |
| gicv3_cpuif_update(cs); |
| } |
| |
| static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Deactivate interrupt */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int irq = value & 0xffffff; |
| bool irq_is_secure, single_sec_state, irq_is_grp0; |
| bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| icv_dir_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); |
| |
| if (irq >= cs->gic->num_irq) { |
| /* Also catches special interrupt numbers and LPIs */ |
| return; |
| } |
| |
| if (!icc_eoi_split(env, cs)) { |
| return; |
| } |
| |
| int grp = gicv3_irq_group(cs->gic, cs, irq); |
| |
| single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; |
| irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); |
| irq_is_grp0 = grp == GICV3_G0; |
| |
| /* Check whether we're allowed to deactivate this interrupt based |
| * on its group and the current CPU state. |
| * These checks are laid out to correspond to the spec's pseudocode. |
| */ |
| route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; |
| route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; |
| /* No need to include !IsSecure in route_*_to_el2 as it's only |
| * tested in cases where we know !IsSecure is true. |
| */ |
| uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
| route_fiq_to_el2 = hcr_el2 & HCR_FMO; |
| route_irq_to_el2 = hcr_el2 & HCR_IMO; |
| |
| switch (arm_current_el(env)) { |
| case 3: |
| break; |
| case 2: |
| if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { |
| break; |
| } |
| if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { |
| break; |
| } |
| return; |
| case 1: |
| if (!arm_is_secure_below_el3(env)) { |
| if (single_sec_state && irq_is_grp0 && |
| !route_fiq_to_el3 && !route_fiq_to_el2) { |
| break; |
| } |
| if (!irq_is_secure && !irq_is_grp0 && |
| !route_irq_to_el3 && !route_irq_to_el2) { |
| break; |
| } |
| } else { |
| if (irq_is_grp0 && !route_fiq_to_el3) { |
| break; |
| } |
| if (!irq_is_grp0 && |
| (!irq_is_secure || !single_sec_state) && |
| !route_irq_to_el3) { |
| break; |
| } |
| } |
| return; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| icc_deactivate_irq(cs, irq); |
| } |
| |
| static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int prio; |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| return icv_rpr_read(env, ri); |
| } |
| |
| prio = icc_highest_active_prio(cs); |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { |
| /* NS GIC access and Group 0 is inaccessible to NS */ |
| if ((prio & 0x80) == 0) { |
| /* NS mustn't see priorities in the Secure half of the range */ |
| prio = 0; |
| } else if (prio != 0xff) { |
| /* Non-idle priority: show the Non-secure view of it */ |
| prio = (prio << 1) & 0xff; |
| } |
| } |
| |
| trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); |
| return prio; |
| } |
| |
| static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, |
| uint64_t value, int grp, bool ns) |
| { |
| GICv3State *s = cs->gic; |
| |
| /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ |
| uint64_t aff = extract64(value, 48, 8) << 16 | |
| extract64(value, 32, 8) << 8 | |
| extract64(value, 16, 8); |
| uint32_t targetlist = extract64(value, 0, 16); |
| uint32_t irq = extract64(value, 24, 4); |
| bool irm = extract64(value, 40, 1); |
| int i; |
| |
| if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { |
| /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 |
| * interrupts as Group 0 interrupts and must send Secure Group 0 |
| * interrupts to the target CPUs. |
| */ |
| grp = GICV3_G0; |
| } |
| |
| trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, |
| aff, targetlist); |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| GICv3CPUState *ocs = &s->cpu[i]; |
| |
| if (irm) { |
| /* IRM == 1 : route to all CPUs except self */ |
| if (cs == ocs) { |
| continue; |
| } |
| } else { |
| /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] |
| * where the corresponding bit is set in targetlist |
| */ |
| int aff0; |
| |
| if (ocs->gicr_typer >> 40 != aff) { |
| continue; |
| } |
| aff0 = extract64(ocs->gicr_typer, 32, 8); |
| if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { |
| continue; |
| } |
| } |
| |
| /* The redistributor will check against its own GICR_NSACR as needed */ |
| gicv3_redist_send_sgi(ocs, grp, irq, ns); |
| } |
| } |
| |
| static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Generate Secure Group 0 SGI. */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| bool ns = !arm_is_secure(env); |
| |
| icc_generate_sgi(env, cs, value, GICV3_G0, ns); |
| } |
| |
| static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Generate Group 1 SGI for the current Security state */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp; |
| bool ns = !arm_is_secure(env); |
| |
| grp = ns ? GICV3_G1NS : GICV3_G1; |
| icc_generate_sgi(env, cs, value, grp, ns); |
| } |
| |
| static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Generate Group 1 SGI for the Security state that is not |
| * the current state |
| */ |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp; |
| bool ns = !arm_is_secure(env); |
| |
| grp = ns ? GICV3_G1 : GICV3_G1NS; |
| icc_generate_sgi(env, cs, value, grp, ns); |
| } |
| |
| static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; |
| uint64_t value; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| return icv_igrpen_read(env, ri); |
| } |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| value = cs->icc_igrpen[grp]; |
| trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, |
| gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; |
| |
| if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
| icv_igrpen_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, |
| gicv3_redist_affid(cs), value); |
| |
| if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
| grp = GICV3_G1NS; |
| } |
| |
| cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; |
| gicv3_cpuif_update(cs); |
| } |
| |
| static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ |
| value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); |
| trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); |
| |
| /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ |
| cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); |
| cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); |
| gicv3_cpuif_update(cs); |
| } |
| |
| static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; |
| uint64_t value; |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| return icv_ctlr_read(env, ri); |
| } |
| |
| value = cs->icc_ctlr_el1[bank]; |
| trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; |
| uint64_t mask; |
| |
| if (icv_access(env, HCR_FMO | HCR_IMO)) { |
| icv_ctlr_write(env, ri, value); |
| return; |
| } |
| |
| trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); |
| |
| /* Only CBPR and EOIMODE can be RW; |
| * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or |
| * the asseciated priority-based routing of them); |
| * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3) && |
| ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { |
| mask = ICC_CTLR_EL1_EOIMODE; |
| } else { |
| mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; |
| } |
| |
| cs->icc_ctlr_el1[bank] &= ~mask; |
| cs->icc_ctlr_el1[bank] |= (value & mask); |
| gicv3_cpuif_update(cs); |
| } |
| |
| |
| static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| value = cs->icc_ctlr_el3; |
| if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { |
| value |= ICC_CTLR_EL3_EOIMODE_EL1NS; |
| } |
| if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { |
| value |= ICC_CTLR_EL3_CBPR_EL1NS; |
| } |
| if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { |
| value |= ICC_CTLR_EL3_EOIMODE_EL1S; |
| } |
| if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { |
| value |= ICC_CTLR_EL3_CBPR_EL1S; |
| } |
| |
| trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t mask; |
| |
| trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); |
| |
| /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ |
| cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); |
| if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { |
| cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; |
| } |
| if (value & ICC_CTLR_EL3_CBPR_EL1NS) { |
| cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; |
| } |
| |
| cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); |
| if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { |
| cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; |
| } |
| if (value & ICC_CTLR_EL3_CBPR_EL1S) { |
| cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; |
| } |
| |
| /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ |
| mask = ICC_CTLR_EL3_EOIMODE_EL3; |
| |
| cs->icc_ctlr_el3 &= ~mask; |
| cs->icc_ctlr_el3 |= (value & mask); |
| gicv3_cpuif_update(cs); |
| } |
| |
| static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| CPAccessResult r = CP_ACCESS_OK; |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int el = arm_current_el(env); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && |
| el == 1 && !arm_is_secure_below_el3(env)) { |
| /* Takes priority over a possible EL3 trap */ |
| return CP_ACCESS_TRAP_EL2; |
| } |
| |
| if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { |
| switch (el) { |
| case 1: |
| /* Note that arm_hcr_el2_eff takes secure state into account. */ |
| if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| case 2: |
| r = CP_ACCESS_TRAP_EL3; |
| break; |
| case 3: |
| if (!is_a64(env) && !arm_is_el3_or_mon(env)) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { |
| r = CP_ACCESS_TRAP; |
| } |
| return r; |
| } |
| |
| static CPAccessResult gicv3_dir_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && |
| arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { |
| /* Takes priority over a possible EL3 trap */ |
| return CP_ACCESS_TRAP_EL2; |
| } |
| |
| return gicv3_irqfiq_access(env, ri, isread); |
| } |
| |
| static CPAccessResult gicv3_sgi_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| if (arm_current_el(env) == 1 && |
| (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { |
| /* Takes priority over a possible EL3 trap */ |
| return CP_ACCESS_TRAP_EL2; |
| } |
| |
| return gicv3_irqfiq_access(env, ri, isread); |
| } |
| |
| static CPAccessResult gicv3_fiq_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| CPAccessResult r = CP_ACCESS_OK; |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int el = arm_current_el(env); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && |
| el == 1 && !arm_is_secure_below_el3(env)) { |
| /* Takes priority over a possible EL3 trap */ |
| return CP_ACCESS_TRAP_EL2; |
| } |
| |
| if (env->cp15.scr_el3 & SCR_FIQ) { |
| switch (el) { |
| case 1: |
| if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| case 2: |
| r = CP_ACCESS_TRAP_EL3; |
| break; |
| case 3: |
| if (!is_a64(env) && !arm_is_el3_or_mon(env)) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { |
| r = CP_ACCESS_TRAP; |
| } |
| return r; |
| } |
| |
| static CPAccessResult gicv3_irq_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| CPAccessResult r = CP_ACCESS_OK; |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int el = arm_current_el(env); |
| |
| if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && |
| el == 1 && !arm_is_secure_below_el3(env)) { |
| /* Takes priority over a possible EL3 trap */ |
| return CP_ACCESS_TRAP_EL2; |
| } |
| |
| if (env->cp15.scr_el3 & SCR_IRQ) { |
| switch (el) { |
| case 1: |
| if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| case 2: |
| r = CP_ACCESS_TRAP_EL3; |
| break; |
| case 3: |
| if (!is_a64(env) && !arm_is_el3_or_mon(env)) { |
| r = CP_ACCESS_TRAP_EL3; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { |
| r = CP_ACCESS_TRAP; |
| } |
| return r; |
| } |
| |
| static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | |
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | |
| ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); |
| cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | |
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | |
| ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); |
| cs->icc_pmr_el1 = 0; |
| cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); |
| cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); |
| cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); |
| memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); |
| memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); |
| cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | |
| (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | |
| ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); |
| |
| memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); |
| cs->ich_hcr_el2 = 0; |
| memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); |
| cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | |
| ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | |
| (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); |
| } |
| |
| static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { |
| { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irqfiq_access, |
| .readfn = icc_pmr_read, |
| .writefn = icc_pmr_write, |
| /* We hang the whole cpu interface reset routine off here |
| * rather than parcelling it out into one little function |
| * per register |
| */ |
| .resetfn = icc_reset, |
| }, |
| { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_R, .accessfn = gicv3_fiq_access, |
| .readfn = icc_iar0_read, |
| }, |
| { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_fiq_access, |
| .writefn = icc_eoir_write, |
| }, |
| { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_R, .accessfn = gicv3_fiq_access, |
| .readfn = icc_hppir0_read, |
| }, |
| { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .readfn = icc_bpr_read, |
| .writefn = icc_bpr_write, |
| }, |
| { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| /* All the ICC_AP1R*_EL1 registers are banked */ |
| { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_dir_access, |
| .writefn = icc_dir_write, |
| }, |
| { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_R, .accessfn = gicv3_irqfiq_access, |
| .readfn = icc_rpr_read, |
| }, |
| { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_sgi1r_write, |
| }, |
| { .name = "ICC_SGI1R", |
| .cp = 15, .opc1 = 0, .crm = 12, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_sgi1r_write, |
| }, |
| { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_asgi1r_write, |
| }, |
| { .name = "ICC_ASGI1R", |
| .cp = 15, .opc1 = 1, .crm = 12, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_asgi1r_write, |
| }, |
| { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_sgi0r_write, |
| }, |
| { .name = "ICC_SGI0R", |
| .cp = 15, .opc1 = 2, .crm = 12, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_sgi_access, |
| .writefn = icc_sgi0r_write, |
| }, |
| { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_R, .accessfn = gicv3_irq_access, |
| .readfn = icc_iar1_read, |
| }, |
| { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_W, .accessfn = gicv3_irq_access, |
| .writefn = icc_eoir_write, |
| }, |
| { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_R, .accessfn = gicv3_irq_access, |
| .readfn = icc_hppir1_read, |
| }, |
| /* This register is banked */ |
| { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .readfn = icc_bpr_read, |
| .writefn = icc_bpr_write, |
| }, |
| /* This register is banked */ |
| { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irqfiq_access, |
| .readfn = icc_ctlr_el1_read, |
| .writefn = icc_ctlr_el1_write, |
| }, |
| { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, |
| .type = ARM_CP_NO_RAW | ARM_CP_CONST, |
| .access = PL1_RW, |
| /* We don't support IRQ/FIQ bypass and system registers are |
| * always enabled, so all our bits are RAZ/WI or RAO/WI. |
| * This register is banked but since it's constant we don't |
| * need to do anything special. |
| */ |
| .resetvalue = 0x7, |
| }, |
| { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .fgt = FGT_ICC_IGRPENN_EL1, |
| .readfn = icc_igrpen_read, |
| .writefn = icc_igrpen_write, |
| }, |
| /* This register is banked */ |
| { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .fgt = FGT_ICC_IGRPENN_EL1, |
| .readfn = icc_igrpen_read, |
| .writefn = icc_igrpen_write, |
| }, |
| { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, |
| .type = ARM_CP_NO_RAW | ARM_CP_CONST, |
| .access = PL2_RW, |
| /* We don't support IRQ/FIQ bypass and system registers are |
| * always enabled, so all our bits are RAZ/WI or RAO/WI. |
| */ |
| .resetvalue = 0xf, |
| }, |
| { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL3_RW, |
| .readfn = icc_ctlr_el3_read, |
| .writefn = icc_ctlr_el3_write, |
| }, |
| { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, |
| .type = ARM_CP_NO_RAW | ARM_CP_CONST, |
| .access = PL3_RW, |
| /* We don't support IRQ/FIQ bypass and system registers are |
| * always enabled, so all our bits are RAZ/WI or RAO/WI. |
| */ |
| .resetvalue = 0xf, |
| }, |
| { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL3_RW, |
| .readfn = icc_igrpen1_el3_read, |
| .writefn = icc_igrpen1_el3_write, |
| }, |
| }; |
| |
| static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { |
| { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| }; |
| |
| static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { |
| { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_fiq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL1_RW, .accessfn = gicv3_irq_access, |
| .readfn = icc_ap_read, |
| .writefn = icc_ap_write, |
| }, |
| }; |
| |
| static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
| uint64_t value; |
| |
| value = cs->ich_apr[grp][regno]; |
| trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 & 3; |
| int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
| |
| trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
| |
| cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value = cs->ich_hcr_el2; |
| |
| trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); |
| |
| value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | |
| ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | |
| ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | |
| ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | |
| ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; |
| |
| cs->ich_hcr_el2 = value; |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value = cs->ich_vmcr_el2; |
| |
| trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| |
| trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); |
| |
| value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | |
| ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | |
| ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; |
| value |= ICH_VMCR_EL2_VFIQEN; |
| |
| cs->ich_vmcr_el2 = value; |
| /* Enforce "writing BPRs to less than minimum sets them to the minimum" |
| * by reading and writing back the fields. |
| */ |
| write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); |
| write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); |
| |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 | ((ri->crm & 1) << 3); |
| uint64_t value; |
| |
| /* This read function handles all of: |
| * 64-bit reads of the whole LR |
| * 32-bit reads of the low half of the LR |
| * 32-bit reads of the high half of the LR |
| */ |
| if (ri->state == ARM_CP_STATE_AA32) { |
| if (ri->crm >= 14) { |
| value = extract64(cs->ich_lr_el2[regno], 32, 32); |
| trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); |
| } else { |
| value = extract64(cs->ich_lr_el2[regno], 0, 32); |
| trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); |
| } |
| } else { |
| value = cs->ich_lr_el2[regno]; |
| trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); |
| } |
| |
| return value; |
| } |
| |
| static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| int regno = ri->opc2 | ((ri->crm & 1) << 3); |
| |
| /* This write function handles all of: |
| * 64-bit writes to the whole LR |
| * 32-bit writes to the low half of the LR |
| * 32-bit writes to the high half of the LR |
| */ |
| if (ri->state == ARM_CP_STATE_AA32) { |
| if (ri->crm >= 14) { |
| trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); |
| value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); |
| } else { |
| trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); |
| value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); |
| } |
| } else { |
| trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); |
| } |
| |
| /* Enforce RES0 bits in priority field */ |
| if (cs->vpribits < 8) { |
| value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, |
| 8 - cs->vpribits, 0); |
| } |
| |
| cs->ich_lr_el2[regno] = value; |
| gicv3_cpuif_virt_update(cs); |
| } |
| |
| static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value; |
| |
| value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) |
| | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V |
| | (1 << ICH_VTR_EL2_IDBITS_SHIFT) |
| | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) |
| | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); |
| |
| if (cs->gic->revision < 4) { |
| value |= ICH_VTR_EL2_NV4; |
| } |
| |
| trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value = maintenance_interrupt_state(cs); |
| |
| trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); |
| |
| trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| GICv3CPUState *cs = icc_cs_from_env(env); |
| uint64_t value = 0; |
| int i; |
| |
| for (i = 0; i < cs->num_list_regs; i++) { |
| uint64_t lr = cs->ich_lr_el2[i]; |
| |
| if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && |
| ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { |
| value |= (1 << i); |
| } |
| } |
| |
| trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); |
| return value; |
| } |
| |
| static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { |
| { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x480, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4a0, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4c0, |
| .access = PL2_RW, |
| .readfn = ich_hcr_read, |
| .writefn = ich_hcr_write, |
| }, |
| { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL2_R, |
| .readfn = ich_vtr_read, |
| }, |
| { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL2_R, |
| .readfn = ich_misr_read, |
| }, |
| { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL2_R, |
| .readfn = ich_eisr_read, |
| }, |
| { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL2_R, |
| .readfn = ich_elrsr_read, |
| }, |
| { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4c8, |
| .access = PL2_RW, |
| .readfn = ich_vmcr_read, |
| .writefn = ich_vmcr_write, |
| }, |
| }; |
| |
| static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { |
| { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x488, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4a8, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| }; |
| |
| static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { |
| { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x490, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x498, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4b0, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x4b8, |
| .access = PL2_RW, |
| .readfn = ich_ap_read, |
| .writefn = ich_ap_write, |
| }, |
| }; |
| |
| static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) |
| { |
| GICv3CPUState *cs = opaque; |
| |
| gicv3_cpuif_update(cs); |
| /* |
| * Because vLPIs are only pending in NonSecure state, |
| * an EL change can change the VIRQ/VFIQ status (but |
| * cannot affect the maintenance interrupt state) |
| */ |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| void gicv3_init_cpuif(GICv3State *s) |
| { |
| /* Called from the GICv3 realize function; register our system |
| * registers with the CPU |
| */ |
| int i; |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); |
| GICv3CPUState *cs = &s->cpu[i]; |
| |
| /* |
| * If the CPU doesn't define a GICv3 configuration, probably because |
| * in real hardware it doesn't have one, then we use default values |
| * matching the one used by most Arm CPUs. This applies to: |
| * cpu->gic_num_lrs |
| * cpu->gic_vpribits |
| * cpu->gic_vprebits |
| * cpu->gic_pribits |
| */ |
| |
| /* Note that we can't just use the GICv3CPUState as an opaque pointer |
| * in define_arm_cp_regs_with_opaque(), because when we're called back |
| * it might be with code translated by CPU 0 but run by CPU 1, in |
| * which case we'd get the wrong value. |
| * So instead we define the regs with no ri->opaque info, and |
| * get back to the GICv3CPUState from the CPUARMState. |
| * |
| * These CP regs callbacks can be called from either TCG or HVF code. |
| */ |
| define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); |
| |
| /* |
| * The CPU implementation specifies the number of supported |
| * bits of physical priority. For backwards compatibility |
| * of migration, we have a compat property that forces use |
| * of 8 priority bits regardless of what the CPU really has. |
| */ |
| if (s->force_8bit_prio) { |
| cs->pribits = 8; |
| } else { |
| cs->pribits = cpu->gic_pribits ?: 5; |
| } |
| |
| /* |
| * The GICv3 has separate ID register fields for virtual priority |
| * and preemption bit values, but only a single ID register field |
| * for the physical priority bits. The preemption bit count is |
| * always the same as the priority bit count, except that 8 bits |
| * of priority means 7 preemption bits. We precalculate the |
| * preemption bits because it simplifies the code and makes the |
| * parallels between the virtual and physical bits of the GIC |
| * a bit clearer. |
| */ |
| cs->prebits = cs->pribits; |
| if (cs->prebits == 8) { |
| cs->prebits--; |
| } |
| /* |
| * Check that CPU code defining pribits didn't violate |
| * architectural constraints our implementation relies on. |
| */ |
| g_assert(cs->pribits >= 4 && cs->pribits <= 8); |
| |
| /* |
| * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions |
| * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. |
| */ |
| if (cs->prebits >= 6) { |
| define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); |
| } |
| if (cs->prebits == 7) { |
| define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { |
| int j; |
| |
| cs->num_list_regs = cpu->gic_num_lrs ?: 4; |
| cs->vpribits = cpu->gic_vpribits ?: 5; |
| cs->vprebits = cpu->gic_vprebits ?: 5; |
| |
| /* Check against architectural constraints: getting these |
| * wrong would be a bug in the CPU code defining these, |
| * and the implementation relies on them holding. |
| */ |
| g_assert(cs->vprebits <= cs->vpribits); |
| g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); |
| g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); |
| |
| define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); |
| |
| for (j = 0; j < cs->num_list_regs; j++) { |
| /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs |
| * are split into two cp15 regs, LR (the low part, with the |
| * same encoding as the AArch64 LR) and LRC (the high part). |
| */ |
| ARMCPRegInfo lr_regset[] = { |
| { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, |
| .crm = 12 + (j >> 3), .opc2 = j & 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .nv2_redirect_offset = 0x400 + 8 * j, |
| .access = PL2_RW, |
| .readfn = ich_lr_read, |
| .writefn = ich_lr_write, |
| }, |
| { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 12, |
| .crm = 14 + (j >> 3), .opc2 = j & 7, |
| .type = ARM_CP_IO | ARM_CP_NO_RAW, |
| .access = PL2_RW, |
| .readfn = ich_lr_read, |
| .writefn = ich_lr_write, |
| }, |
| }; |
| define_arm_cp_regs(cpu, lr_regset); |
| } |
| if (cs->vprebits >= 6) { |
| define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); |
| } |
| if (cs->vprebits == 7) { |
| define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); |
| } |
| } |
| if (tcg_enabled() || qtest_enabled()) { |
| /* |
| * We can only trap EL changes with TCG. However the GIC interrupt |
| * state only changes on EL changes involving EL2 or EL3, so for |
| * the non-TCG case this is OK, as EL2 and EL3 can't exist. |
| */ |
| arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); |
| } else { |
| assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); |
| assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); |
| } |
| } |
| } |