blob: e75ec13cd0283311d08c7b52b49b9dd328c48202 [file] [log] [blame]
/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#include "exec/cpu-common.h"
#include "exec/memory.h"
#include "exec/tswap.h"
#include "hw/core/cpu.h"
/* some important defines:
*
* HOST_BIG_ENDIAN : whether the host cpu is big endian and
* otherwise little endian.
*
* TARGET_BIG_ENDIAN : same for the target cpu
*/
#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
#define BSWAP_NEEDED
#endif
/* Target-endianness CPU memory access functions. These fit into the
* {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
*/
#if TARGET_BIG_ENDIAN
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define ldn_p(p, sz) ldn_be_p(p, sz)
#define stn_p(p, sz, v) stn_be_p(p, sz, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define ldn_p(p, sz) ldn_le_p(p, sz)
#define stn_p(p, sz, v) stn_le_p(p, sz, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include "exec/user/abitypes.h"
/*
* If non-zero, the guest virtual address space is a contiguous subset
* of the host virtual address space, i.e. '-R reserved_va' is in effect
* either from the command-line or by default. The value is the last
* byte of the guest address space e.g. UINT32_MAX.
*
* If zero, the host and guest virtual address spaces are intermingled.
*/
extern unsigned long reserved_va;
/*
* Limit the guest addresses as best we can.
*
* When not using -R reserved_va, we cannot really limit the guest
* to less address space than the host. For 32-bit guests, this
* acts as a sanity check that we're not giving the guest an address
* that it cannot even represent. For 64-bit guests... the address
* might not be what the real kernel would give, but it is at least
* representable in the guest.
*
* TODO: Improve address allocation to avoid this problem, and to
* avoid setting bits at the top of guest addresses that might need
* to be used for tags.
*/
#define GUEST_ADDR_MAX_ \
((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ? \
UINT32_MAX : ~0ul)
#define GUEST_ADDR_MAX (reserved_va ? : GUEST_ADDR_MAX_)
#else
#include "exec/hwaddr.h"
#define SUFFIX
#define ARG1 as
#define ARG1_DECL AddressSpace *as
#define TARGET_ENDIANNESS
#include "exec/memory_ldst.h.inc"
#define SUFFIX _cached_slow
#define ARG1 cache
#define ARG1_DECL MemoryRegionCache *cache
#define TARGET_ENDIANNESS
#include "exec/memory_ldst.h.inc"
static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
{
address_space_stl_notdirty(as, addr, val,
MEMTXATTRS_UNSPECIFIED, NULL);
}
#define SUFFIX
#define ARG1 as
#define ARG1_DECL AddressSpace *as
#define TARGET_ENDIANNESS
#include "exec/memory_ldst_phys.h.inc"
/* Inline fast path for direct RAM access. */
#define ENDIANNESS
#include "exec/memory_ldst_cached.h.inc"
#define SUFFIX _cached
#define ARG1 cache
#define ARG1_DECL MemoryRegionCache *cache
#define TARGET_ENDIANNESS
#include "exec/memory_ldst_phys.h.inc"
#endif
/* page related stuff */
#ifdef TARGET_PAGE_BITS_VARY
# include "exec/page-vary.h"
extern const TargetPageBits target_page;
#ifdef CONFIG_DEBUG_TCG
#define TARGET_PAGE_BITS ({ assert(target_page.decided); target_page.bits; })
#define TARGET_PAGE_MASK ({ assert(target_page.decided); \
(target_long)target_page.mask; })
#else
#define TARGET_PAGE_BITS target_page.bits
#define TARGET_PAGE_MASK ((target_long)target_page.mask)
#endif
#define TARGET_PAGE_SIZE (-(int)TARGET_PAGE_MASK)
#else
#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ((target_long)-1 << TARGET_PAGE_BITS)
#endif
#define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0100
#endif
/*
* For linux-user, indicates that the page is mapped with the same semantics
* in both guest and host.
*/
#define PAGE_PASSTHROUGH 0x0800
#if defined(CONFIG_USER_ONLY)
void page_dump(FILE *f);
typedef int (*walk_memory_regions_fn)(void *, target_ulong,
target_ulong, unsigned long);
int walk_memory_regions(void *, walk_memory_regions_fn);
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong last, int flags);
void page_reset_target_data(target_ulong start, target_ulong last);
/**
* page_check_range
* @start: first byte of range
* @len: length of range
* @flags: flags required for each page
*
* Return true if every page in [@start, @start+@len) has @flags set.
* Return false if any page is unmapped. Thus testing flags == 0 is
* equivalent to testing for flags == PAGE_VALID.
*/
bool page_check_range(target_ulong start, target_ulong last, int flags);
/**
* page_check_range_empty:
* @start: first byte of range
* @last: last byte of range
* Context: holding mmap lock
*
* Return true if the entire range [@start, @last] is unmapped.
* The memory lock must be held so that the caller will can ensure
* the result stays true until a new mapping can be installed.
*/
bool page_check_range_empty(target_ulong start, target_ulong last);
/**
* page_find_range_empty
* @min: first byte of search range
* @max: last byte of search range
* @len: size of the hole required
* @align: alignment of the hole required (power of 2)
*
* If there is a range [x, x+@len) within [@min, @max] such that
* x % @align == 0, then return x. Otherwise return -1.
* The memory lock must be held, as the caller will want to ensure
* the returned range stays empty until a new mapping can be installed.
*/
target_ulong page_find_range_empty(target_ulong min, target_ulong max,
target_ulong len, target_ulong align);
/**
* page_get_target_data(address)
* @address: guest virtual address
*
* Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate
* with the guest page at @address, allocating it if necessary. The
* caller should already have verified that the address is valid.
*
* The memory will be freed when the guest page is deallocated,
* e.g. with the munmap system call.
*/
void *page_get_target_data(target_ulong address)
__attribute__((returns_nonnull));
#endif
CPUArchState *cpu_copy(CPUArchState *env);
/* Flags for use in ENV->INTERRUPT_PENDING.
The numbers assigned here are non-sequential in order to preserve
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
the vmstate dump. */
/* External hardware interrupt pending. This is typically used for
interrupts from devices. */
#define CPU_INTERRUPT_HARD 0x0002
/* Exit the current TB. This is typically used when some system-level device
makes some change to the memory mapping. E.g. the a20 line change. */
#define CPU_INTERRUPT_EXITTB 0x0004
/* Halt the CPU. */
#define CPU_INTERRUPT_HALT 0x0020
/* Debug event pending. */
#define CPU_INTERRUPT_DEBUG 0x0080
/* Reset signal. */
#define CPU_INTERRUPT_RESET 0x0400
/* Several target-specific external hardware interrupts. Each target/cpu.h
should define proper names based on these defines. */
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
/* Several target-specific internal interrupts. These differ from the
preceding target-specific interrupts in that they are intended to
originate from within the cpu itself, typically in response to some
instruction being executed. These, therefore, are not masked while
single-stepping within the debugger. */
#define CPU_INTERRUPT_TGT_INT_0 0x0100
#define CPU_INTERRUPT_TGT_INT_1 0x0800
#define CPU_INTERRUPT_TGT_INT_2 0x2000
/* First unused bit: 0x4000. */
/* The set of all bits that should be masked when single-stepping. */
#define CPU_INTERRUPT_SSTEP_MASK \
(CPU_INTERRUPT_HARD \
| CPU_INTERRUPT_TGT_EXT_0 \
| CPU_INTERRUPT_TGT_EXT_1 \
| CPU_INTERRUPT_TGT_EXT_2 \
| CPU_INTERRUPT_TGT_EXT_3 \
| CPU_INTERRUPT_TGT_EXT_4)
#ifdef CONFIG_USER_ONLY
/*
* Allow some level of source compatibility with softmmu. We do not
* support any of the more exotic features, so only invalid pages may
* be signaled by probe_access_flags().
*/
#define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1))
#define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 2))
#define TLB_WATCHPOINT 0
static inline int cpu_mmu_index(CPUState *cs, bool ifetch)
{
return MMU_USER_IDX;
}
#else
/*
* Flags stored in the low bits of the TLB virtual address.
* These are defined so that fast path ram access is all zeros.
* The flags all must be between TARGET_PAGE_BITS and
* maximum address alignment bit.
*
* Use TARGET_PAGE_BITS_MIN so that these bits are constant
* when TARGET_PAGE_BITS_VARY is in effect.
*
* The count, if not the placement of these bits is known
* to tcg/tcg-op-ldst.c, check_max_alignment().
*/
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1))
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS_MIN - 2))
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 3))
/* Set if TLB entry writes ignored. */
#define TLB_DISCARD_WRITE (1 << (TARGET_PAGE_BITS_MIN - 4))
/* Set if the slow path must be used; more flags in CPUTLBEntryFull. */
#define TLB_FORCE_SLOW (1 << (TARGET_PAGE_BITS_MIN - 5))
/*
* Use this mask to check interception with an alignment mask
* in a TCG backend.
*/
#define TLB_FLAGS_MASK \
(TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
| TLB_FORCE_SLOW | TLB_DISCARD_WRITE)
/*
* Flags stored in CPUTLBEntryFull.slow_flags[x].
* TLB_FORCE_SLOW must be set in CPUTLBEntry.addr_idx[x].
*/
/* Set if TLB entry requires byte swap. */
#define TLB_BSWAP (1 << 0)
/* Set if TLB entry contains a watchpoint. */
#define TLB_WATCHPOINT (1 << 1)
/* Set if TLB entry requires aligned accesses. */
#define TLB_CHECK_ALIGNED (1 << 2)
#define TLB_SLOW_FLAGS_MASK (TLB_BSWAP | TLB_WATCHPOINT | TLB_CHECK_ALIGNED)
/* The two sets of flags must not overlap. */
QEMU_BUILD_BUG_ON(TLB_FLAGS_MASK & TLB_SLOW_FLAGS_MASK);
/**
* tlb_hit_page: return true if page aligned @addr is a hit against the
* TLB entry @tlb_addr
*
* @addr: virtual address to test (must be page aligned)
* @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
*/
static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr)
{
return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
}
/**
* tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
*
* @addr: virtual address to test (need not be page aligned)
* @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
*/
static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr)
{
return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
}
#endif /* !CONFIG_USER_ONLY */
/* Validate correct placement of CPUArchState. */
#include "cpu.h"
QEMU_BUILD_BUG_ON(offsetof(ArchCPU, parent_obj) != 0);
QEMU_BUILD_BUG_ON(offsetof(ArchCPU, env) != sizeof(CPUState));
#endif /* CPU_ALL_H */