| /* |
| * QEMU AArch64 CPU |
| * |
| * Copyright (c) 2013 Linaro Ltd |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see |
| * <http://www.gnu.org/licenses/gpl-2.0.html> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "cpu.h" |
| #include "qemu/module.h" |
| #if !defined(CONFIG_USER_ONLY) |
| #include "hw/loader.h" |
| #endif |
| #include "sysemu/kvm.h" |
| #include "kvm_arm.h" |
| #include "qapi/visitor.h" |
| |
| #ifndef CONFIG_USER_ONLY |
| static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| |
| /* Number of cores is in [25:24]; otherwise we RAZ */ |
| return (cpu->core_count - 1) << 24; |
| } |
| #endif |
| |
| static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { |
| #ifndef CONFIG_USER_ONLY |
| { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, |
| .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, |
| .writefn = arm_cp_write_ignore }, |
| { .name = "L2CTLR", |
| .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, |
| .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, |
| .writefn = arm_cp_write_ignore }, |
| #endif |
| { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "L2ECTLR", |
| .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CPUACTLR", |
| .cp = 15, .opc1 = 0, .crm = 15, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CPUECTLR", |
| .cp = 15, .opc1 = 1, .crm = 15, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CPUMERRSR", |
| .cp = 15, .opc1 = 2, .crm = 15, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "L2MERRSR", |
| .cp = 15, .opc1 = 3, .crm = 15, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void aarch64_a57_initfn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| cpu->dtb_compatible = "arm,cortex-a57"; |
| set_feature(&cpu->env, ARM_FEATURE_V8); |
| set_feature(&cpu->env, ARM_FEATURE_NEON); |
| set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); |
| set_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); |
| set_feature(&cpu->env, ARM_FEATURE_EL2); |
| set_feature(&cpu->env, ARM_FEATURE_EL3); |
| set_feature(&cpu->env, ARM_FEATURE_PMU); |
| cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; |
| cpu->midr = 0x411fd070; |
| cpu->revidr = 0x00000000; |
| cpu->reset_fpsid = 0x41034070; |
| cpu->isar.mvfr0 = 0x10110222; |
| cpu->isar.mvfr1 = 0x12111111; |
| cpu->isar.mvfr2 = 0x00000043; |
| cpu->ctr = 0x8444c004; |
| cpu->reset_sctlr = 0x00c50838; |
| cpu->id_pfr0 = 0x00000131; |
| cpu->id_pfr1 = 0x00011011; |
| cpu->isar.id_dfr0 = 0x03010066; |
| cpu->id_afr0 = 0x00000000; |
| cpu->isar.id_mmfr0 = 0x10101105; |
| cpu->isar.id_mmfr1 = 0x40000000; |
| cpu->isar.id_mmfr2 = 0x01260000; |
| cpu->isar.id_mmfr3 = 0x02102211; |
| cpu->isar.id_isar0 = 0x02101110; |
| cpu->isar.id_isar1 = 0x13112111; |
| cpu->isar.id_isar2 = 0x21232042; |
| cpu->isar.id_isar3 = 0x01112131; |
| cpu->isar.id_isar4 = 0x00011142; |
| cpu->isar.id_isar5 = 0x00011121; |
| cpu->isar.id_isar6 = 0; |
| cpu->isar.id_aa64pfr0 = 0x00002222; |
| cpu->isar.id_aa64dfr0 = 0x10305106; |
| cpu->isar.id_aa64isar0 = 0x00011120; |
| cpu->isar.id_aa64mmfr0 = 0x00001124; |
| cpu->isar.dbgdidr = 0x3516d000; |
| cpu->clidr = 0x0a200023; |
| cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ |
| cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ |
| cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ |
| cpu->dcz_blocksize = 4; /* 64 bytes */ |
| cpu->gic_num_lrs = 4; |
| cpu->gic_vpribits = 5; |
| cpu->gic_vprebits = 5; |
| define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); |
| } |
| |
| static void aarch64_a53_initfn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| cpu->dtb_compatible = "arm,cortex-a53"; |
| set_feature(&cpu->env, ARM_FEATURE_V8); |
| set_feature(&cpu->env, ARM_FEATURE_NEON); |
| set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); |
| set_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); |
| set_feature(&cpu->env, ARM_FEATURE_EL2); |
| set_feature(&cpu->env, ARM_FEATURE_EL3); |
| set_feature(&cpu->env, ARM_FEATURE_PMU); |
| cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; |
| cpu->midr = 0x410fd034; |
| cpu->revidr = 0x00000000; |
| cpu->reset_fpsid = 0x41034070; |
| cpu->isar.mvfr0 = 0x10110222; |
| cpu->isar.mvfr1 = 0x12111111; |
| cpu->isar.mvfr2 = 0x00000043; |
| cpu->ctr = 0x84448004; /* L1Ip = VIPT */ |
| cpu->reset_sctlr = 0x00c50838; |
| cpu->id_pfr0 = 0x00000131; |
| cpu->id_pfr1 = 0x00011011; |
| cpu->isar.id_dfr0 = 0x03010066; |
| cpu->id_afr0 = 0x00000000; |
| cpu->isar.id_mmfr0 = 0x10101105; |
| cpu->isar.id_mmfr1 = 0x40000000; |
| cpu->isar.id_mmfr2 = 0x01260000; |
| cpu->isar.id_mmfr3 = 0x02102211; |
| cpu->isar.id_isar0 = 0x02101110; |
| cpu->isar.id_isar1 = 0x13112111; |
| cpu->isar.id_isar2 = 0x21232042; |
| cpu->isar.id_isar3 = 0x01112131; |
| cpu->isar.id_isar4 = 0x00011142; |
| cpu->isar.id_isar5 = 0x00011121; |
| cpu->isar.id_isar6 = 0; |
| cpu->isar.id_aa64pfr0 = 0x00002222; |
| cpu->isar.id_aa64dfr0 = 0x10305106; |
| cpu->isar.id_aa64isar0 = 0x00011120; |
| cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ |
| cpu->isar.dbgdidr = 0x3516d000; |
| cpu->clidr = 0x0a200023; |
| cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ |
| cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ |
| cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ |
| cpu->dcz_blocksize = 4; /* 64 bytes */ |
| cpu->gic_num_lrs = 4; |
| cpu->gic_vpribits = 5; |
| cpu->gic_vprebits = 5; |
| define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); |
| } |
| |
| static void aarch64_a72_initfn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| cpu->dtb_compatible = "arm,cortex-a72"; |
| set_feature(&cpu->env, ARM_FEATURE_V8); |
| set_feature(&cpu->env, ARM_FEATURE_NEON); |
| set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); |
| set_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); |
| set_feature(&cpu->env, ARM_FEATURE_EL2); |
| set_feature(&cpu->env, ARM_FEATURE_EL3); |
| set_feature(&cpu->env, ARM_FEATURE_PMU); |
| cpu->midr = 0x410fd083; |
| cpu->revidr = 0x00000000; |
| cpu->reset_fpsid = 0x41034080; |
| cpu->isar.mvfr0 = 0x10110222; |
| cpu->isar.mvfr1 = 0x12111111; |
| cpu->isar.mvfr2 = 0x00000043; |
| cpu->ctr = 0x8444c004; |
| cpu->reset_sctlr = 0x00c50838; |
| cpu->id_pfr0 = 0x00000131; |
| cpu->id_pfr1 = 0x00011011; |
| cpu->isar.id_dfr0 = 0x03010066; |
| cpu->id_afr0 = 0x00000000; |
| cpu->isar.id_mmfr0 = 0x10201105; |
| cpu->isar.id_mmfr1 = 0x40000000; |
| cpu->isar.id_mmfr2 = 0x01260000; |
| cpu->isar.id_mmfr3 = 0x02102211; |
| cpu->isar.id_isar0 = 0x02101110; |
| cpu->isar.id_isar1 = 0x13112111; |
| cpu->isar.id_isar2 = 0x21232042; |
| cpu->isar.id_isar3 = 0x01112131; |
| cpu->isar.id_isar4 = 0x00011142; |
| cpu->isar.id_isar5 = 0x00011121; |
| cpu->isar.id_aa64pfr0 = 0x00002222; |
| cpu->isar.id_aa64dfr0 = 0x10305106; |
| cpu->isar.id_aa64isar0 = 0x00011120; |
| cpu->isar.id_aa64mmfr0 = 0x00001124; |
| cpu->isar.dbgdidr = 0x3516d000; |
| cpu->clidr = 0x0a200023; |
| cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ |
| cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ |
| cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ |
| cpu->dcz_blocksize = 4; /* 64 bytes */ |
| cpu->gic_num_lrs = 4; |
| cpu->gic_vpribits = 5; |
| cpu->gic_vprebits = 5; |
| define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); |
| } |
| |
| void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) |
| { |
| /* |
| * If any vector lengths are explicitly enabled with sve<N> properties, |
| * then all other lengths are implicitly disabled. If sve-max-vq is |
| * specified then it is the same as explicitly enabling all lengths |
| * up to and including the specified maximum, which means all larger |
| * lengths will be implicitly disabled. If no sve<N> properties |
| * are enabled and sve-max-vq is not specified, then all lengths not |
| * explicitly disabled will be enabled. Additionally, all power-of-two |
| * vector lengths less than the maximum enabled length will be |
| * automatically enabled and all vector lengths larger than the largest |
| * disabled power-of-two vector length will be automatically disabled. |
| * Errors are generated if the user provided input that interferes with |
| * any of the above. Finally, if SVE is not disabled, then at least one |
| * vector length must be enabled. |
| */ |
| DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ); |
| DECLARE_BITMAP(tmp, ARM_MAX_VQ); |
| uint32_t vq, max_vq = 0; |
| |
| /* Collect the set of vector lengths supported by KVM. */ |
| bitmap_zero(kvm_supported, ARM_MAX_VQ); |
| if (kvm_enabled() && kvm_arm_sve_supported()) { |
| kvm_arm_sve_get_vls(CPU(cpu), kvm_supported); |
| } else if (kvm_enabled()) { |
| assert(!cpu_isar_feature(aa64_sve, cpu)); |
| } |
| |
| /* |
| * Process explicit sve<N> properties. |
| * From the properties, sve_vq_map<N> implies sve_vq_init<N>. |
| * Check first for any sve<N> enabled. |
| */ |
| if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { |
| max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; |
| |
| if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { |
| error_setg(errp, "cannot enable sve%d", max_vq * 128); |
| error_append_hint(errp, "sve%d is larger than the maximum vector " |
| "length, sve-max-vq=%d (%d bits)\n", |
| max_vq * 128, cpu->sve_max_vq, |
| cpu->sve_max_vq * 128); |
| return; |
| } |
| |
| if (kvm_enabled()) { |
| /* |
| * For KVM we have to automatically enable all supported unitialized |
| * lengths, even when the smaller lengths are not all powers-of-two. |
| */ |
| bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq); |
| bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); |
| } else { |
| /* Propagate enabled bits down through required powers-of-two. */ |
| for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { |
| if (!test_bit(vq - 1, cpu->sve_vq_init)) { |
| set_bit(vq - 1, cpu->sve_vq_map); |
| } |
| } |
| } |
| } else if (cpu->sve_max_vq == 0) { |
| /* |
| * No explicit bits enabled, and no implicit bits from sve-max-vq. |
| */ |
| if (!cpu_isar_feature(aa64_sve, cpu)) { |
| /* SVE is disabled and so are all vector lengths. Good. */ |
| return; |
| } |
| |
| if (kvm_enabled()) { |
| /* Disabling a supported length disables all larger lengths. */ |
| for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { |
| if (test_bit(vq - 1, cpu->sve_vq_init) && |
| test_bit(vq - 1, kvm_supported)) { |
| break; |
| } |
| } |
| max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; |
| bitmap_andnot(cpu->sve_vq_map, kvm_supported, |
| cpu->sve_vq_init, max_vq); |
| if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { |
| error_setg(errp, "cannot disable sve%d", vq * 128); |
| error_append_hint(errp, "Disabling sve%d results in all " |
| "vector lengths being disabled.\n", |
| vq * 128); |
| error_append_hint(errp, "With SVE enabled, at least one " |
| "vector length must be enabled.\n"); |
| return; |
| } |
| } else { |
| /* Disabling a power-of-two disables all larger lengths. */ |
| if (test_bit(0, cpu->sve_vq_init)) { |
| error_setg(errp, "cannot disable sve128"); |
| error_append_hint(errp, "Disabling sve128 results in all " |
| "vector lengths being disabled.\n"); |
| error_append_hint(errp, "With SVE enabled, at least one " |
| "vector length must be enabled.\n"); |
| return; |
| } |
| for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) { |
| if (test_bit(vq - 1, cpu->sve_vq_init)) { |
| break; |
| } |
| } |
| max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; |
| bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq); |
| } |
| |
| max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; |
| } |
| |
| /* |
| * Process the sve-max-vq property. |
| * Note that we know from the above that no bit above |
| * sve-max-vq is currently set. |
| */ |
| if (cpu->sve_max_vq != 0) { |
| max_vq = cpu->sve_max_vq; |
| |
| if (!test_bit(max_vq - 1, cpu->sve_vq_map) && |
| test_bit(max_vq - 1, cpu->sve_vq_init)) { |
| error_setg(errp, "cannot disable sve%d", max_vq * 128); |
| error_append_hint(errp, "The maximum vector length must be " |
| "enabled, sve-max-vq=%d (%d bits)\n", |
| max_vq, max_vq * 128); |
| return; |
| } |
| |
| /* Set all bits not explicitly set within sve-max-vq. */ |
| bitmap_complement(tmp, cpu->sve_vq_init, max_vq); |
| bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); |
| } |
| |
| /* |
| * We should know what max-vq is now. Also, as we're done |
| * manipulating sve-vq-map, we ensure any bits above max-vq |
| * are clear, just in case anybody looks. |
| */ |
| assert(max_vq != 0); |
| bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); |
| |
| if (kvm_enabled()) { |
| /* Ensure the set of lengths matches what KVM supports. */ |
| bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq); |
| if (!bitmap_empty(tmp, max_vq)) { |
| vq = find_last_bit(tmp, max_vq) + 1; |
| if (test_bit(vq - 1, cpu->sve_vq_map)) { |
| if (cpu->sve_max_vq) { |
| error_setg(errp, "cannot set sve-max-vq=%d", |
| cpu->sve_max_vq); |
| error_append_hint(errp, "This KVM host does not support " |
| "the vector length %d-bits.\n", |
| vq * 128); |
| error_append_hint(errp, "It may not be possible to use " |
| "sve-max-vq with this KVM host. Try " |
| "using only sve<N> properties.\n"); |
| } else { |
| error_setg(errp, "cannot enable sve%d", vq * 128); |
| error_append_hint(errp, "This KVM host does not support " |
| "the vector length %d-bits.\n", |
| vq * 128); |
| } |
| } else { |
| error_setg(errp, "cannot disable sve%d", vq * 128); |
| error_append_hint(errp, "The KVM host requires all " |
| "supported vector lengths smaller " |
| "than %d bits to also be enabled.\n", |
| max_vq * 128); |
| } |
| return; |
| } |
| } else { |
| /* Ensure all required powers-of-two are enabled. */ |
| for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { |
| if (!test_bit(vq - 1, cpu->sve_vq_map)) { |
| error_setg(errp, "cannot disable sve%d", vq * 128); |
| error_append_hint(errp, "sve%d is required as it " |
| "is a power-of-two length smaller than " |
| "the maximum, sve%d\n", |
| vq * 128, max_vq * 128); |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Now that we validated all our vector lengths, the only question |
| * left to answer is if we even want SVE at all. |
| */ |
| if (!cpu_isar_feature(aa64_sve, cpu)) { |
| error_setg(errp, "cannot enable sve%d", max_vq * 128); |
| error_append_hint(errp, "SVE must be enabled to enable vector " |
| "lengths.\n"); |
| error_append_hint(errp, "Add sve=on to the CPU property list.\n"); |
| return; |
| } |
| |
| /* From now on sve_max_vq is the actual maximum supported length. */ |
| cpu->sve_max_vq = max_vq; |
| } |
| |
| static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| uint32_t value; |
| |
| /* All vector lengths are disabled when SVE is off. */ |
| if (!cpu_isar_feature(aa64_sve, cpu)) { |
| value = 0; |
| } else { |
| value = cpu->sve_max_vq; |
| } |
| visit_type_uint32(v, name, &value, errp); |
| } |
| |
| static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| uint32_t max_vq; |
| |
| if (!visit_type_uint32(v, name, &max_vq, errp)) { |
| return; |
| } |
| |
| if (kvm_enabled() && !kvm_arm_sve_supported()) { |
| error_setg(errp, "cannot set sve-max-vq"); |
| error_append_hint(errp, "SVE not supported by KVM on this host\n"); |
| return; |
| } |
| |
| if (max_vq == 0 || max_vq > ARM_MAX_VQ) { |
| error_setg(errp, "unsupported SVE vector length"); |
| error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", |
| ARM_MAX_VQ); |
| return; |
| } |
| |
| cpu->sve_max_vq = max_vq; |
| } |
| |
| static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| uint32_t vq = atoi(&name[3]) / 128; |
| bool value; |
| |
| /* All vector lengths are disabled when SVE is off. */ |
| if (!cpu_isar_feature(aa64_sve, cpu)) { |
| value = false; |
| } else { |
| value = test_bit(vq - 1, cpu->sve_vq_map); |
| } |
| visit_type_bool(v, name, &value, errp); |
| } |
| |
| static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| uint32_t vq = atoi(&name[3]) / 128; |
| bool value; |
| |
| if (!visit_type_bool(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value && kvm_enabled() && !kvm_arm_sve_supported()) { |
| error_setg(errp, "cannot enable %s", name); |
| error_append_hint(errp, "SVE not supported by KVM on this host\n"); |
| return; |
| } |
| |
| if (value) { |
| set_bit(vq - 1, cpu->sve_vq_map); |
| } else { |
| clear_bit(vq - 1, cpu->sve_vq_map); |
| } |
| set_bit(vq - 1, cpu->sve_vq_init); |
| } |
| |
| static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| bool value = cpu_isar_feature(aa64_sve, cpu); |
| |
| visit_type_bool(v, name, &value, errp); |
| } |
| |
| static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| bool value; |
| uint64_t t; |
| |
| if (!visit_type_bool(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value && kvm_enabled() && !kvm_arm_sve_supported()) { |
| error_setg(errp, "'sve' feature not supported by KVM on this host"); |
| return; |
| } |
| |
| t = cpu->isar.id_aa64pfr0; |
| t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); |
| cpu->isar.id_aa64pfr0 = t; |
| } |
| |
| void aarch64_add_sve_properties(Object *obj) |
| { |
| uint32_t vq; |
| |
| object_property_add(obj, "sve", "bool", cpu_arm_get_sve, |
| cpu_arm_set_sve, NULL, NULL); |
| |
| for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { |
| char name[8]; |
| sprintf(name, "sve%d", vq * 128); |
| object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, |
| cpu_arm_set_sve_vq, NULL, NULL); |
| } |
| } |
| |
| /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); |
| * otherwise, a CPU with as many features enabled as our emulation supports. |
| * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; |
| * this only needs to handle 64 bits. |
| */ |
| static void aarch64_max_initfn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| if (kvm_enabled()) { |
| kvm_arm_set_cpu_features_from_host(cpu); |
| } else { |
| uint64_t t; |
| uint32_t u; |
| aarch64_a57_initfn(obj); |
| |
| /* |
| * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real |
| * one and try to apply errata workarounds or use impdef features we |
| * don't provide. |
| * An IMPLEMENTER field of 0 means "reserved for software use"; |
| * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers |
| * to see which features are present"; |
| * the VARIANT, PARTNUM and REVISION fields are all implementation |
| * defined and we choose to define PARTNUM just in case guest |
| * code needs to distinguish this QEMU CPU from other software |
| * implementations, though this shouldn't be needed. |
| */ |
| t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); |
| t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); |
| t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); |
| t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); |
| t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); |
| cpu->midr = t; |
| |
| t = cpu->isar.id_aa64isar0; |
| t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ |
| t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); |
| t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ |
| t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); |
| cpu->isar.id_aa64isar0 = t; |
| |
| t = cpu->isar.id_aa64isar1; |
| t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); |
| t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ |
| t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); |
| t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ |
| cpu->isar.id_aa64isar1 = t; |
| |
| t = cpu->isar.id_aa64pfr0; |
| t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); |
| t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); |
| t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); |
| cpu->isar.id_aa64pfr0 = t; |
| |
| t = cpu->isar.id_aa64pfr1; |
| t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); |
| /* |
| * Begin with full support for MTE. This will be downgraded to MTE=0 |
| * during realize if the board provides no tag memory, much like |
| * we do for EL2 with the virtualization=on property. |
| */ |
| t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2); |
| cpu->isar.id_aa64pfr1 = t; |
| |
| t = cpu->isar.id_aa64mmfr1; |
| t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ |
| t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); |
| t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); |
| t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ |
| t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ |
| t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */ |
| cpu->isar.id_aa64mmfr1 = t; |
| |
| t = cpu->isar.id_aa64mmfr2; |
| t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); |
| t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ |
| cpu->isar.id_aa64mmfr2 = t; |
| |
| /* Replicate the same data to the 32-bit id registers. */ |
| u = cpu->isar.id_isar5; |
| u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ |
| u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); |
| u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); |
| u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); |
| u = FIELD_DP32(u, ID_ISAR5, RDM, 1); |
| u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); |
| cpu->isar.id_isar5 = u; |
| |
| u = cpu->isar.id_isar6; |
| u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); |
| u = FIELD_DP32(u, ID_ISAR6, DP, 1); |
| u = FIELD_DP32(u, ID_ISAR6, FHM, 1); |
| u = FIELD_DP32(u, ID_ISAR6, SB, 1); |
| u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); |
| cpu->isar.id_isar6 = u; |
| |
| u = cpu->isar.id_mmfr3; |
| u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ |
| cpu->isar.id_mmfr3 = u; |
| |
| u = cpu->isar.id_mmfr4; |
| u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ |
| u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ |
| u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */ |
| u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */ |
| cpu->isar.id_mmfr4 = u; |
| |
| t = cpu->isar.id_aa64dfr0; |
| t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ |
| cpu->isar.id_aa64dfr0 = t; |
| |
| u = cpu->isar.id_dfr0; |
| u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ |
| cpu->isar.id_dfr0 = u; |
| |
| u = cpu->isar.mvfr1; |
| u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */ |
| u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ |
| cpu->isar.mvfr1 = u; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* For usermode -cpu max we can use a larger and more efficient DCZ |
| * blocksize since we don't have to follow what the hardware does. |
| */ |
| cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ |
| cpu->dcz_blocksize = 7; /* 512 bytes */ |
| #endif |
| } |
| |
| aarch64_add_sve_properties(obj); |
| object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, |
| cpu_max_set_sve_max_vq, NULL, NULL); |
| } |
| |
| static const ARMCPUInfo aarch64_cpus[] = { |
| { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, |
| { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, |
| { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, |
| { .name = "max", .initfn = aarch64_max_initfn }, |
| }; |
| |
| static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| } |
| |
| static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| /* At this time, this property is only allowed if KVM is enabled. This |
| * restriction allows us to avoid fixing up functionality that assumes a |
| * uniform execution state like do_interrupt. |
| */ |
| if (value == false) { |
| if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { |
| error_setg(errp, "'aarch64' feature cannot be disabled " |
| "unless KVM is enabled and 32-bit EL1 " |
| "is supported"); |
| return; |
| } |
| unset_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| } else { |
| set_feature(&cpu->env, ARM_FEATURE_AARCH64); |
| } |
| } |
| |
| static void aarch64_cpu_initfn(Object *obj) |
| { |
| object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, |
| aarch64_cpu_set_aarch64); |
| object_property_set_description(obj, "aarch64", |
| "Set on/off to enable/disable aarch64 " |
| "execution state "); |
| } |
| |
| static void aarch64_cpu_finalizefn(Object *obj) |
| { |
| } |
| |
| static gchar *aarch64_gdb_arch_name(CPUState *cs) |
| { |
| return g_strdup("aarch64"); |
| } |
| |
| static void aarch64_cpu_class_init(ObjectClass *oc, void *data) |
| { |
| CPUClass *cc = CPU_CLASS(oc); |
| |
| cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; |
| cc->gdb_read_register = aarch64_cpu_gdb_read_register; |
| cc->gdb_write_register = aarch64_cpu_gdb_write_register; |
| cc->gdb_num_core_regs = 34; |
| cc->gdb_core_xml_file = "aarch64-core.xml"; |
| cc->gdb_arch_name = aarch64_gdb_arch_name; |
| } |
| |
| static void aarch64_cpu_instance_init(Object *obj) |
| { |
| ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); |
| |
| acc->info->initfn(obj); |
| arm_cpu_post_init(obj); |
| } |
| |
| static void cpu_register_class_init(ObjectClass *oc, void *data) |
| { |
| ARMCPUClass *acc = ARM_CPU_CLASS(oc); |
| |
| acc->info = data; |
| } |
| |
| void aarch64_cpu_register(const ARMCPUInfo *info) |
| { |
| TypeInfo type_info = { |
| .parent = TYPE_AARCH64_CPU, |
| .instance_size = sizeof(ARMCPU), |
| .instance_init = aarch64_cpu_instance_init, |
| .class_size = sizeof(ARMCPUClass), |
| .class_init = info->class_init ?: cpu_register_class_init, |
| .class_data = (void *)info, |
| }; |
| |
| type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); |
| type_register(&type_info); |
| g_free((void *)type_info.name); |
| } |
| |
| static const TypeInfo aarch64_cpu_type_info = { |
| .name = TYPE_AARCH64_CPU, |
| .parent = TYPE_ARM_CPU, |
| .instance_size = sizeof(ARMCPU), |
| .instance_init = aarch64_cpu_initfn, |
| .instance_finalize = aarch64_cpu_finalizefn, |
| .abstract = true, |
| .class_size = sizeof(AArch64CPUClass), |
| .class_init = aarch64_cpu_class_init, |
| }; |
| |
| static void aarch64_cpu_register_types(void) |
| { |
| size_t i; |
| |
| type_register_static(&aarch64_cpu_type_info); |
| |
| for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { |
| aarch64_cpu_register(&aarch64_cpus[i]); |
| } |
| } |
| |
| type_init(aarch64_cpu_register_types) |